CN116875519A - 高产l-半胱氨酸的基因工程菌及其构建方法与应用 - Google Patents

高产l-半胱氨酸的基因工程菌及其构建方法与应用 Download PDF

Info

Publication number
CN116875519A
CN116875519A CN202310808901.2A CN202310808901A CN116875519A CN 116875519 A CN116875519 A CN 116875519A CN 202310808901 A CN202310808901 A CN 202310808901A CN 116875519 A CN116875519 A CN 116875519A
Authority
CN
China
Prior art keywords
gene
seq
sequence
cysteine
genome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310808901.2A
Other languages
English (en)
Inventor
柳志强
杨辉
吴梓丹
张博
郑裕国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202310808901.2A priority Critical patent/CN116875519A/zh
Publication of CN116875519A publication Critical patent/CN116875519A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1014Hydroxymethyl-, formyl-transferases (2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/0104Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (1.1.1.40)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01042Isocitrate dehydrogenase (NADP+) (1.1.1.42)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01095Phosphoglycerate dehydrogenase (1.1.1.95)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01276Serine 3-dehydrogenase (1.1.1.276)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/02Hydroxymethyl-, formyl- and related transferases (2.1.2)
    • C12Y201/02001Glycine hydroxymethyltransferase (2.1.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01002Transaldolase (2.2.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/0103Serine O-acetyltransferase (2.3.1.30)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01047Cysteine synthase (2.5.1.47)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01052Phosphoserine transaminase (2.6.1.52)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/01Sulfurtransferases (2.8.1)
    • C12Y208/01001Thiosulfate sulfurtransferase (2.8.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03003Phosphoserine phosphatase (3.1.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/02Aldehyde-lyases (4.1.2)
    • C12Y401/02013Fructose-bisphosphate aldolase (4.1.2.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/99Other Carbon-Carbon Lyases (1.4.99)
    • C12Y401/99001Tryptophanase (4.1.99.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01017L-Serine ammonia-lyase (4.3.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及微生物代谢工程技术领域,尤其涉及高产L‑半胱氨酸的基因工程菌及其构建方法与应用。采用组合的辅因子工程策略,通过对大肠杆菌内源性NADPH再生基因的筛选,提高L‑半胱氨酸工程菌株中NADPH的供给,促进硫代谢途径的代谢通量,提高L‑半胱氨酸的生产。随后,通过引入NADP‑依赖型甘油醛‑3‑磷酸脱氢酶,修改L‑半胱氨酸工程菌株中糖酵解途径的辅因子偏好性,通过和碳代谢偶联的方式提高NADPH的再生,改善L‑半胱氨酸合成途径的碳代谢与硫代谢之间平衡。本发明中构建的基因工程菌的L‑半胱氨酸产量得到了显著的提升,为实现L‑半胱氨酸微生物发酵法的工业化生产提供了有效的代谢工程改造方法和具有高产L‑半胱氨酸的基因工程菌。

Description

高产L-半胱氨酸的基因工程菌及其构建方法与应用
技术领域
本发明涉及微生物代谢工程技术领域,尤其涉及高产L-半胱氨酸的基因工程菌及其构建方法与应用。
背景技术
L-半胱氨酸是一种非必需氨基酸,是组成蛋白质的基本组成部分之一。L-半胱氨酸包含一个硫原子,可形成二硫键,对于蛋白质的稳定性和结构起着重要的作用。因此,L-半胱氨酸被广泛应用于食品,药品,化妆品等行业中。L-半胱氨酸在生物体内有多种生理作用,包括参与蛋白质合成、抗氧化、解毒等。此外,L-半胱氨酸可以通过代谢途径合成谷胱甘肽。谷胱甘肽是一种重要的抗氧化剂,能够清除自由基、降解有害物质等。
传统生产L-半胱氨酸的方法主要是毛发提取法。但这种方法存在成本高、环境不友好,质量不稳定等问题。因此,通过基因工程构建菌株,利用其合成L-半胱氨酸的能力,成为了生产L-半胱氨酸的一种新途径。大肠杆菌是一种常用的宿主细胞,具有高产量、操作简便、易于遗传转化等优点,因此成为了构建生产L-半胱氨酸的重要宿主细胞。然而,由于其合成途径复杂,产量较低,需要对大肠杆菌工程菌株进行合理的优化。
辅因子工程是代谢工程领域中的一种重要研究方向,主要针对细胞中与代谢相关的辅助分子(即辅因子)进行优化、调控和工程改造,以提高细胞代谢产物的合成效率和产量。辅因子是一类对生物代谢过程中至关重要的分子,它们通过与酶结合协同作用,调节酶催化反应的速率、选择性和特异性,从而影响整个代谢途径的通量和产物合成。代表性的辅因子包括NADH、ATP、CoA、NADPH等。辅因子工程在生物制药、生物燃料、化学品等领域具有广泛的应用前景。辅因子工程可以提高微生物代谢底物的利用效率和产物合成效率,以提高生物燃料的产量和质量。此外,辅因子工程可以优化细胞代谢通量和代谢产物的合成效率,从而提高生物制药的产量和纯度。
在大肠杆菌中,L-半胱氨酸的合成需要大量的辅因子NADPH。在L-半胱氨酸合成途径中,硫同化途径是L-半胱氨酸合成的重要组成部分。硫同化途径主要分为硫酸盐同化途径和硫代硫酸盐同化途径。硫酸盐途径使用两个分子ATP和四个分子NADPH作为还原能力,消耗一个硫酸盐生成一个L-半胱氨酸。硫代硫酸盐途径可以通过消耗一个硫代硫酸盐分子和四个NADPH来合成两个L-半胱氨酸分子。因此,提高工程菌株中NADPH的供应成为潜在的提高L-半胱氨酸生产的方法。而现有技术中,目前还未发现有通过辅因子工程能够有效提高L-半胱氨酸的生物合成水平的方法。
发明内容
本发明的目的在于克服现有技术中存在的不足,提供一种高产L-半胱氨酸的基因工程菌及其构建方法,并将其应用于发酵生产L-半胱氨酸,以克服现有技术中存在的L-半胱氨酸生产菌株中因L-半胱氨酸合成所需的辅因子水平未得到有效改善,导致其在发酵生产L-半胱氨酸过程中的产量较低的问题。
为实现上述目的,本发明通过以下技术方案实现:
本发明的第一个目的在于,提供一种高产L-半胱氨酸的基因工程菌的构建方法,包括以下步骤:
(1)以菌株E.coli BW25113作为出发菌株,保留原生启动子驱动的L-半胱氨酸合成途径,将基因serAf插入至其基因组上的假基因yjiP的位置,将基因serB插入至其基因组上的假基因mbhA的位置,将基因serC插入至其基因组上的假基因ydeU的位置,将基因cysM插入至其基因组上的假基因yeeP的位置,将基因nrdH插入至其基因组上的假基因gapC的位置,将基因glpE插入至其基因组上的假基因yafF的位置,将基因fbaA插入至其基因组上的假基因ycdN的位置,将基因组上的基因sdaA、sdaB、tdcG、tnaA和yhaM敲除,并对基因组上的基因glyA的启动子进行定点突变,得到glyA启动子突变体PglyA-125T-126C,由此获得工程菌记为BW13;
(2)分别将基因zwf,maeB,icd,gnd,talA,pntAB和yfjB插入到假基因lfhA基因位置中,分别获得相应的工程菌BW13::zwf,BW13::maeB,BW13::icd,BW13::gnd,BW13::talA,BW13::pntAB和BW13::yfjB;
(3)构建载体质粒pTrc99a-cysEf,并导入至工程菌BW13::zwf,BW13::maeB,BW13::icd,BW13::gnd,BW13::talA,BW13::pntAB和BW13::yfjB中,进而获得所述高产L-半胱氨酸的基因工程菌。
本发明在(1)获得的菌株中,通过对大肠杆菌内源性NADPH再生基因的筛选,提高L-半胱氨酸工程菌株中NADPH的供给,促进硫代谢途径的代谢通量,提高L-半胱氨酸的生产。具体为利用CRISPR/Cas9基因编辑技术过表达参与NADPH再生的基因,比较不同的提高NADPH再生的基因对L-半胱氨酸产量的影响,得到最有利于L-半胱氨酸生产的提高NADPH供给的基因。所述参与NADPH再生的基因包括zwf,maeB,icd,gnd,talA,pntAB以及yfjB。
作为优选,所述基因serAf,serB和serC由Trc启动子驱动,所述Trc启动子的的序列如SEQ ID NO.25所示。
作为优选,所述基因serAf的序列如SEQ ID NO.1所示,所述基因serB的序列如SEQID NO.2所示,所述基因serC的序列如SEQ ID NO.3所示,所述基因cysEf的序列如SEQ IDNO.4所示,所述基因sdaA的序列如SEQ ID NO.5所示,所述基因sdaB的序列如SEQ ID NO.6所示,所述基因tdcG的序列如SEQ ID NO.7所示,所述基因tnaA的序列如SEQ ID NO.8所示,所述基因yhaM的序列如SEQ ID NO.9所示,所述启动子PglyA-125T-126C的序列如SEQ ID NO.10所示,所述基因cysM的序列如SEQ ID NO.11所示,所述基因nrdH的序列如SEQ ID NO.12所示,所述基因glpE的序列如SEQ ID NO.13所示,所述基因fbaA的序列如SEQ ID NO.14所示,所述基因zwf的序列如SEQ ID NO.15所示,所述基因maeB的序列如SEQ ID NO.16所示,所述基因icd的序列如SEQ ID NO.17所示,所述基因gnd的序列如SEQ ID NO.18所示,所述基因talA的序列如SEQ ID NO.19所示,所述基因pntAB的序列如SEQ ID NO.20所示,所述基因yfjB的序列如SEQ ID NO.21所示。
进一步优选,所述步骤(2)是将基因talA插入到假基因lfhA基因位置中,从而获得工程菌BW13::talA,然后步骤(3)将构建的载体质粒pTrc99a-cysEf导入至工程菌BW13::talA中,进而获得所述高产L-半胱氨酸的基因工程菌。
本发明的第二个目的在于,提供一种高产L-半胱氨酸的基因工程菌的构建方法,包括以下步骤:
(1)以菌株E.coli BW25113作为出发菌株,保留原生启动子驱动的L-半胱氨酸合成途径,将基因serAf插入至其基因组上的假基因yjiP的位置,将基因serB插入至其基因组上的假基因mbhA的位置,将基因serC插入至其基因组上的假基因ydeU的位置,将基因cysM插入至其基因组上的假基因yeeP的位置,将基因nrdH插入至其基因组上的假基因gapC的位置,将基因glpE插入至其基因组上的假基因yafF的位置,将基因fbaA插入至其基因组上的假基因ycdN的位置,将基因组上的基因sdaA、sdaB、tdcG、tnaA和yhaM敲除,并对基因组上的基因glyA的启动子进行定点突变,得到glyA启动子突变体PglyA-125T-126C,由此获得工程菌记为BW13;
(2)将基因talA插入到假基因lfhA基因位置中,从而获得工程菌BW13::talA;
(3)将基因gapC、基因gapB或基因gapN插入至工程菌BW13::talA基因组上的假基因ycgH的位置,构建载体质粒pTrc99a-cysEf并转化后获得BW13::talA::gapC/pTrc99a-cysEf,BW13::talA::gapB/pTrc99a-cysEf和BW13::talA::gapN/pTrc99a-cysEf,从而获得所述高产L-半胱氨酸的基因工程菌。
本发明在工程菌BW13::talA中,通过引入NADP-依赖型甘油醛-3-磷酸脱氢酶,修改L-半胱氨酸工程菌株中糖酵解途径的辅因子偏好性,通过和碳代谢偶联的方式提高NADPH的再生,改善L-半胱氨酸合成途径的碳代谢与硫代谢之间平衡。具体为利用CRISPR/Cas9基因编辑技术对不同来源的NADPH依赖型甘油醛-3-磷酸脱氢酶基因进行过表达,包括来自Clostridium acetobutylicum的gapC,Bacillus subtilis的gapB以及Streptococcusmutant的gapN,来修饰碳代谢途径的辅因子偏好性,获得最有利于L-半胱氨酸合成的甘油醛-3-磷酸脱氢酶基因。
作为优选,所述基因serAf的序列如SEQ ID NO.1所示,所述基因serB的序列如SEQID NO.2所示,所述基因serC的序列如SEQ ID NO.3所示,所述基因cysEf的序列如SEQ IDNO.4所示,所述基因sdaA的序列如SEQ ID NO.5所示,所述基因sdaB的序列如SEQ ID NO.6所示,所述基因tdcG的序列如SEQ ID NO.7所示,所述基因tnaA的序列如SEQ ID NO.8所示,所述基因yhaM的序列如SEQ ID NO.9所示,所述启动子突变体PglyA-125T-126C的序列如SEQ IDNO.10所示,所述基因cysM的序列如SEQ ID NO.11所示,所述基因nrdH的序列如SEQ IDNO.12所示,所述基因glpE的序列如SEQ ID NO.13所示,所述基因fbaA的序列如SEQ IDNO.14所示,所述基因talA的序列如SEQ ID NO.19所示所述基因gapC的序列如SEQ IDNO.22所示,所述基因gapB的序列如SEQ ID NO.23所示,所述基因gapN的序列如SEQ IDNO.24所示。
本发明的第三个目的在于,提供一种高产L-半胱氨酸的基因工程菌,由所述的构建方法所构建获得。
本发明的第四个目的在于,提供所述的构建方法所构建的高产L-半胱氨酸的基因工程菌或者所述的高产L-半胱氨酸的基因工程菌在微生物发酵制备L-半胱氨酸中的应用。
作为优选,将所述基因工程菌株接种至发酵培养基,在28~37℃,150-200rpm条件下发酵培养,发酵结束后取发酵液上清分离纯化得到L-半胱氨酸。
作为优选,所述基因工程菌在发酵培养前先在培养基中30~37℃,150~200rpm条件下培养12~24h,再接种至发酵培养基。
与现有技术相比,本发明具有以下有益效果:
本发明采用组合的辅因子工程策略,优化L-半胱氨酸合成过程中的辅因子需求,有效改善L-半胱氨酸的碳硫代谢协同作用,并构建了能够高产L-半胱氨酸的基因工程菌株。首先,通过对大肠杆菌内源性NADPH再生基因的筛选,提高L-半胱氨酸工程菌株中NADPH的供给,促进硫代谢途径的代谢通量,提高L-半胱氨酸的生产。随后,通过引入NADP-依赖型甘油醛-3-磷酸脱氢酶,修改L-半胱氨酸工程菌株中糖酵解途径的辅因子偏好性,通过和碳代谢偶联的方式提高NADPH的再生,改善L-半胱氨酸合成途径的碳代谢与硫代谢之间平衡。本发明中构建的基因工程菌的L-半胱氨酸产量得到了显著的提升,为实现L-半胱氨酸微生物发酵法的工业化生产提供了有效的代谢工程改造方法和具有高产L-半胱氨酸的基因工程菌。
附图说明
图1为菌株BW13/pTrc99a-cysEf的L-半胱氨酸产量和OD600情况。
图2为加强NADPH再生基因的表达对工程菌株的L-半胱氨酸生产和生长的影响情况。
图3为过表达不同NADP依赖型甘油醛-3-磷酸脱氢酶对L-半胱氨酸生产的影响情况。
具体实施方式
下面结合说明书附图以及具体实施例对本发明做进一步描述。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
实施例中,所述卡那霉素在培养基中终浓度为50mg/L,所述壮观霉素在培养基中终浓度为50mg/L,所述氨苄霉素在培养基中终浓度为100mg/L。
菌株E.coli BW25113来自中国典型培养物保藏中心,保藏编号:CCTCCAB2012134。
实施例1:L-半胱氨酸含量的测定
(1)取1mL菌液于2mL的EP管中,在12000rpm条件下离心1分钟,将上清和沉淀分离。上清用于L-半胱氨酸以及其他代谢产物的检测。
(2)称取0.27g的CNBF溶于10mL乙腈中作为Ⅰ液;以0.2M硼酸溶液和0.05M硼砂溶液作为母液,4:1体积混合配成pH=9.0标准缓冲溶液记为Ⅱ液。将样品稀释成0~5g/L浓度,按照样品100μL,Ⅰ液300μL和Ⅱ液500μL比例混合,在恒温振荡器中40~60℃,500~1000rpm反应0.5~1小时。样品过膜装入液相瓶中待测。
(3)仪器为赛默飞UPLC超高压液相色谱仪。色谱柱为C18柱(4.6×250mm,5μm);紫外检测器检测波长260nm;进样量10μL;柱温30℃;流速0.8mL/min;流动相使用AB两相,A相纯乙腈,B相50mM HAc-NaAc缓冲液:乙腈:三乙胺=82.8:17:0.2,pH=4.9。梯度洗脱程序如表1所示。
表1梯度洗脱程序
序号 时间(min) A(%) B(%)
1 0 18 82
2 3 20 80
3 5 35 65
4 8 35 65
5 10 50 50
6 12 50 50
7 13 80 20
8 15 70 30
9 18 18 82
10 23 18 82
实施例2:L-半胱氨酸工程菌株BW13的构建
(1)以pTarget质粒(Addgene Plasmid#62226)为模版,通过PCR扩增(引物pT-serAf-F和pT-serAf-R),对gRNA进行定点突变。用DpnI对PCR产物进行消化。将消化产物化转到E.coliDH5α中,涂布于壮观酶素平板,挑取单菌落进行测序验证(引物pT-VF和pT-VR),筛选突变成功的pTarget-serAf质粒。
(2)以E.coli BW25113基因组为模板,通过引物serAf-Up-F和serAf-Up-R,serAf-Down-F和serAf-Down-R,进行PCR扩增得到假基因yjiP的上下游500bp。以E.coilW3110 EYC(CCTCC NO:M 20191026)基因组为模板,通过引物serAf-F和serAf-R,进行PCR扩增得到基因serAf的片段。通过融合PCR将上述三个DNA片段融合,得到片段Donor-serAf
(3)将菌株E.coli BW25113制备成化转感受态,将pCas质粒(Addgene Plasmid#62225)通过化学转化法转化到E.coli BW25113化转感受态中,涂布于卡那霉素抗性平板,得到菌株E.coli BW25113/pCas。
(4)将菌株E.coli BW25113/pCas制备成电转感受态。将质粒pTarget-serAf,片段Donor-serAf电转到E.coli BW25113/pCas电转感受态后,涂布于卡那霉素和壮观霉素双抗性平板,挑取单菌落进行PCR验证(引物serAf-VF和serAf-VR),筛选编辑成功菌株,得到菌株E.coli BW25113::serAf。引物如表2所示。
(5)挑取阳性单菌落接种到含1mM IPTG和0.05mg/L卡那霉素的LB试管,30℃培养过夜,划线于含0.05mg/L卡那霉素的LB平板,30℃培养24h,挑取单菌落划线于含0.05mg/L壮观霉素的LB平板,不能在含0.05mg/L壮观霉素的LB平板的单菌落,其pTarget-serAf质粒成功消除。挑取pTarget-serAf质粒成功消除的单菌落于LB试管,37℃培养过夜,次日菌液划线于LB平板,37℃培养12h,挑取单菌落划线于含0.05mg/L卡那霉素的LB平板,不能在含0.05mg/L卡那霉素的LB平板的单菌落,其pCas质粒成功消除,最终得到无质粒E.coliBW25113::serAf
(6)根据上述的方法,依次将基因serB,serC,cysM,nrdH,glpE和fbaA分别插入到假基因mbhA,ydeU,yeeP,gapC,yafF和ycdN基因位置中,将基因sdaA,sdaB,tdcG,yhaM和tnaA进行删除,对基因组上的基因glyA的启动子进行定点突变,得到glyA启动子突变体PglyA-125T-126C,将glyA的启动子替换为突变体启动子PglyA-125T-126C,获得所述菌株BW08::125126glyA::cysM::nrdH::glpE::fbaA,并命名为菌株BW13。
表2实施例2引物
实施例3:过表达cysEf基因对菌株BW13/pTrc99a-cysEf的L-半胱氨酸生产的影响(1)以pTrc99a质粒为模版(99aline-F和99aline-R),通过PCR进行扩增,得到线性化载体。以E.coli BW25113基因组为模板(引物cysE-F和cysE-R),扩增得到基因cysE片段。用DpnI对PCR产物进行消化。所有PCR产物用1.0%琼脂糖凝胶电泳检测并纯化PCR片段。按照一步克隆试剂盒(One step clonekit,Vazyme Biotech,Nanjing,China)说明书将线性化载体与基因片段cysE进行连接,转化到E.coli DH5α中,涂布于氨苄青霉素抗性平板,挑取单菌落用菌落PCR验证(引物99a-VF和99a-VR),测序验证得到pTrc99a-cysE质粒。以质粒pTrc99a-cysE为模板,利用引物T167A-F和T167A-R,G245S-F和G245S-R进行PCR,转化到E.coli DH5α中,涂布于氨苄青霉素抗性平板,挑取单菌落用菌落PCR验证(引物99a-VF和99a-VR),测序验证得到含cysE突变体的pTrc99a-cysEf的质粒。
(2)将菌株BW13制备成化转感受态细胞,将构建好的pTrc99a-cysEf质粒,通过化学转化法转化到BW13感受态中,获得BW13/pTrc99a-cysEf菌株。
(3)将BW13/pTrc99a-cysEf接种到10mL的LB培养基中,30~37℃、150~200rpm培养过夜。接种1mL预培养物到装有20~50mL发酵培养基的500mL摇瓶中,培养4~6小时后添加0.1mM的IPTG,进行2~4天的发酵。所述发酵培养基组成如下:葡萄糖20~30g/L、(NH4)2SO45~10g/L、KH2PO42~5g/L、Na2S2O35~10g/L、酵母提取物5~10g/L、Na2HPO410~15g/L、蛋白胨1~5g/L,1ml/L微量元素溶液,溶剂为去离子水,pH值自然。微量元素溶液组成为:300~500g/L MgSO4·8H2O,2~5g/L MnSO4·8H2O,2~5g/L ZnSO4·7H2O,2~8g/L Fe2SO4,溶剂为去离子水。根据实施例1方法对发酵液进行检测,OD600及发酵液上清中的L-半胱氨酸含量如图1所示。
对于高产L-半胱氨酸的菌株,解除cysE的反馈抑制是必需的,因为基因cysE编码的酶受到L-半胱氨酸严格的反馈抑制,从而限制了大肠杆菌胞内的L-半胱氨酸水平。从图1结果可以看出,过表达解除反馈抑制的cysEf后,菌株BW13/pTrc99a-cysEf的L-半胱氨酸产量为1406.57 mg/L。这结果说明,过表达解除反馈抑制的cysEf基因可以有效地实现L-半胱氨酸的生物合成。
表3实施例3引物
实施例4:过表达促进NADPH再生的基因对L-半胱氨酸生产的影响在大肠杆菌中,L-半胱氨酸的合成需要消耗大量的NADPH,因此促进NADPH的再生对有L-半胱氨酸的生物合成是一种潜在的方法。通过将不同的参与NADPH再生的基因进行过表达,来促进L-半胱氨酸的合成,获得有利于L-半胱氨酸合成的谈碳代谢合成基因。所述基因包括zwf,maeB,icd,gnd,talA,pntAB以及yfjB等。
(1)以pTarget质粒(Addgene Plasmid#62226)为模版,通过PCR扩增(引物pT-zwf-F和pT-zwf-R),对gRNA进行定点突变。用DpnI对PCR产物进行消化。将消化产物化转到E.coli DH5α中,涂布于壮观酶素平板,挑取单菌落进行测序验证(引物pT-VF和pT-VR),筛选突变成功的pTarget-zwf质粒。
(2)以E.coli BW25113基因组为模板,通过引物zwf-Up-F和zwf-Up-R,zwf-Down-F和zwf-Down-R,进行PCR扩增得到假基因lfhA的上下游500bp,通过引物zwf-F和zwf-R,进行PCR扩增得到基因zwf的片段。通过融合PCR将上述三个DNA片段融合,得到片段Donor-zwf。
(3)将菌株BW13制备成化转感受态,将pCas质粒(Addgene Plasmid#62225)通过化学转化法转化到BW13化转感受态中,涂布于卡那霉素抗性平板,得到菌株BW13/pCas。
(4)将菌株BW13/pCas制备成电转感受态。将质粒pTarget-zwf,片段Donor-zwf电转到BW13/pCas电转感受态后,涂布于卡那霉素和壮观霉素双抗性平板,挑取单菌落进行PCR验证(引物zwf-VF和zwf-VR),筛选编辑成功菌株,得到菌株BW13::zwf。
(5)挑取阳性单菌落接种到含1mM IPTG和0.05mg/L卡那霉素的LB试管,30℃培养过夜,划线于含0.05mg/L卡那霉素的LB平板,30℃培养24h,挑取单菌落划线于含0.05mg/L壮观霉素的LB平板,不能在含0.05mg/L壮观霉素的LB平板的单菌落,其pTarget-zwf质粒成功消除。挑取pTarget-zwf质粒成功消除的单菌落于LB试管,37℃培养过夜,次日菌液划线于LB平板,37℃培养12h,挑取单菌落划线于含0.05mg/L卡那霉素的LB平板,不能在含0.05mg/L卡那霉素的LB平板的单菌落,其pCas质粒成功消除,最终得到无质粒菌株BW13::zwf。
(6)根据上述的方法,分别将基因maeB,icd,gnd,talA,pntAB和yfjB插入到假基因lfhA基因位置中,获得BW13::maeB,BW13::icd,BW13::gnd,BW13::talA,BW13::pntAB和BW13::yfjB。将菌株无质粒菌株BW13::zwf,BW13::maeB,BW13::icd,BW13::gnd,BW13::talA,BW13::pntAB和BW13::yfjB制备成化转感受态细胞,将实施例3中构建的pTrc99a-cysEf质粒,通过化学转化法转化到菌株BW13::zwf,BW13::maeB,BW13::icd,BW13::gnd,BW13::talA,BW13::pntAB和BW13::yfjB感受态中,获得菌株BW13::zwf/pTrc99a-cysEf,BW13::maeB/pTrc99a-cysEf,BW13::icd/pTrc99a-cysEf,BW13::gnd/pTrc99a-cysEf,BW13::talA/pTrc99a-cysEf,BW13::pntAB/pTrc99a-cysEf和BW13::yfjB/pTrc99a-cysEf
(7)将菌株BW13::zwf/pTrc99a-cysEf,BW13::maeB/pTrc99a-cysEf,BW13::icd/pTrc99a-cysEf,BW13::gnd/pTrc99a-cysEf,BW13::talA/pTrc99a-cysEf,BW13::pntAB/pTrc99a-cysEf和BW13::yfjB/pTrc99a-cysEf接种到10mL的LB培养基中,30~37℃、150~200rpm培养过夜。接种1mL预培养物到装有20~50mL发酵培养基的500mL摇瓶中,培养4~6小时后添加0.1mM的IPTG,进行2~4天的发酵。发酵培养基如实施例3中所述。根据实施例1方法对发酵液进行检测,OD600及发酵液上清中的L-半胱氨酸含量如图2所示。
在大肠杆菌中,硫同化过程需要大量的NADPH。因此,优化NADPH的供应对于L-半胱氨酸的有效合成是有希望的。许多基因参与大肠杆菌中NADPH的再生,包括zwf,maeB,icd,gnd,talA,pntAB以及yfjB。这些酶对于维持NADPH的平衡很重要。从图2可以看出,菌株BW13::zwf/pTrc99a-cysEf,BW13::maeB/pTrc99a-cysEf,BW13::icd/pTrc99a-cysEf,BW13::gnd/pTrc99a-cysEf,BW13::talA/pTrc99a-cysEf,BW13::pntAB/pTrc99a-cysEf和BW13::yfjB/pTrc99a-cysEf的L-半胱氨酸产量为1447.67,1271.92,1206.07,1347.75,1607.02,1277.34和1330.7mg/L。其中,菌株BW13::talA/pTrc99a-cysEf的产量,相较于对照菌株BW13/pTrc99a-cysEf,产量提升了14%。说明提升NADPH的再生是有效的。同时,过表达talA还可以促进磷酸戊糖途径的通量,这进一步解释了L-半胱氨酸合成途径中,碳代谢和硫代谢之间的紧密联系。
表4实施例4引物
实施例5:过表达不同甘油醛-3-磷酸脱氢酶对L-半胱氨酸生产的影响为了协调L-半胱氨酸的碳硫同化过程,引入NADP依赖型甘油醛-3-磷酸脱氢酶来提高L-半胱氨酸的合成。过表达NADP依赖型甘油醛-3-磷酸脱氢酶可以促进L-半胱氨酸上游合成途径的代谢通量,同时伴随产生的NADPH可以为L-半胱氨酸的硫同化提供还原力补充,有效实现L-半胱氨酸合成的碳硫协同。所述的参与编码NADP依赖型甘油醛-3-磷酸脱氢酶包括gapC,gapB和gapN。
以pTarget质粒(Addgene Plasmid#62226)为模版,通过PCR扩增(引物pT-gapC-F和pT-gapC-R),对gRNA进行定点突变。用DpnI对PCR产物进行消化。将消化产物化转到E.coli DH5α中,涂布于壮观酶素平板,挑取单菌落进行测序验证(引物pT-VF和pT-VR),筛选突变成功的pTarget-gapC质粒。
以E.coli BW25113基因组为模板,通过引物gapC-Up-F和gapC-Up-R,gapC-Down-F和gapC-Down-R,进行PCR扩增得到假基因ycgH的上下游500bp。以大肠杆菌的密码子使用偏好性,优化来自Clostridium acetobutylicum的基因gapC,交由北京擎科生物科技有限公司合成。以合成的基因为模板,使用引物gapC-F和gapC-R,进行扩增得到基因片段gapC。通过融合PCR将上述三个DNA片段融合,得到片段Donor-gapC。
将菌株BW13::talA制备成化转感受态,将pCas质粒(Addgene Plasmid#62225)通过化学转化法转化到BW13::talA化转感受态中,涂布于卡那霉素抗性平板,得到菌株BW13::talA/pCas。
将菌株BW13::talA/pCas制备成电转感受态。将质粒pTarget-gapC,片段Donor-gapC电转到BW13::talA/pCas电转感受态后,涂布于卡那霉素和壮观霉素双抗性平板,挑取单菌落进行PCR验证(引物gapC-VF和gapC-VR),筛选编辑成功菌株,得到菌株BW13::talA::gapC。
挑取阳性单菌落接种到含1mM IPTG和0.05mg/L卡那霉素的LB试管,30℃培养过夜,划线于含0.05mg/L卡那霉素的LB平板,30℃培养24h,挑取单菌落划线于含0.05mg/L壮观霉素的LB平板,不能在含0.05mg/L壮观霉素的LB平板的单菌落,其pTarget-gapC质粒成功消除。挑取pTarget-gapC质粒成功消除的单菌落于LB试管,37℃培养过夜,次日菌液划线于LB平板,37℃培养12h,挑取单菌落划线于含0.05mg/L卡那霉素的LB平板,不能在含0.05mg/L卡那霉素的LB平板的单菌落,其pCas质粒成功消除,最终得到无质粒菌株BW13::zwf::gapC。
根据上述的方法,分别将来自Bacillus subtilis的gapB以及Streptococcusmutant的gapN插入到假基因ycgH基因位置中,获得菌株BW13::talA::gapB和BW13::talA::gapN。将无质粒菌株BW13::talA::gapC,BW13::talA::gapB和BW13::talA::gapN制备成化转感受态细胞,将实施例3中构建的pTrc99a-cysEf质粒,通过化学转化法转化到菌株BW13::talA::gapC,BW13::talA::gapB和BW13::talA::gapN感受态中,获得菌株BW13::talA::gapC/pTrc99a-cysEf,BW13::talA::gapB/pTrc99a-cysEf和BW13::talA::gapN/pTrc99a-cysEf
将菌株BW13::talA::gapC/pTrc99a-cysEf,BW13::talA::gapB/pTrc99a-cysEf和BW13::talA::gapN/pTrc99a-cysEf接种到10mL的LB培养基中,30~37℃、150~200rpm培养过夜。接种1mL预培养物到装有20~50mL发酵培养基的500mL摇瓶中,培养4~6小时后添加0.1mM的IPTG,进行2~4天的发酵。发酵培养基如实施例3中所述。根据实施例1方法对发酵液进行检测,OD600及发酵液上清中的L-半胱氨酸含量如图3所示。
在大肠杆菌中,gapA基因编码NAD依赖性甘油醛-3-磷酸脱氢酶(GAPDH),能够催化D-甘油醛-3-磷酸形成1,3-二磷酸-D-甘油酸酯,同时产生一个NADH分子。为了进一步协调L-半胱氨酸合成途径中的碳代谢和硫代谢对NADPH的需求,引入异源NADP依赖性GAPDH来改变糖酵解途径的辅因子偏好。来自Clostridium acetobutylicum的基因gapC,来自Bacillus subtilis的基因gapB,以及来自Streptococcus mutant的基因gapN,均可以编码具有NADP依赖性的甘油醛-3-磷酸脱氢酶。从图3可以看出,BW13::talA::gapC/pTrc99a-cysEf,BW13::talA::gapB/pTrc99a-cysEf和BW13::talA::gapN/pTrc99a-cysEf的L-半胱氨酸产量为1645.94,1424.64和1793.28 mg/L。其中,BW13::talA::gapN/pTrc99a-cysEf的L-半胱氨酸产量,相较于对照菌株BW13::talA/pTrc99a-cysEf,提升了12%。这结果说明,通过引入异源的甘油醛-3-磷酸脱氢酶基因gapN可以有效提升L-半胱氨酸的产量。其中,菌株BW13::talA::gapN/pTrc99a-cysEf为本申请中最优选菌株。
表5实施例5引物

Claims (10)

1.一种高产L-半胱氨酸的基因工程菌的构建方法,其特征在于,包括以下步骤:
(1)以菌株E.coliBW25113作为出发菌株,保留原生启动子驱动的L-半胱氨酸合成途径,将基因serAf插入至其基因组上的假基因yjiP的位置,将基因serB插入至其基因组上的假基因mbhA的位置,将基因serC插入至其基因组上的假基因ydeU的位置,将基因cysM插入至其基因组上的假基因yeeP的位置,将基因nrdH插入至其基因组上的假基因gapC的位置,将基因glpE插入至其基因组上的假基因yafF的位置,将基因fbaA插入至其基因组上的假基因ycdN的位置,将基因组上的基因sdaA、sdaB、tdcG、tnaA和yhaM敲除,并对基因组上的基因glyA的启动子进行定点突变,得到glyA启动子突变体PglyA-125T-126C,由此获得工程菌记为BW13;
(2)分别将基因zwf,maeB,icd,gnd,talA,pntAB和yfjB插入到假基因lfhA基因位置中,分别获得相应的工程菌BW13::zwf,BW13::maeB,BW13::icd,BW13::gnd,BW13::talA,BW13::pntAB和BW13::yfjB;
(3)构建载体质粒pTrc99a-cysEf,并导入至工程菌BW13::zwf,BW13::maeB,BW13::icd,BW13::gnd,BW13::talA,BW13::pntAB和BW13::yfjB中,进而获得所述高产L-半胱氨酸的基因工程菌。
2.如权利要求1所述的一种高产L-半胱氨酸的基因工程菌的构建方法,其特征在于,所述基因serAf,serB和serC由Trc启动子驱动,所述Trc启动子的的序列如SEQ ID NO.25所示。
3.如权利要求1所述的一种高产L-半胱氨酸的基因工程菌的构建方法,其特征在于,所述基因serAf的序列如SEQ ID NO.1所示,所述基因serB的序列如SEQ ID NO.2所示,所述基因serC的序列如SEQ ID NO.3所示,所述基因cysEf的序列如SEQ ID NO.4所示,所述基因sdaA的序列如SEQ ID NO.5所示,所述基因sdaB的序列如SEQ ID NO.6所示,所述基因tdcG的序列如SEQ ID NO.7所示,所述基因tnaA的序列如SEQ ID NO.8所示,所述基因yhaM的序列如SEQ ID NO.9所示,所述启动子突变体PglyA-125T-126C的序列如SEQ ID NO.10所示,所述基因cysM的序列如SEQ ID NO.11所示,所述基因nrdH的序列如SEQ ID NO.12所示,所述基因glpE的序列如SEQ ID NO.13所示,所述基因fbaA的序列如SEQ ID NO.14所示,所述基因zwf的序列如SEQ ID NO.15所示,所述基因maeB的序列如SEQ ID NO.16所示,所述基因icd的序列如SEQ ID NO.17所示,所述基因gnd的序列如SEQ ID NO.18所示,所述基因talA的序列如SEQ ID NO.19所示,所述基因pntAB的序列如SEQ ID NO.20所示,所述基因yfjB的序列如SEQ ID NO.21所示。
4.如权利要求1所述的一种高产L-半胱氨酸的基因工程菌的构建方法,其特征在于,所述步骤(2)是将基因talA插入到假基因lfhA基因位置中,从而获得工程菌BW13::talA,然后步骤(3)将构建的载体质粒pTrc99a-cysEf导入至工程菌BW13::talA中,进而获得所述高产L-半胱氨酸的基因工程菌。
5.一种高产L-半胱氨酸的基因工程菌的构建方法,其特征在于,包括以下步骤:
(1)以菌株E.coliBW25113作为出发菌株,保留原生启动子驱动的L-半胱氨酸合成途径,将基因serAf插入至其基因组上的假基因yjiP的位置,将基因serB插入至其基因组上的假基因mbhA的位置,将基因serC插入至其基因组上的假基因ydeU的位置,将基因cysM插入至其基因组上的假基因yeeP的位置,将基因nrdH插入至其基因组上的假基因gapC的位置,将基因glpE插入至其基因组上的假基因yafF的位置,将基因fbaA插入至其基因组上的假基因ycdN的位置,将基因组上的基因sdaA、sdaB、tdcG、tnaA和yhaM敲除,并对基因组上的基因glyA的启动子进行定点突变,得到glyA启动子突变体PglyA-125T-126C,由此获得工程菌记为BW13;
(2)将基因talA插入到假基因lfhA基因位置中,从而获得工程菌BW13::talA;
(3)将基因gapC、基因gapB或基因gapN插入至工程菌BW13::talA基因组上的假基因ycgH的位置,构建载体质粒pTrc99a-cysEf并转化后获得BW13::talA::gapC/pTrc99a-cysEf,BW13::talA::gapB/pTrc99a-cysEf和BW13::talA::gapN/pTrc99a-cysEf,从而获得所述高产L-半胱氨酸的基因工程菌。
6.如权利要求5所述的一种高产L-半胱氨酸的基因工程菌的构建方法,其特征在于,所述基因serAf的序列如SEQ ID NO.1所示,所述基因serB的序列如SEQ ID NO.2所示,所述基因serC的序列如SEQ ID NO.3所示,所述基因cysEf的序列如SEQ ID NO.4所示,所述基因sdaA的序列如SEQ ID NO.5所示,所述基因sdaB的序列如SEQ ID NO.6所示,所述基因tdcG的序列如SEQ ID NO.7所示,所述基因tnaA的序列如SEQ ID NO.8所示,所述基因yhaM的序列如SEQ ID NO.9所示,所述启动子突变体PglyA-125T-126C的序列如SEQ ID NO.10所示,所述基因cysM的序列如SEQ ID NO.11所示,所述基因nrdH的序列如SEQ ID NO.12所示,所述基因glpE的序列如SEQ ID NO.13所示,所述基因fbaA的序列如SEQ ID NO.14所示,所述基因talA的序列如SEQ ID NO.19所示所述基因gapC的序列如SEQ ID NO.22所示,所述基因gapB的序列如SEQ ID NO.23所示,所述基因gapN的序列如SEQ ID NO.24所示。
7.一种高产L-半胱氨酸的基因工程菌,其特征在于,由权利要求1~6中任意一项所述的构建方法所构建获得。
8.权利要求1~6中任意一项所述的构建方法所构建的高产L-半胱氨酸的基因工程菌或者权利要求7所述的高产L-半胱氨酸的基因工程菌在微生物发酵制备L-半胱氨酸中的应用。
9.如权利要求8所述的应用,其特征在于,将所述基因工程菌菌株接种至发酵培养基,在28~37℃,150-200rpm条件下发酵培养,发酵结束后取发酵液上清分离纯化得到L-半胱氨酸。
10.如权利要求9所述的应用,其特征在于,所述基因工程菌在发酵培养前先在培养基中30~37℃,150~200rpm条件下培养12~24h,再接种至发酵培养基。
CN202310808901.2A 2023-07-04 2023-07-04 高产l-半胱氨酸的基因工程菌及其构建方法与应用 Pending CN116875519A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310808901.2A CN116875519A (zh) 2023-07-04 2023-07-04 高产l-半胱氨酸的基因工程菌及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310808901.2A CN116875519A (zh) 2023-07-04 2023-07-04 高产l-半胱氨酸的基因工程菌及其构建方法与应用

Publications (1)

Publication Number Publication Date
CN116875519A true CN116875519A (zh) 2023-10-13

Family

ID=88254129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310808901.2A Pending CN116875519A (zh) 2023-07-04 2023-07-04 高产l-半胱氨酸的基因工程菌及其构建方法与应用

Country Status (1)

Country Link
CN (1) CN116875519A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118126922A (zh) * 2024-05-07 2024-06-04 天津科技大学 一种l-苏氨酸生产菌株及其构建方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118126922A (zh) * 2024-05-07 2024-06-04 天津科技大学 一种l-苏氨酸生产菌株及其构建方法与应用

Similar Documents

Publication Publication Date Title
Cai et al. Enhanced production of poly‐γ‐glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis
JP6961819B2 (ja) L−リジンを生産する組換え菌、その構築方法およびl−リジンの生産方法
WO2019227512A1 (zh) 一种可高效表达角蛋白酶的重组枯草芽孢杆菌工程菌
JP2021500914A5 (zh)
US11162124B2 (en) Alcohol dehydrogenase mutant and application thereof in cofactor regeneration
TW200402471A (en) Method for fermentative production of amino acids and amino acid derivatives of the phosphoglycerate family
CN105813625A (zh) 生产酰基氨基酸的方法
EP3257939B1 (en) Novel lysine decarboxylase, and method for producing cadaverine by using same
CN116121161B (zh) 一种生产麦角硫因的基因工程菌及其构建方法与应用
TW201446966A (zh) 新穎o-磷絲胺酸輸出蛋白及其製造方法
TWI648290B (zh) 新穎RhtB蛋白變異體及使用該蛋白變異體製造O-磷絲胺酸的方法
CN116875519A (zh) 高产l-半胱氨酸的基因工程菌及其构建方法与应用
Tang et al. Enhanced production of L-methionine in engineered Escherichia coli with efficient supply of one carbon unit
Liao et al. The significance of aspartate on NAD (H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824
Du et al. Reprogramming the sulfur recycling network to improve L-cysteine production in Corynebacterium glutamicum
US20220049235A1 (en) Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof
CN117683802B (zh) 一种通过甲基苹果酸途径生产异亮氨酸的罗尔斯通氏菌工程菌株及其构建与生产方法
CN106032525A (zh) 一种合成白藜芦醇的基因工程菌及其构建方法
CN117987338A (zh) 产麦角硫因重组谷氨酸棒杆菌及其构建方法与应用
JP6991897B2 (ja) 非光栄養性c1代謝微生物での遺伝子発現制御のための核酸およびベクター、およびそれらの形質転換体
Song et al. Development of a vitamin B5 hyperproducer in Escherichia coli by multiple metabolic engineering
Wang et al. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli
CN116836905A (zh) 一种高产l-半胱氨酸的基因工程菌、构建方法及应用
CN116836904A (zh) 高产l-半胱氨酸的基因工程菌、构建方法及应用
CN117430717A (zh) 一种高产l-半胱氨酸的多酶复合物组装体系及基因工程菌

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination