CN116854107A - 金属嵌入式多级孔sapo-56沸石分子筛制备方法及其应用 - Google Patents

金属嵌入式多级孔sapo-56沸石分子筛制备方法及其应用 Download PDF

Info

Publication number
CN116854107A
CN116854107A CN202310338223.8A CN202310338223A CN116854107A CN 116854107 A CN116854107 A CN 116854107A CN 202310338223 A CN202310338223 A CN 202310338223A CN 116854107 A CN116854107 A CN 116854107A
Authority
CN
China
Prior art keywords
sapo
metal
molecular sieve
zeolite molecular
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310338223.8A
Other languages
English (en)
Inventor
张鑫鹏
向梅
吴泽颖
邓瑶瑶
俞驰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute of Technology
Original Assignee
Changzhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute of Technology filed Critical Changzhou Institute of Technology
Priority to CN202310338223.8A priority Critical patent/CN116854107A/zh
Publication of CN116854107A publication Critical patent/CN116854107A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及金属嵌入式多级孔SAPO‑56沸石分子筛的制备方法和应用,包括如下过程:拟薄水铝石为铝源、以85%wt磷酸水溶液作为磷源、以硅胶为硅源,使用草酸铜金属前驱体,按照摩尔比Al2O3:H2O:P2O5:SiO2:CuO=0.8:60:0.8:1.0:(0.8‑1.2)投加原材料,按顺序加入搅拌均匀后于160‑210℃进行水热晶化反应48‑96h,取出产物后水洗至中性、烘干,于550℃下煅烧5h获得具有金属嵌入式结构的多级孔SAPO‑56沸石分子筛,所得产物的结晶度≥93%,比表面积为458m2/g,孔径分布在11nm,金属Cu的实际含量为3.5%,还原后单质Cu的分散度为33.7%。本发明无需有机介观模板剂,产物结晶度高,且能够直接合成含有嵌入式金属物种的多级孔沸石催化剂,应用于CO2加氢制甲醇反应中,具有较高催化活性、稳定性和目标产物选择性。

Description

金属嵌入式多级孔SAPO-56沸石分子筛制备方法及其应用
技术领域
本发明涉及沸石分子筛合成技术领域,具体涉及金属嵌入式多级孔SAPO-56沸石分子筛的制备方法及其应用。
背景技术
SAPO-56沸石分子筛是AFX型拓扑结构的磷酸铝分子筛,具有三维八元环孔道结构,孔径尺寸为0.34nm×0.36nm。且表面呈酸性,可以很好地作为催化剂、离子交换剂以及分离和纯化分子的吸附剂,因而在工业催化、吸附分离和离子交换等领域受到广泛关注。
然而SAPO-56沸石分子筛较小的孔径对处理分子结构更大、组成更复杂的化合物而言困难较大,因此需要引入多级孔结构来改善它在实际应用过程中的性能。目前关于多级孔结构沸石分子筛的合成,普遍采用长链胺基硅烷作为有机模板剂或使用氢氧化钾作为无机导向剂。但是,有机模板剂自身合成过程复杂,价格昂贵,而氢氧化钾则碱性过强,极易造成反应器腐蚀,且二者都对环境污染严重,不仅导致沸石生产成本较高,也不符合当今社会绿色环保、环境友好的可持续发展趋势。
因此本发明尝试研发一种不使用有机模板剂或强碱性无机结构导向剂的多级孔SAPO-56沸石分子筛的合成策略,且得到的沸石样品具有特殊的金属嵌入式结构,能够直接用于各种催化反应中,真正实现了高效经济和绿色环保并举。
发明内容
如何在不使用有机介观模板剂和强碱性无机结构导向剂的情况下合成高结晶度、多级孔结构SAPO-56沸石分子筛,是本发明要解决的关键技术问题。本发明方法合成的SAPO-56沸石分子筛不仅具有较高的结晶度和多级孔结构,同时还引入了嵌入式金属物种,能够直接作为催化剂使用,应用于CO2加氢制转化反应中,具有较高的催化活性和稳定性以及目标产物选择性。
为了达到以上目的,本发明通过以下技术方案实现:
金属嵌入式多级孔SAPO-56沸石分子筛的制备方法,包括如下过程:以拟薄水铝石为铝源、以85%wt磷酸水溶液作为磷源、以硅胶为硅源、使用草酸铜金属前驱体,按顺序加入搅拌均匀后于160-210℃进行水热晶化反应48-96h,取出产物后水洗至中性、烘干,于550℃下煅烧5h获得金属嵌入式多级孔SAPO-56沸石分子筛;
体系中所述铝源、所述磷源、所述硅源、所述金属前驱体以Al2O3、P2O5、SiO2、M2O计算原材料投料量,按照摩尔比Al2O3:H2O:P2O5:SiO2:M2O=0.8:60:0.8:0.8:(0.8-1.2)投加。
进一步地,体系中所述金属前驱体的添加顺序为硅胶之后。
进一步地,所述水热晶化反应的温度为200℃、时间为72h。
本发明最后一方面提供上述制备方法获得的金属嵌入式多级孔SAPO-56沸石分子筛,将所述金属嵌入式多级孔SAPO-56沸石分子筛制成催化剂应用于CO2加氢转化过程。
进一步地,所述过渡金属为Fe、Co、Ni、Cu、Zn、Mn、Zr、La、Ce中的一种,优选所述过渡金属为Cu。
有益技术效果:本发明采用硅胶作为硅源,在草酸铜金属前驱体的作用下,水热晶化直接合成了具有多级孔结构的高结晶度SAPO-56沸石分子筛。与现有技术相比,在不使用小分子有机模板剂的情况下,克服了使用氢氧化钾等类似强碱物质对反应器腐蚀的问题,找到了一条环境友好且成本低廉的合成路线。且获得的具有多级孔结构的高结晶度SAPO-56沸石分子筛可以直接用作为CO2加氢转化催化剂,能够有效催化CO2转化。
附图说明
图1为实施例1制得的金属嵌入式多级孔SAPO-56沸石分子筛的SEM图;
图2为实施例1制得的金属嵌入式多级孔SAPO-56沸石分子筛N2吸附-脱附等温线和孔径分布曲线图;
图3为实施例1~9中不同金属下合成的SAPO-56沸石分子筛的XRD图谱;其中a表示Fe2O3,b表示CoO,c表示NiO,d表示CuO,e表示ZnO,f表示MnO,g表示La2O3,h表示ZrO2,i表示CeO2
图4为实施力10、11与对比例4中不同金属前驱体合成的SAPO-56沸石分子筛的XRD图谱;其中a表示硝酸铜,b表示乙酰丙酮铜,c表示草酸铜;
图5为实施例12~15与对比例4中不同Al2O3:M2O比下合成的的XRD图谱;其中a表示Al2O3:M2O=0.8:0.8,b表示Al2O3:M2O=0.8:0.9,c表示Al2O3:M2O=0.8:1,d表示Al2O3:M2O=0.8:1.1,e表示Al2O3:M2O=0.8:1.2;
图6为实施例16、17与对比例4金属前驱体不同添加顺序下合成的SAPO-56沸石分子筛的XRD图谱;其中a表示拟薄水铝石后添加,b表示磷酸后添加,c表示硅胶后添加;
图7为实施例18~22与对比例4不同晶化温度反应下合成的SAPO-56沸石分子筛的XRD图谱;其中a表示160℃,b表示170℃,c表示180℃,d表示190℃,e表示200℃,f表示210℃;
图8为实施例23~26与对比例4不同晶化反应时间下合成的SAPO-56沸石分子筛的XRD图谱;其中a表示48h,b表示60h,c表示72h,d表示84h,e表示96h;
图9为应用例1中各催化剂对二氧化碳转化的催化活性图;
图10为不同合成方法合成的SAPO-56沸石分子筛的XRD图:其中a表示对比例7-1,b表示对比例7-2,c表示对比例1-4;
表1为实施例及实施例产物的制备参数与结晶度。
具体实施方式
下面将结合本发明的实施例和附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的数值不限制本发明的范围。对于相关领域普通技术人员已知的技术、方法可能不作详细讨论,但在适当情况下,所述技术、方法应当被视为说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
以下实施例中未注明具体条件的实验方法,通常按照国家标准测定;若没有相应的国家标准,则按照通用的国际标准、或相关企业提出的标准要求进行。除非另有说明,否则所有的份数为重量份,所有的百分比为重量百分比。
以下实施例和实施例中“各物料的摩尔比Al2O3:H2O:P2O5:SiO2:M2O”的表述中,Al2O3是指铝源,铝源的摩尔数为拟薄水铝石中的铝元素的摩尔数,SiO2是指硅源,硅源的摩尔数为硅胶中硅元素的摩尔数,M2O(M元素为铁、钴、镍、铜、锌、锰、锆、镧或铈元素)是指金属源,金属源的摩尔数为草酸铁、草酸钴、草酸镍、草酸铜、草酸锌、草酸锰、草酸锆、草酸镧和草酸铈中铁、钴、镍、铜、锌、锰、锆、镧或铈的摩尔数。
结晶度(%)的测试以及计算方法:结晶度使用X射线衍射仪进行测试,计算公式:结晶度=(衍射峰强度/总强度)*100%,利用jade软件进行数据处理。
SBET用物理吸附仪进行氮吸附测得。
实施例1
称量3g拟薄水铝石溶解到15mLH2O中,向上述溶液中加入3.8mL85%wt磷酸水溶液,加入1.38g硅胶,搅拌30min后逐滴加入0.104g/mL的Fe2C6O12溶液,再充分搅拌30min后,将获得的混合物装入高压反应釜,置于200℃的烘箱水热晶化72h;将反应获得的产物进行过滤、洗涤、干燥后,在550℃高温煅烧5h。体系中各原材料的投料摩尔比以Al2O3:H2O:P2O5:SiO2:Fe2O3记为0.8:60:1.0:0.8:1.0。所制得的SAPO-56沸石的结晶度见表1。
实施例2
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.074g/mL的CoC2O4溶液。
实施例3
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.074g/mL的NiC2O4溶液。
实施例4
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.072g/mL的CuC2O4溶液。
实施例5
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.07g/mL的ZnC2O4溶液。
实施例6
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.078g/mL的MnC2O4溶液。
实施例7
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.056g/mL的La2(C2O4)3溶液。
实施例8
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.09g/mL的Zr(C2O4)2溶液。
实施例9
本实施例SAPO-56沸石的制备方法与实施例1-1相同,不同之处在于,金属前驱体溶液为0.056g/mL的Ce2(C2O4)3溶液。
实施例10
本实施例SAPO-56沸石的制备方法与对比例1-4相同,不同之处在于,金属前驱体溶液为0.115g/mL的硝酸铜溶液。
实施例11
本实施例SAPO-56沸石的制备方法与对比例1-4相同,不同之处在于,金属前驱体溶液为0.124g/mL的乙酰丙酮铜溶液。
实施例12
称量3g拟薄水铝石溶解到15mLH2O中,向上述溶液中加入3.8mL85%wt磷酸水溶液,加入1.38g硅胶,搅拌30min后逐滴加入0.058g/mL的CuC2O4溶液,再充分搅拌30min后,将获得的混合物装入高压反应釜,置于200℃的烘箱水热晶化72h;将反应获得的产物进行过滤、洗涤、干燥后,在550℃高温煅烧5h。体系中各原材料的投料摩尔比以Al2O3:H2O:P2O5:SiO2:CuO记为0.8:60:1.0:0.8:0.8。所制得的SAPO-56沸石的结晶度见表1。
实施例13
本实施例SAPO-56沸石的制备方法与实施例3-1相同,不同之处在于,CuC2O4溶液浓度为0.065g/mL。体系中各物料的投料摩尔比以Al2O3:H2O:P2O5:SiO2:CuO记为0.8:60:1.0:0.8:0.9。
实施例14
本实施例SAPO-56沸石的制备方法与实施例2-1相同,不同之处在于,CuC2O4溶液浓度为0.079g/mL。体系中各物料的投料摩尔比以Al2O3:H2O:P2O5:SiO2:CuO记为0.8:60:1.0:0.8:1.1。
实施例15
本实施例SAPO-56沸石的制备方法与实施例2-1相同,不同之处在于,CuC2O4溶液浓度为0.086g/mL。体系中各物料的投料摩尔比以Al2O3:H2O:P2O5:SiO2:CuO记为0.8:60:1.0:0.8:1.2。
实施例16
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与实施例1-4相同,不同之处在于,草酸铜溶液添加在拟薄水铝石溶液之后。
实施例17
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与实施例1-4相同,不同之处在于,草酸铜溶液添加在磷酸之后。
实施例18
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应温度为160℃。
实施例19
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应温度为170℃。
实施例20
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应温度为180℃。
实施例21
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应温度为190℃。
实施例22
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应温度为210℃。
实施例23
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应时间为48h。
实施例24
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应时间为60h。
实施例25
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应时间为84h。
实施例26
本实施例的金属嵌入式多级孔SAPO-56沸石分子筛的制备方法与对比例1-4相同,不同之处在于,水热晶化反应时间为96h。
表1
以上实施例1~9中不同金属源下合成的SAPO-56沸石分子筛XRD图如图3所示,其中a表示Fe2O3,b表示CoO,c表示NiO,d表示CuO,e表示ZnO,f表示MnO,g表示La2O3,h表示ZrO2,i表示CeO2
由图3和表1可知,对比例4得到了99.12%结晶度的SAPO-56。
以上实施例10、11和对比例4中金属前驱体不同添加顺序下合成的SAPO-56沸石分子筛的XRD图谱。其中a表示拟薄水铝石后添加,b表示磷酸后添加,c表示硅胶后添加。由表图10和表1可知,金属前驱体的添加顺序对结晶度有影响,当金属前驱体在硅胶之后添加时结晶度最好达到99.12%。
以上实施例12~15和对比例4中不同Al2O3:M2O比下合成的SAPO-56沸石分子筛的XRD图谱;其中a表示Al2O3:M2O=0.8:0.8,b表示Al2O3:M2O=0.8:0.9,c表示Al2O3:M2O=0.8:1,d表示Al2O3:M2O=0.8:1.1,e表示Al2O3:M2O=0.8:1.2。由图4和表1可知,SAPO-56具有83%以上较高的结晶度。
以上实施例18~22和对比例4不同晶化温度反应下合成的SAPO-56沸石分子筛的XRD图谱如图8所示;其中a表示160℃,b表示170℃,c表示180℃,d表示190℃,e表示200℃,f表示210℃。由表图8和表1可知,160-210℃下晶化反应能够得到83%以上结晶度的SAPO-56。
以上实施例23~26和对比例4不同晶化反应时间下合成的SAPO-56沸石分子筛的XRD图谱如图9所示;其中a表示48h,b表示60h,c表示72h,d表示84h,e表示96h。由表图9和表1可知,在200℃下反应48-80h,能够得到89%以上结晶度的SAPO-56沸石分子筛,随着反应时间增加,在72h时达到99.12%的结晶度,72h之后结晶度基本不变。
对比例27:传统微孔SAPO-56沸石分子筛的制备
称量3g拟薄水铝石溶解到20mLH2O中,充分搅拌后,向上述溶液中加入3.8mL85%wt磷酸水溶液,加入1.03g硅胶,搅拌30min后,逐滴加入12MLN,N,N,N—四甲基—1,6—己二胺(TMHD),室温下搅拌过夜,将获得的混合物装入高压反应釜,置于210℃的烘箱水热晶化95h;将反应获得的产物进行过滤、洗涤、干燥后,固体产品在100℃下干燥一夜。在550℃下煅烧8h。体系中各原材料的投料摩尔比以Al2O3:H2O:P2O5:SiO2:TMHD记为0.8:40:1.0:0.6:2.0。所制得的微孔SAPO-56织构性质见表2。
对比例28:无机结构导向剂制备多级孔SAPO-56沸石分子筛
使用无机结构导向剂制备多级孔SAPO-56沸石在相关专利和文献中已经被报道,以KOH作为无机结构导向剂。为此我们将制备以KOH为无机结构导向剂合成多级孔SAPO-56沸石分子筛,制备方法如下:称量3g拟薄水铝石溶解到20mLH2O中,充分搅拌后,向上述溶液中加入3.8mL85%wt磷酸水溶液,加入1.38g硅胶,搅拌30min后,逐滴加入0.94mol/mL的KOH溶液30mL,再充分搅拌30min后,将获得的混合物装入高压反应釜,置于210℃的烘箱水热晶化72h;将反应获得的产物进行过滤、洗涤、干燥后,在560℃高温煅烧6h。体系中各原材料的投料摩尔比以Al2O3:H2O:P2O5:SiO2:Na2O记为0.8:60:1:0.8:1。所制得的多级孔SAPO-56织构性质见表2。
对比例27、28的设置对比不同合成方法合成的SAPO-56沸石分子筛,对对比例4、27、28中制备得到的SAPO-56沸石进行XRD测试,所得XRD图谱见图10,通过表2的结晶度和XRD图谱我们可以看出以TMHD作为模板剂可以合成SAPO-56沸石分子筛,但没有介孔生成。
表2不同合成方法所制备的SAPO-56组织结构
应用例1
将上述实施例1(无定形)、实施例2(71.34%)、实施例3(54.31%)、实施例4(99.12%)、实施例5(80.21%)、实施例6(无定形)、实施例7(88.12%)、实施例8(无定形)、实施例9(84.37%)金属嵌入式多级孔SAPO-56沸石分子筛应用于碳氧化物加氢制备醇类化合物反应中,具体是二氧化碳加氢制甲醇的反应中。
SAPO-56结晶度超过89%以后对二氧化碳转化率的影响因素极小。
金属嵌入式多级孔SAPO-56沸石分子筛催化剂,具体制备过程:称取一定量的拟薄水铝石溶解在去离子水中,搅拌均匀后依次加入一定量浓度为85%wt磷酸溶液、硅胶,搅拌均匀后逐滴加入草酸铜配合体溶液,再充分搅拌均匀后,在200℃下水热晶化反应72h,体系组成为Al2O3:H2O:P2O5:SiO2:CuC2O4=0.8:60:1.0:0.8:1.0将反应获得的产物进行过滤、洗涤、干燥后,在550℃高温煅烧5h,即可得到3%Cu/SAPO-56分子筛催化剂。
另外按照前述方法还制备了3.5%Cu/SAPO-56、3.5%Fe/SAPO-56、3.5%Co/SAPO-56、3.5%Ni/SAPO-56、3.5%Zn/SAPO-56、3.5%Mn/SAPO-56、3.5%La/SAPO-56、3.5%Zr/SAPO-56、3.5%Ce/SAPO-56。
测试以上催化剂对二氧化碳的催化活性,催化剂催化二氧化碳的转化率如图9的左图所示。由图9的左图可知,3.5%Cu/SAPO-56在单金属催化剂中催化CO2转化率最高,选择性最好。
同时还比较了3.5%Cu/SAPO-56与市售传统商业贵金属负载的Pt-Al2O3催化剂、传统商业催化剂CuO-ZnO-Al2O3、MoS2、Ni-HLSX催化剂(CN202110379122.6)对于催化CO2加氢制甲醇的活性。其结果如图9的右图所示,由图9的右图可知,Pt-Al2O3的催化剂的CO2转化率最高,并且经过长时间使用后,仍然是所有催化剂中转化率最高的。而3%Cu/SAPO-56的转化率略微低于贵金属负载的Pt-Al2O3催化剂,但是显著高于传统商业催化剂Ni-HLSX、CuO-ZnO-Al2O3和MoS2,且长时间使用不失活。
本发明以高结晶度多级孔结构的SAPO-56作为载体负载过渡金属制成催化剂后能够使催化剂连续工作1000h并保持催化效率不显著下降,具有较好的工业应用稳定性及催化活性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

1.金属嵌入式多级孔SAPO-56沸石分子筛制备方法,其特征在于:包括如下过程:以拟薄水铝石为铝源、以85%wt磷酸水溶液作为磷源、以硅胶为硅源、以草酸铜为金属前驱体,按顺序加入搅拌均匀后于160-210℃进行水热晶化48-96h,取出产物后水洗至中性、烘干,于550℃下煅烧5h获得具有金属嵌入式结构的多级孔SAPO-56沸石分子筛;
体系中所述铝源、所述磷源、所述硅源、所述金属前驱体以Al2O3、P2O5、SiO2、M2O计算原材料投料量,按照摩尔比Al2O3:H2O:P2O5:SiO2:M2O=0.8:60:(0.6-1.2):0.8:1.0投加。
2.根据权利要求1所述的金属嵌入式多级孔SAPO-56沸石分子筛制备方法,其特征在于,体系中所述金属前驱体为草酸铜。
3.根据权利要求1所述的金属嵌入式多级孔SAPO-56沸石分子筛制备方法,其特征在于,体系中所述铝源、所述磷源、所述硅源、所述金属前驱体以Al2O3、P2O5、SiO2、M2O计算原材料投料量,按照摩尔比Al2O3:H2O:P2O5:SiO2:M2O=0.8:60:1.0:0.8:(0.8-1.2)投加。
4.根据权利要求1所述的金属嵌入式多级孔SAPO-56沸石分子筛制备方法,其特征在于,金属前驱体加入顺序为在硅胶之后。
5.根据权利要求1所述的金属嵌入式多级孔SAPO-56沸石分子筛制备方法,其特征在于,所述水热晶化反应的温度为200℃、时间为72h。
6.金属嵌入式多级孔SAPO-56沸石分子筛制备方法的应用,其特征在于,包括权利要求1~5任一项所述的金属嵌入式多级孔SAPO-56沸石分子筛制备方法,在不使用有机介观模板剂的条件下,能够一步直接合成含有嵌入式金属物种的多级孔沸石催化剂,且产物结晶度高。
7.根据权利要求6所述的金属嵌入式多级孔SAPO-56沸石分子筛制备方法及其应用,其特征在于,所述过渡金属Fe、Co、Ni、Cu、Zn、Mn、Zr、La、Ce中的一种。其中Cu物种的效果最好,所得沸石的结晶度最高,比表面积最大,孔径分布最宽。
CN202310338223.8A 2023-03-31 2023-03-31 金属嵌入式多级孔sapo-56沸石分子筛制备方法及其应用 Pending CN116854107A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310338223.8A CN116854107A (zh) 2023-03-31 2023-03-31 金属嵌入式多级孔sapo-56沸石分子筛制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310338223.8A CN116854107A (zh) 2023-03-31 2023-03-31 金属嵌入式多级孔sapo-56沸石分子筛制备方法及其应用

Publications (1)

Publication Number Publication Date
CN116854107A true CN116854107A (zh) 2023-10-10

Family

ID=88222275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310338223.8A Pending CN116854107A (zh) 2023-03-31 2023-03-31 金属嵌入式多级孔sapo-56沸石分子筛制备方法及其应用

Country Status (1)

Country Link
CN (1) CN116854107A (zh)

Similar Documents

Publication Publication Date Title
CN110316743A (zh) 菱沸石型沸石及其制造法、负载铜的沸石、氮氧化物还原去除催化剂、氮氧化物还原去除法
CN105314650B (zh) 一种钒硅分子筛及其制备方法
CN110615444B (zh) 一种丝光沸石分子筛、其制备方法及应用
CN110668458A (zh) Al-SBA-15介孔分子筛和脱硝催化剂及各自的制备方法和应用
CN113634257A (zh) 一种双功能催化剂应用于烟道气中co2捕获-甲烷化一体化
CN107983356B (zh) 一种合成高级支链醇的催化剂及制备方法和应用
CN115487826A (zh) 银掺杂锰钴水滑石催化剂及其制备方法与降解甲醛的方法
WO2024207996A1 (zh) 可协同去除氮氧化物和co的催化剂及其制备方法和应用
Gao et al. A bimetallic MOF-derived MnCo spinel oxide catalyst to enhance toluene catalytic degradation
CN103801327B (zh) 一种复合氧化物、其制造方法及其应用
CN110329992B (zh) 甲醇低温水汽重整制氢催化剂及其制备方法
CN117019214A (zh) 一种提高金属改性ssz-13脱硝性能的催化剂制备方法
CN116159591B (zh) 一种氧化物-分子筛复合催化剂及其制备方法和应用
CN116854107A (zh) 金属嵌入式多级孔sapo-56沸石分子筛制备方法及其应用
CN110697768A (zh) 一种介孔TiO2材料和催化剂及其制备方法以及一种脱硝方法
CN109647499B (zh) 一种以HT-SiC为载体生长Cu-SSZ-13分子筛的催化剂及其制备方法
CN115367769B (zh) 高结晶度多级孔sapo-56沸石分子筛的制备方法和应用
CN115445635A (zh) 一种三元水滑石催化剂及其制备方法与应用
CN114405538A (zh) 一种多级孔Fe/ZSM-5分子筛及其制备方法和应用
CN109929118B (zh) 一种Cu(I)配位聚合物及其制备方法与应用
CN113713851A (zh) 一种提高抗硫抗水性能的In/H-β催化剂制备方法
CN114702041B (zh) 一种类球状多孔级sapo-20沸石分子筛的制备方法及应用
CN112023976A (zh) 双金属改性mcm-41分子筛催化剂及制备方法和应用
JPS6377546A (ja) 一酸化炭素転化用触媒及びその製造方法
CN114477298B (zh) 一种复合氧化物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination