CN116892129B - 一种变频电机用耐电晕n级绝缘纸及其制备方法 - Google Patents

一种变频电机用耐电晕n级绝缘纸及其制备方法 Download PDF

Info

Publication number
CN116892129B
CN116892129B CN202311160579.3A CN202311160579A CN116892129B CN 116892129 B CN116892129 B CN 116892129B CN 202311160579 A CN202311160579 A CN 202311160579A CN 116892129 B CN116892129 B CN 116892129B
Authority
CN
China
Prior art keywords
mica
surface layer
aramid
corona
insulating paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311160579.3A
Other languages
English (en)
Other versions
CN116892129A (zh
Inventor
任俊文
卿湫惋喻
贾申利
赵莉华
王梓
滕富莉
姜国庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202311160579.3A priority Critical patent/CN116892129B/zh
Publication of CN116892129A publication Critical patent/CN116892129A/zh
Application granted granted Critical
Publication of CN116892129B publication Critical patent/CN116892129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/42Micas ; Interstratified clay-mica products
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • D21H13/44Flakes, e.g. mica, vermiculite
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/50Spraying or projecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • H01B3/52Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials wood; paper; press board
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Paper (AREA)

Abstract

本发明提供一种变频电机用耐电晕N级绝缘纸及其制备方法。该绝缘纸为三明治夹层结构,其以芳纶纳米纤维和云母纳米片作为夹层材料、以芳纶纳米纤维和碳化硅纳米线分别作为夹层材料的上表层材料和下表层材料,然后将三层材料通过静电喷涂并热压的方式,最终制备得到耐电晕N级绝缘纸。本发明通过将耐高温、耐电晕的云母片,以及具有优异电场调控能力的碳化硅纳米线引入到芳纶纳米纤维中,通过静电喷涂实现三明治结构内部的高度有序排列,大幅提高了绝缘纸的耐温性能及耐电晕特性,避免了绝缘纸在高频高压脉冲电压下易电腐蚀、寿命短的问题,满足了电动汽车变频电机对于绝缘纸服役可靠性的应用需求。

Description

一种变频电机用耐电晕N级绝缘纸及其制备方法
技术领域
本发明涉及材料技术领域,尤其涉及一种变频电机用耐电晕N级绝缘纸及其制备方法。
背景技术
变频电机广泛应用于新能源汽车、高速铁路和机械制造等各个领域,是国民经济中的重要一环。由于变频电机的供电电源具有频率高、上升沿陡峭且极性呈周期性正负交变等特性,使变频电机持续承受着高频率电压的冲击,造成严重的局部放电以及空间电荷效应,导致变频电机内部电场剧烈畸变,绝缘被过早破坏,寿命严重缩短。为延长变频电机的使用寿命,亟需开发具有优异耐电晕腐蚀特性的绝缘材料。
绝缘纸作为一种常用的电气绝缘材料,具有良好的电绝缘性能和耐高温性能。其中,芳纶绝缘纸凭借突出的耐高温、绝缘性能以及力学性能被广泛应用于电机槽间绝缘。然而,芳纶绝缘纸耐电晕性能较差,当电机高频、高电压工作时,由此产生的脉冲电压易引起绝缘纸电晕腐蚀。此外,芳纶绝缘纸中空间电荷难以消散,导致绝缘纸的电晕老化时间受限。目前,研究人员通过将云母掺杂到芳纶绝缘纸中以期抵抗电晕放电,但由于云母与芳纶纤维之间界面结合强度低,复合绝缘纸耐电晕性能提升十分有限。
综上,针对芳纶绝缘纸耐电晕性能无法满足当前电机绝缘材料发展需求的问题,亟需开发一种耐电晕性优越的绝缘纸。
发明内容
本发明的目的在于解决上述现有技术存在的缺陷,提供一种变频电机用耐电晕N级绝缘纸及其制备方法。
一种变频电机用耐电晕N级绝缘纸,该绝缘纸为三明治夹层结构;
所述三明治夹层结构以芳纶纳米纤维和云母纳米片作为夹层材料、以芳纶纳米纤维和碳化硅纳米线分别作为所述夹层材料的上表层材料和下表层材料。
进一步地,如上所述的变频电机用耐电晕N级绝缘纸,所述芳纶纳米纤维直径为10~50 nm,长度大于3 μm;所述云母纳米片粒径为2~10 μm,厚度小于10 nm;所述碳化硅纳米线的直径为80~500 nm,长度大于5 μm;
所述芳纶纳米纤维为对位芳纶纳米纤维;
所述云母纳米片为合成云母纳米片。
进一步地,如上所述的变频电机用耐电晕N级绝缘纸,所述芳纶纳米纤维与云母纳米片的质量比为(9~5):(1~5)。
进一步地,如上所述的变频电机用耐电晕N级绝缘纸,所述芳纶纳米纤维与碳化硅纳米线的质量比为9:1。
一种如上所述的变频电机用耐电晕N级绝缘纸的制备方法,包括以下步骤:
1)以芳纶纳米纤维与碳化硅纳米线为原料,制备得到表层复合浆料;
2)以芳纶纳米纤维与云母纳米片为原料,制备得到夹层复合浆料;
3)将所述表层复合浆料通过静电喷涂在基板上,以形成下表层凝胶;
4)将所述夹层复合浆料通过静电喷涂在所述下表层凝胶的上表面,以形成夹层凝胶;
5)将所述表层复合浆料再次通过静电喷涂在所述夹层凝胶的上表面,以形成上表层凝胶;
6)将所制备的三层凝胶在真空50~73 ℃干燥36~48小时,得到三明治绝缘纸糙纸;
7)将所述绝缘纸糙纸在20 Mpa,175~195 ℃的条件下热压成型,最终得到具有三明治结构的所述变频电机用耐电晕N级绝缘纸。
进一步地,如上所述的制备方法,所述下表层凝胶、上表层凝胶的厚度均为200 μm~500 μm;所述夹层凝胶的厚度为500 μm~1000 μm。
进一步地,如上所述的制备方法,所述表层复合浆料的制备包括:
将芳纶纳米纤维与碳化硅纳米线按9:1的质量比加入400 mL去离子水中,通过10000~15000 rpm高速剪切15 min混匀制浆,最终得到所述表层复合浆料。
进一步地,如上所述的制备方法,所述夹层复合浆料的制备包括:
将芳纶纳米纤维与云母纳米片按(9~5):(1~5)的质量比加入400 mL去离子水中,通过10000~25000 rpm高速剪切15 min混匀制浆,最终得到所述夹层复合浆料。
进一步地,如上所述的制备方法,所述芳纶纳米纤维的制备包括:
将芳纶纤维经丙酮清洗烘干后置于低温等离子体处理仪器中,功率200 W,真空度100 Pa,通入氩气处理6 min,流量为30 mL/min;
将等离子处理过的芳纶纤维与氢氧化钾、二甲基亚砜以1 g:1.5 g:500 mL的比例置于密封容器中,在室温下以1000 rpm的转速持续机械搅拌7天,得到在氢氧化钾/二甲基亚砜体系中稳定分散的芳纶纳米纤维。
进一步地,如上所述的制备方法,所述云母纳米片的制备包括:
首先,将合成云母、十六烷基三甲基溴化铵加入去离子水中获得云母分散液;其中合成云母、十六烷基三甲基溴化铵、去离子水的比例为10g:10g:500 mL;
然后,将所述分散液在80 ℃水浴中搅拌2 h使十六烷基三甲基溴化铵充分溶解;
随后,将充分溶解后的分散液在水浴中超声6 h,通过超声空化效应以及十六烷基三甲基溴化铵的插层辅助作用实现云母剥离获得云母纳米片;其中超声功率为300~350 W;
然后,将超声后的云母纳米片分散溶液通过离心,并用去离子水反复清洗,除去云母纳米片表面残留的十六烷基三甲基溴化铵,其中离心转速为4500~5000 rpm;
最后,将所得固体在80 ℃下真空干燥12 h,得到合成云母纳米片。
有益效果:本发明提供的变频电机用耐电晕N级绝缘纸,以芳纶纳米纤维为骨架网络,以云母纳米片为耐电晕功能基元,以碳化硅纳米线为电荷消散功能基元,以芳纶纳米纤维和云母纳米片作为夹层材料、以芳纶纳米纤维和碳化硅纳米线分别作为所述夹层材料的上表层材料和下表层材料,通过微结构有序组装,构筑了具有三明治结构的复合绝缘纸,构建了表面电荷快速消散通道,并在夹层中构建了微观有序的仿“砖泥结构”,形成了抑制体电荷传输的致密屏障,从而调控了电荷在绝缘纸中的输运,并最终能实现了绝缘纸耐电晕性能的提升。
本发明提供的方法,采用静电喷涂工艺,实现了复合绝缘纸层内有序微结构的可靠构筑。通过在表层结构实现碳化硅纳米线的定向排列,从而形成了高效稳健的电荷消散路径;通过在夹层结构中构建致密有序的芳纶纳米纤维/云母纳米片拓扑屏障,从而有效抑制了体电荷的传输和电树枝的生长,进一步调控了电荷在绝缘纸中的输运,实现了复合绝缘纸耐电晕特性的大幅提升。
本发明提供的方法,采用高速剪切共混,将云母纳米片引入芳纶纳米纤维基体中,构建了有序的仿“砖泥结构”,同时通过引入具有典型非线性特性的碳化硅纳米线,快速实现表面电荷消散,赋予了复合绝缘纸优异的电场调控能力。通过静电喷涂工艺,实现浆料间的层级组装,制备得到三明治结构的耐电晕复合绝缘纸。
本发明提供的芳纶纳米纤维为对位芳纶纳米纤维,通过将对位芳纶纤维经等离子体处理后,使得在其表面引入了一定数量的极性官能团羰基和羧基,纤维表面化学组成的改变为其提供了更多的活性位点,从而克服了其化学惰性;而等离子体的刻蚀作用增加了纤维表面粗糙度,从而增大了其表面积和握紧力,改善了其粘合性能,为灵活设计功能化芳纶绝缘纸提供了基础。
本发明提供的方法,采用云母纳米片作为耐电晕构筑基元,由于云母纳米片表面具有丰富的羟基基团,将其与芳纶纳米纤维混合形成有序致密的结构,不仅能够大幅提升复合材料的耐电晕性能,还可以赋予复合材料优良的力学强度和击穿强度。
本发明提供的方法,采用碳化硅纳米线作为电荷消散功能基元,由于其具有典型的非线性特性,能够赋予复合绝缘纸优异的电场调控能力,因此将其作为电荷消散功能基元,通过高速剪切以及静电喷涂技术,能够在绝缘纸表面构建电荷快速消散通道,从而提升复合绝缘纸的耐电晕特性。
本发明提供的变频电机用耐电晕N级绝缘纸,当芳纶纳米纤维与云母片的质量比较低时,由于芳纶纳米纤维占主要成分,能够更好地发挥自身优异的力学性能,充足的纤维含量有利于对云母片起到更好的包覆作用,因此,选择芳纶纳米纤维与云母纳米片的质量比为(9~5):(1~5)。
本发明提供的变频电机用耐电晕N级绝缘纸,由于碳化硅纳米线易聚集,难分散,因此控制芳纶纳米纤维与碳化硅纳米线的质量比为9:1,从而能够有效保证芳纶纳米纤维与碳化硅纳米线之间的分子尺度混合。
本发明提供的方法,采用静电喷涂工艺,有利于云母纳米片和碳化硅纳米线的高度有序排列,进而在三明治结构复合绝缘纸种形成高效稳健的电荷快速消散路径,从而实现复合绝缘纸耐电晕特性的提升。
综上,本发明具有以下优势:
1.本发明提供的耐电晕N级绝缘纸,与现有的复合绝缘纸相比,耐电晕特性显著提高,同时兼具良好的机械强度和击穿强度。
2.本发明中制备复合绝缘纸的方法简单易操作、成本低、质量高,适用于工业化大规模生产。
附图说明
图1为实施例制备的N级绝缘纸的差示热扫描测试图;
图2为对位芳纶纤维的扫描电子显微镜图;
图3为芳纶纳米纤维的透射电子显微镜图;
图4为合成云母的扫描电子显微镜图;
图5为云母纳米片的透射电子显微镜图;
图6为碳化硅纳米线的透射电子显微镜图;
图7为实施例1-5中复合绝缘纸的击穿强度对比图;
图8为实施例1-5中复合绝缘纸的拉伸强度对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的N级绝缘纸为耐热温度高于220℃的绝缘纸。本发明提供的N级绝缘纸为三明治夹层结构;该三明治夹层结构以芳纶纳米纤维和云母纳米片作为夹层材料、以芳纶纳米纤维和碳化硅纳米线分别作为所述绝缘纸的上表层材料和下表层材料,然后将该三层材料通过喷涂并热压的方式,最终制备得到耐温性能及耐电晕特性较高的耐电晕N级绝缘纸,耐电晕N级绝缘纸的制备流程为:首先将共混好的表层浆料芳纶纳米纤维/碳化硅纳米线通过静电喷涂在基板上,得到下表层凝胶;进一步将复配好的夹层浆料芳纶纳米纤维/云母纳米片喷涂在下表层凝胶上,得到夹层凝胶;最后将表层浆料芳纶纳米纤维/碳化硅纳米线再次喷涂在夹层凝胶上,得到上表层凝胶。后续将得到的三层凝胶真空干燥再高温热压,就得到所述耐电晕N级绝缘纸。
实施例1:本实施例提供一种变频电机用耐电晕N级绝缘纸,该N级绝缘纸以芳纶纳米纤维为骨架网络,以云母纳米片为耐电晕功能基元,以碳化硅纳米线为电荷消散功能基元。该三明治结构以芳纶纳米纤维和云母纳米片组成绝缘纸的夹层材料,以芳纶纳米纤维和碳化硅纳米线组成绝缘纸的上表层材料和下表层材料,在本实施例中,芳纶纳米纤维为对位芳纶纳米纤维,其直径为10~50 nm,长度大于3 μm;云母纳米片为合成云母剥离所得,其粒径为2~10 μm,厚度小于10 nm,碳化硅纳米线的直径为80~500 nm,长度大于5 μm。
上述变频电机用耐电晕N级绝缘纸的制备方法,包括以下步骤:
1)以对位芳纶纤维为原料,通过等离子体预处理及浓碱溶液剥离,制备芳纶纳米纤维:
将对位芳纶纤维经丙酮清洗烘干后置于低温等离子体处理仪器中,功率选择200W,真空度为100Pa,通入氧气处理6 min,流量为30 mL/min。将处理好的对位芳纶纤维、氢氧化钾和二甲基亚砜以1 g:1.5 g:500 mL的比例置于密封容器中,在室温下以1000 rpm的转速持续机械搅拌7天,得到在氢氧化钾/二甲基亚砜体系中稳定分散的芳纶纳米纤维。
2)以合成云母为原料,通过液相超声剥离制备云母纳米片:
首先,将合成云母、十六烷基三甲基溴化铵加入去离子水中获得云母分散液,其中合成云母、十六烷基三甲基溴化铵、去离子水的比例为10g:10g:500 mL。然后,将上述分散液在80 ℃水浴中搅拌2 h使十六烷基三甲基溴化铵充分溶解。随后,将所得分散液在水浴中超声6 h,通过超声空化效应以及十六烷基三甲基溴化铵的插层辅助作用实现云母剥离获得云母纳米片,其中超声功率为350 W。将超声后所得云母纳米片分散溶液通过高速离心,并用去离子水反复清洗,除去云母纳米片表面残留的十六烷基三甲基溴化铵,其中离心转速为5000 rpm。最后,将所得固体在80 ℃下真空干燥12 h,得到合成云母纳米片。
3)将芳纶纳米纤维与合成云母纳米片按9:1的质量比加入400 mL去离子水中,通过10000 rpm高速剪切15 min混匀制浆,得到夹层复合浆料。
4)将芳纶纳米纤维与碳化硅纳米线按9:1的质量比加入400 mL去离子水中,通过15000 rpm高速剪切15 min混匀制浆,得到上表层复合浆料和下表层复合浆料。
5)将下表层复合浆料通过静电喷涂的方式,喷涂在基板上制成下表层凝胶,下表层凝胶厚度为200μm:
将下表层复合浆料转移到喷枪中,确保喷枪与喷涂设备连接牢固,将喷涂设备与基板可靠接地,将喷枪以适当距离和角度对准基板表面喷涂,形成下表层凝胶。
6)将夹层复合浆料通过静电喷涂的方式,喷涂在底层凝胶表面制成夹层凝胶,夹层凝胶厚度为500 μm:
将夹层复合浆料转移到喷枪中,确保喷枪与喷涂设备连接牢固,将喷涂设备与基板可靠接地,将喷枪以适当距离和角度对准下表层凝胶表面喷涂,形成夹层凝胶。
7)将上表层复合浆料通过静电喷涂的方式,喷涂在夹层凝胶表面制成上表层凝胶,上表层凝胶厚度为500 μm:
将上表层复合浆料转移到喷枪中,确保喷枪与喷涂设备连接牢固,将喷涂设备与基板可靠接地,将喷枪以适当距离和角度对准夹层凝胶表面喷涂,形成上表层凝胶,至此,得到下表层凝胶、夹层凝胶、上表层凝胶构成的三层凝胶。
8)将所制备的三层凝胶试样在真空50~73 ℃干燥36~48小时,得到三明治绝缘纸糙纸。
9)将得到的三明治绝缘纸糙纸通过真空热压机在20 Mpa,175~195 ℃的条件下热压成型,得到具有三明治结构的耐电晕绝缘纸。
实验例:利用差示热扫描对实施例1制备得到的复合绝缘纸的玻璃化转变温度(Tg)进行分析,如图1所示,由图1的DSC升温曲线可以看出,复合绝缘纸的Tg高达316℃,具有优异的耐热性,满足N级绝缘纸的要求。
实施例2:本实施例与实施例1的区别在于:所述芳纶纳米纤维与云母纳米片的质量比为8:2。
实施例3:本实施例与实施例1的区别在于:所述芳纶纳米纤维与云母纳米片的质量比为7:3。
实施例4:本实施例与实施例1的区别在于:所述芳纶纳米纤维与云母纳米片的质量比为6:4。
实施例5:本实施例与实施例1的区别在于:所述芳纶纳米纤维与云母纳米片的质量比为5:5。
实施例6:本实施例与实施例1的区别在于:步骤2)中,超声功率为300 W,高速离心转速为4500rpm。步骤3)中高速剪切的速率为15000 rpm;步骤4)中高速剪切的速率为10000rpm。
实施例7:本实施例与实施例1的区别在于:下表层凝胶厚度为500 μm;夹层凝胶厚度为1000μm;上表层凝胶厚度为200 μm。
对比例1:将芳纶纳米纤维与合成云母通过高速剪切混匀得到芳纶云母复合浆料,利用静电喷涂得到芳纶云母纸糙纸,经过高温热压得到芳纶云母绝缘纸。
对比例2:本实施例与实施例1的区别在于:夹层凝胶仅采用芳纶纳米纤维组成。
对比例3:本实施例与实施例1的区别在于:上下表层凝胶仅采用芳纶纳米纤维组成。采用高频脉冲电压测试仪对本发明各实施例所得复合绝缘纸和对比例所得复合绝缘纸进行检测。
经过对比发现,本发明提供的制备方法,能够显著提高耐电晕N级绝缘纸的耐电晕时间。并且随着云母纳米片含量增多,耐电晕N级绝缘纸的耐电晕时间随之提高。对比例是芳纶纳米纤维与合成云母复合制得的传统芳纶云母绝缘纸,明显看出本发明方法制备出的耐电晕N级绝缘纸比传统的芳纶云母纸在耐电晕时间上有显著提升,这是由于本发明制得的耐电晕N级绝缘纸具有优异的绝缘性能,能有效阻止电流在纸张中的流动,减少电晕的发生。此外,本发明所得耐电晕N级绝缘纸具有较高的机械强度,能够承受一定的拉伸和抗张力,保护了纸张免受外界力量的破坏,延缓了电晕的生成和扩展。
经过对比可以看出,对于同一实施例,脉冲幅值为2 kV下薄膜的电晕老化时间都大于脉冲幅值3 kV下的电晕老化时间,这是因为脉冲幅值越大,脉冲电压的强度越高,所产生的带电粒子的能量越高,材料越容易遭到破坏。
根据附图2-8可以得出:
1、本发明所制备的复合绝缘纸兼具优良的机械强度(拉伸强度>250 MPa)和超高的击穿强度(击穿强度>300 kV/mm)。其中,芳纶纳米纤维与云母纳米片的质量比控制在(9~5):(1~5),能够使得制备得到的复合绝缘纸的拉伸强度随着芳纶纳米纤维与云母纳米片的质量比的增大而逐渐增大,击穿强度随着芳纶纳米纤维与云母纳米片的质量比的增大而逐渐减小。
2、当芳纶纳米纤维与云母纳米片的质量比偏大,复合绝缘纸的击穿强度偏低,这是因为云母纳米片含量较低时,对电流的阻碍作用减弱,增加了电流的通过。
3、当云母纳米片的含量过高时,芳纶纳米纤维不能起到很好的包覆粘结作用,无法发挥出自身优越的力学性能,复合绝缘纸的拉伸强度偏低。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种变频电机用耐电晕N级绝缘纸,其特征在于,该绝缘纸为三明治夹层结构;
所述三明治夹层结构以芳纶纳米纤维和云母纳米片作为夹层材料、以芳纶纳米纤维和碳化硅纳米线分别作为所述夹层材料的上表层材料和下表层材料。
2.根据权利要求1所述的变频电机用耐电晕N级绝缘纸,其特征在于,所述芳纶纳米纤维直径为10~50 nm,长度大于3 μm;所述云母纳米片粒径为2~10 μm,厚度小于10 nm;所述碳化硅纳米线的直径为80~500 nm,长度大于5 μm;
所述芳纶纳米纤维为对位芳纶纳米纤维;
所述云母纳米片为合成云母纳米片。
3.根据权利要求1所述的变频电机用耐电晕N级绝缘纸,其特征在于,所述芳纶纳米纤维与云母纳米片的质量比为(9~5):(1~5)。
4.根据权利要求1所述的变频电机用耐电晕N级绝缘纸,其特征在于,所述芳纶纳米纤维与碳化硅纳米线的质量比为9:1。
5.一种权利要求1所述的变频电机用耐电晕N级绝缘纸的制备方法,其特征在于,包括以下步骤:
1)以芳纶纳米纤维与碳化硅纳米线为原料,制备得到表层复合浆料;
2)以芳纶纳米纤维与合成云母纳米片为原料,制备得到夹层复合浆料;
3)将所述表层复合浆料利用静电喷涂的方式,喷涂在基板上,以形成下表层凝胶;
4)将所述夹层复合浆料利用静电喷涂的方式,喷涂在所述下表层凝胶的上表面,以形成夹层凝胶;
5)将所述表层复合浆料再次利用静电喷涂的方式,喷涂在所述夹层凝胶的上表面,以形成上表层凝胶;
6)将所制备的三层凝胶在真空50~73 ℃干燥36~48小时,得到三明治绝缘纸糙纸;
7)将所述三明治绝缘纸糙纸在20 Mpa,175~195 ℃的条件下热压成型,最终得到具有三明治结构的所述变频电机用耐电晕N级绝缘纸。
6.根据权利要求5所述的制备方法,其特征在于,所述下表层凝胶、上表层凝胶的厚度均为200 μm~500 μm;所述夹层凝胶的厚度为500 μm~1000 μm。
7.根据权利要求5所述的制备方法,其特征在于,所述表层复合浆料的制备包括:
将芳纶纳米纤维与碳化硅纳米线按9:1的质量比加入400 mL去离子水中,通过10000~15000 rpm高速剪切15 min混匀制浆,最终得到所述表层复合浆料。
8.根据权利要求5所述的制备方法,其特征在于,所述夹层复合浆料的制备包括:
将芳纶纳米纤维与云母纳米片按(9~5):(1~5)的质量比加入400 mL去离子水中,通过10000~25000 rpm高速剪切15 min混匀制浆,最终得到所述夹层复合浆料。
9.根据权利要求5所述的制备方法,其特征在于,所述芳纶纳米纤维的制备包括:
将芳纶纤维经丙酮清洗烘干后置于低温等离子体处理仪器中,功率200 W,真空度100Pa,通入氩气处理6 min,流量为30 mL/min;
将等离子处理过的芳纶纤维与氢氧化钾、二甲基亚砜以1 g:1.5 g:500 mL的比例置于密封容器中,在室温下以1000 rpm的转速持续机械搅拌7天,得到在氢氧化钾/二甲基亚砜体系中稳定分散的芳纶纳米纤维。
10.根据权利要求5所述的制备方法,其特征在于,所述云母纳米片的制备步骤如下:
首先,将合成云母、十六烷基三甲基溴化铵加入去离子水中获得云母分散液;其中合成云母、十六烷基三甲基溴化铵、去离子水的比例为10g:10g:500 mL;
然后,将所述云母分散液在80 ℃水浴中搅拌2 h使十六烷基三甲基溴化铵充分溶解;
随后,将充分溶解后的云母分散液在水浴中超声6 h,通过超声空化效应以及十六烷基三甲基溴化铵的插层辅助作用实现云母剥离获得云母纳米片;其中超声功率为300~350 W;
然后,将超声后的云母纳米片分散溶液通过离心,并用去离子水反复清洗,除去云母纳米片表面残留的十六烷基三甲基溴化铵,其中离心转速为4500~5000 rpm;
最后,将所得固体在80 ℃下真空干燥12 h,得到合成云母纳米片。
CN202311160579.3A 2023-09-11 2023-09-11 一种变频电机用耐电晕n级绝缘纸及其制备方法 Active CN116892129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311160579.3A CN116892129B (zh) 2023-09-11 2023-09-11 一种变频电机用耐电晕n级绝缘纸及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311160579.3A CN116892129B (zh) 2023-09-11 2023-09-11 一种变频电机用耐电晕n级绝缘纸及其制备方法

Publications (2)

Publication Number Publication Date
CN116892129A CN116892129A (zh) 2023-10-17
CN116892129B true CN116892129B (zh) 2023-11-14

Family

ID=88312436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311160579.3A Active CN116892129B (zh) 2023-09-11 2023-09-11 一种变频电机用耐电晕n级绝缘纸及其制备方法

Country Status (1)

Country Link
CN (1) CN116892129B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945478A (zh) * 2020-08-10 2020-11-17 中国制浆造纸研究院衢州分院 一种等离子体处理改性的芳纶纳米云母绝缘纸的制备方法
CN115045140A (zh) * 2022-04-29 2022-09-13 株洲时代华先材料科技有限公司 一种无机纳米材料增强的芳纶绝缘纸及其制备方法和应用
CN115538215A (zh) * 2022-10-20 2022-12-30 天蔚蓝电驱动科技(江苏)有限公司 一种新能源汽车用耐电晕云母/芳纶纤维复合材料及其制备方法
CN115584660A (zh) * 2022-10-20 2023-01-10 天蔚蓝电驱动科技(江苏)有限公司 一种新能源汽车用耐电晕云母/芳纶纤维混抄纸及其制备方法
CN116144128A (zh) * 2023-01-10 2023-05-23 天蔚蓝电驱动科技(江苏)有限公司 耐电晕塑料基复合材料及其制备方法、耐电晕复合片材和电机定子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945478A (zh) * 2020-08-10 2020-11-17 中国制浆造纸研究院衢州分院 一种等离子体处理改性的芳纶纳米云母绝缘纸的制备方法
CN115045140A (zh) * 2022-04-29 2022-09-13 株洲时代华先材料科技有限公司 一种无机纳米材料增强的芳纶绝缘纸及其制备方法和应用
CN115538215A (zh) * 2022-10-20 2022-12-30 天蔚蓝电驱动科技(江苏)有限公司 一种新能源汽车用耐电晕云母/芳纶纤维复合材料及其制备方法
CN115584660A (zh) * 2022-10-20 2023-01-10 天蔚蓝电驱动科技(江苏)有限公司 一种新能源汽车用耐电晕云母/芳纶纤维混抄纸及其制备方法
CN116144128A (zh) * 2023-01-10 2023-05-23 天蔚蓝电驱动科技(江苏)有限公司 耐电晕塑料基复合材料及其制备方法、耐电晕复合片材和电机定子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A Bioinspired Ultratough Multifunctional Mica-Based Nanopaper with 3D Aramid Nanofiber Framework as an Electrical Insulating Material;Fanzhan Zeng等;ACS Nano;第14卷(第1期);611–619 *
Nickel nanoparticle decorated silicon carbide as a thermal filler in thermal conductive aramid nanofiber-based composite films for heat dissipation applications;Xin Wang等;RSC Advances;第13卷(第30期);20984-20993 *
纸能包住火还能抗电击 湖大教授"翻新""造纸术";造纸装备及材料(第03期);2 *
连续制备柔性导热的氮化铝/芳纶纳米纤维复合薄膜;曾繁展等;复合材料学报;第37卷(第12期);3043-3051 *

Also Published As

Publication number Publication date
CN116892129A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
Bian et al. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin
Wang et al. Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets
Zhu et al. Review of interface tailoring techniques and applications to improve insulation performance
Deshmukh et al. Studies on the mechanical, morphological and electrical properties of highly dispersible graphene oxide reinforced polypyrrole and polyvinylalcohol blend composites
Zhang et al. Electrical tree evolution of BN sheet/epoxy resin composites at high voltage frequencies
CN114103305B (zh) 一种高Tg高导热的金属基覆铜板及其加工工艺
Meng et al. Investigation on preparation, thermal, and mechanical properties of carbon fiber decorated with hexagonal boron nitride/silicone rubber composites for battery thermal management
Zha et al. Effect of multi-dimensional zinc oxide on electrical properties of polypropylene nanocomposites for HVDC cables
Wang et al. Role of cellulose nanofiber/boron nitride hybrids in the thermal conductivity and dielectric strength of liquid-crystalline epoxy resin
Mei et al. Depositing CNTs on the interface and surface of C/PyC/SiCs for tunable mechanical and electromagnetic properties
CN116892129B (zh) 一种变频电机用耐电晕n级绝缘纸及其制备方法
CN111606312B (zh) 通过电弧等离子体预处理的六方氮化硼剥离方法和装置
Xu et al. Globally enhanced thermal, mechanical and electrical properties of current-field grading composites with self-assembly semiconducting grains on 3D cellulose aerogel scaffolds
Liu et al. Electrical and mechanical properties of epoxy composites reinforced with kaolin-coated basalt fibers
Xu et al. Synergetic optimization of charge transport and breakdown strength of epoxy nanocomposites: Realizing sandwich topological structure through constructing a SiC@ SiO2/EP surface layer and m-BNNS/EP insert layer
Wang et al. Enhance the thermal conductivity and maintain insulation property of epoxy via constructing a three-dimensional network by doping hexagonal boron nitride and carbon nanofiber
Oh et al. Facile preparation of epoxy nanocomposites with highly dispersed graphite nanosheets and their dielectric properties
Tuo et al. Effect of micron thermal conductive filler on thermal conductivity and electrical properties of epoxy composites
CN109608190A (zh) 一种高介电陶瓷及其制备方法
CN116289296B (zh) 一种导热绝缘的工业芳纶纸及其制备方法
Feng et al. Space Charge Characteristics of Epoxy/BN@ SiO 2 Nanocomposites Used in Solid State Transformer
CN113388181B (zh) 能够耐高压的发热材料及其制备方法和自发热除防冰电缆
CN115522279B (zh) 高性能离子-电子复合热电纤维及其制备方法
CN115284713B (zh) 一种高分子复合导热异质纤维膜及其制备方法
CN112961383B (zh) 一种低填料含量场敏感型非线性导电复合材料薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant