CN116846165A - 一种径向多极取向钕铁硼磁环及其制备方法 - Google Patents

一种径向多极取向钕铁硼磁环及其制备方法 Download PDF

Info

Publication number
CN116846165A
CN116846165A CN202310725408.4A CN202310725408A CN116846165A CN 116846165 A CN116846165 A CN 116846165A CN 202310725408 A CN202310725408 A CN 202310725408A CN 116846165 A CN116846165 A CN 116846165A
Authority
CN
China
Prior art keywords
magnetic ring
alloy
powder
magnetic
multipole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310725408.4A
Other languages
English (en)
Inventor
杨俊�
黄东亚
王岳
彭晖
林百春
谢述锋
李重理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luoyang Shipbuilding Materials Research Institute 725th Research Institute Of China Shipbuilding Corp
Original Assignee
Luoyang Shipbuilding Materials Research Institute 725th Research Institute Of China Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luoyang Shipbuilding Materials Research Institute 725th Research Institute Of China Shipbuilding Corp filed Critical Luoyang Shipbuilding Materials Research Institute 725th Research Institute Of China Shipbuilding Corp
Priority to CN202310725408.4A priority Critical patent/CN116846165A/zh
Publication of CN116846165A publication Critical patent/CN116846165A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明提供一种径向多极取向钕铁硼磁环及其制备方法,包括如下步骤:S1、采用合金A制备各向异性磁粉,合金B制备晶界扩散源粉末;S2、将各向异性磁粉与合金B粉末按一定比例混合,将混合后的粉末在磁场下进行取向压制烧结成型得到多极磁环初胚;S3、将多极磁环初胚于热处理炉内经过高温烧结和晶界扩散得到多极烧结磁环;S4、将多极烧结磁环进行表面处理、充磁得到径向多极取向钕铁硼磁环。本发明基于HDDR制粉技术、结合磁场取向与SPS烧结技术、粉末冶金烧结与晶界扩散技术,制备径向多极取向钕铁硼磁环,其中,钕铁硼磁环具有良好的磁性能与整体力学性能,适合安装于永磁电机上,使电机具有效率高、体积小、高转数、平稳动行等特点。

Description

一种径向多极取向钕铁硼磁环及其制备方法
技术领域
本发明涉及稀土磁性材料领域,具体而言,涉及一种径向多极取向钕铁硼磁环及其制备方法。
背景技术
永磁无刷直流电机是利用永磁材料产生气隙磁场,电子换相技术进行无机械接触换相,省掉了励磁绕组和电刷、能简化结构、减小体积、延长寿命,具有效率与可靠性高、重量轻等诸多优点,在电机领域的比重越来越大。不同永磁电机的磁场设计需要不同规格和性能的永磁体,永磁体按材料可分为金属永磁、铁氧体永磁、稀土永磁,其中稀土永磁体主要包括钐钴磁体和钕铁硼磁体,钕铁硼磁体是目前磁性能最高的永磁材料,最大磁能积(BH)max达59.6MGOe。稀土永磁体按其制备工艺可分为粘结磁体、烧结磁体和热压(热变形)磁体。通常按照磁环取向方式的不同,又将稀土永磁环分为各向同性磁环、轴向永磁环、径向多极永磁环等。径向多极磁环是磁环在压制成型时,沿磁环圆周施加N极、S极交错的磁场,对其进行多极取向,磁场方向与压制方向垂直,这样制得的多极磁体也称为各向异性磁环。
现有永磁电机里的磁环通常采用充磁后的烧结钕铁硼瓦拼接而成。由于磁瓦加工、安装精度的限制,拼接磁环的动平衡差,磁极间过渡区大,使电机产生噪音和震动,直接影响电机的性能。一般永磁电机的内转子磁体采用表贴式和内嵌式两种安装方式。表贴式磁体固定通常采用粘接剂粘接、燕尾槽固定、螺钉等方法,将磁体固定于转子铁心表面,安装固定较为繁琐,成本高,磁极波动大,均匀性不好,且存在由离心力引起的脱落风险;内嵌式结构具有凸极效应,漏磁系数较大,材料利用率不如表贴式结构等缺点。
钕铁硼多极磁环克服了磁瓦拼装结构缺点,在内外表面可直接充磁成多极且安装容易。由于磁极间过渡区小、动平衡好,降低了电机的噪音和振动,可有效地提高电机效率,具有精度高、运行平稳和噪音低等特点。多极磁环的机械一体性结构提高了电机转子抗离心力能力,高速旋转脱落风险大大降低,且具有良好尺寸精度、同心度,是高转速、高精度控制电机的首选,在工业自动化设备、智能化装备等领域得到广泛应用。
烧结钕铁硼多极各向异性磁环的性能比其他任何多极磁环的性能都高,Nd2Fe14B基体相具有四方结构,是单轴晶体,C轴为易磁化轴,在取向成型过程中会使每一个粉末颗粒的易磁化C轴尽量沿相同方向取向排列。但Nd2Fe14B晶粒在烧结过程中C⊥轴和C∥轴的线膨胀系数差别过大,C∥轴的线膨胀系数α∥=7.8×10-6/℃,而C∥轴的线膨胀系数α⊥=﹣0.1×10-6/℃,也就是说α∥是正数,要膨胀,而α⊥是负数,要收缩,因此在烧结制备过程中(烧结温度约1080℃)容易产生裂纹甚至破裂、成品率低。
现有技术中通常采用热压/热变形法制备高性能钕铁硼永磁环,热压/热变形法多极磁环是磁粉在600~800℃温度下,200~700MPa压力作用下沿平行于压力方向择优取向,制备成全密度辐射取向环,不仅具有良好的均匀性,同时其变形过程中开裂倾向小于烧结钕铁硼永磁环,但其制备工艺复杂,效率低,高真空、高温度、高压力的成型条件对设备要求高。
中国专利CN101325108B涉及一种粘结钕铁硼磁体及其制备方法,该方法得到的磁体中含有非磁性物质粘结剂,所以磁性能一般;中国专利CN102364617A涉及一种高均匀辐向取向钕铁硼永磁环及制备方法,该制备方法中的磁环因取向原因,在烧结过程中各个方向材料的膨胀系数存在差异,导致磁环容易出现裂纹或开裂问题,影响成品率;中国专利CN101202143B涉及高性能辐向热压磁环的制备方法,该方法中的磁环制备工艺复杂,效率低,而且高真空、高温度、高压力的成型条件对设备要求高、使得成本高昂。
发明内容
有鉴于此,本发明旨在提出一种径向多极取向钕铁硼磁环及其制备方法。以解决现有技术中的粘结钕铁硼磁环磁性能一般;烧结钕铁硼磁环容易出现裂纹或开裂问题、影响成品率;热压/热变形钕铁硼磁环制备工艺复杂、效率低,而且高真空、高温度、高压力的成型条件对设备要求高、使得成本高昂的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种径向多极取向钕铁硼磁环的制备方法,包括如下步骤:
S1、采用合金A制备各向异性磁粉,合金B制备晶界扩散源粉末;
所述合金A的分子式为RxFe100-x-y-zByMz,其中R为钕Nd、镨Pr、镝Dy、铽Tb、铈Ce、镧La、钇Y、钬Ho中的至少一种,Fe为铁元素,B为硼元素,M为钴Co元素,镓Ga元素、锆Zr元素、铌Nb元素、铜Cu元素、铝Al元素、硅Si元素、锰Mn元素中的至少一种;分子式中的x、y、z分别表示R、B、M的原子百分比,它们分别满足如下条件:8≤x≤16、4≤y≤8、0≤z≤2;
所述合金B为低熔点合金,所述低熔点合金为熔点低于600℃的轻稀土合金;
S2、将各向异性磁粉与合金B粉末按一定比例混合,将混合后的粉末在磁场下进行取向压制烧结成型得到多极磁环初胚;
S3、将多极磁环初胚于热处理炉内经过高温烧结和晶界扩散得到多极烧结磁环;
S4、将多极烧结磁环进行表面处理、充磁得到径向多极取向钕铁硼磁环。
该设置基于HDDR制粉技术、结合磁场取向与SPS烧结技术、粉末冶金烧结与晶界扩散技术,得到径向多极取向钕铁硼磁环,该制备工艺简单、在磁环成型时所需设备要求低、使用成本低。
进一步地,步骤S2具体执行如下步骤:
S21:磁环在低压力施加取向磁场,其中施加压力为20~100Mpa,真空度为1~5Pa,施加磁场强度为1.0~2.5T;
S22:磁环在压制、磁场取向时进行烧结,其中,烧结温度为450~650℃,烧结时间0.5~2min。
该设置在磁环受到低压力时施加磁场强度,使磁环中磁粉易磁化C轴沿径向高度取向,同时在压制、磁场取向的同时升温,使粉末表面局部熔化,尤其是低熔点合金粉末的快速熔化与冷却凝固,使HDDR各向异性磁粉间牢牢结合,多极磁环初胚脱模后保持一定力学强度同时维持磁环的取向度。
进一步地,步骤S3中,所述烧结时的真空度为(1~5)×10-2Pa时,加热温度为500~800℃,保温时间为40~90min。
该设置使磁环组织更加致密、均匀,消除空隙,同时低熔点合金粉末作为扩散元,沿HDDR各向异性磁粉晶界扩散。
进一步地,步骤S1具体执行如下步骤:
S11:按照合金A分子式配备原料,于真空感应炉内熔炼,浇铸得到薄板状稀土合金钢锭或喷射得到鳞片状合金速凝铸片;
S12:将薄板状稀土合金钢锭或鳞片状合金速凝铸片进行HDDR处理得到各向异性磁粉;
S13:将各向异性磁粉进行预处理使其粒径为30~200μm。
该设置可以形成各向异性磁粉。
进一步地,步骤S11中,在熔炼时,真空度为(1~5)×10-2Pa,高纯氩气气氛下温度为1400~1500℃。
进一步地,步骤S12中,所述HDDR处理时的温度为200~850℃,真空度为20~120kPa。
进一步地,所述薄板状稀土合金钢锭为浇铸在水冷铜盘上得到,薄板状稀土合金钢锭的厚度为5~15mm;所述鳞片状合金速凝铸片为直接喷射到冷却辊轮表面上得到,所述鳞片状合金速凝铸片的厚度为0.2~0.4mm。
进一步地,当浇铸得到薄板状稀土合金钢锭时,步骤S11还包括将薄板状稀土合金钢锭置于均匀化热处理炉中,在真空或者惰性气体中,900~1200℃温度条件下保温12~48h,完成薄板状稀土合金钢锭组织均匀化处理。
进一步地,所述低熔点合金包括NdCu、NdAl、NdGaCu、NdFeGaCu、CeCu、LaCu中的一种。
一种径向多极取向钕铁硼磁环,采用上述所述的制备方法得到。
相对于现有技术,本发明所述的一种径向多极取向钕铁硼磁环及其制备方法。具有以下优势:
1)本发明基于吸氢-歧化-脱氢-再复合(Hydrogenation DisproportionationDesorption Recombination,简称HDDR)制粉技术、结合磁场取向与放电等离子体烧结(Spark Plasma Sintering,简称SPS))技术、粉末冶金烧结与晶界扩散技术,制备了一种径向多极取向钕铁硼磁环,该制备工艺简单、在磁环成型时所需设备要求低、使用成本低;而且该径向多极取向钕铁硼磁环具有良好的磁性能与整体力学性能,同时避免传统烧结多极钕铁硼磁环开裂、成型效率低的缺点,该磁环适合安装于永磁电机上,使电机具有效率高、体积小、高转数、平稳动行等特点。
附图说明
图1为本发明的多极取向钕铁硼磁环的制备工艺流程图;
图2为本发明的多极磁环磁场取向+SPS成型的整体结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。应当理解,本发明在此所描述的具体实施例仅是构成本发明的部分实施例,其仅用以解释本发明,并不构成对本发明的限定,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明涉及一种径向多极取向钕铁硼磁环的制备方法,如图1~2所示,包括如下步骤:
S1、制备各向异性磁粉;
S11:按照合金A分子式配备原料,于真空感应炉内熔炼,浇铸得到薄板状稀土合金钢锭或喷射得到鳞片状合金速凝铸片;
具体地,按照分子式原子百分比RxFe100-x-y-zByMz配备原料,其中R为钕Nd、镨Pr、镝Dy、铽Tb、铈Ce、镧La、钇Y、钬Ho中的至少一种,Fe为铁元素,B为硼元素,M为钴Co元素,镓Ga元素、锆Zr元素、铌Nb元素、铜Cu元素、铝Al元素、硅Si元素、锰Mn元素中的至少一种。分子式中所述的x、y、z分别表示R、B、M的原子百分比,它们分别满足如下条件:8≤x≤16、4≤y≤8、0≤z≤2;除了R、B、M外,余量均为Fe。
具体地,将配备好的各原料置于真空感应炉内,当炉内真空度达到(1~5)×10-2Pa时,停止抽真空,充入高纯氩气气氛,加热升温至1400~1500℃熔炼。将熔炼合金液体浇铸到水冷铜盘上,生成薄板状稀土合金钢锭(厚度5~15mm)或直接喷射到冷却辊轮表面上(冷却速度约104~106℃/s),快速凝固成鳞片状合金速凝铸片(厚度0.2~0.4mm)。
S12:将薄板状稀土合金钢锭或鳞片状合金速凝铸片进行HDDR处理得到各向异性磁粉;
具体地,将稀土合金钢锭或稀土合金速凝铸片置于20~120kPa的HDDR炉内,并在200~850℃温度范围内完成吸氢-歧化-脱氢-再复合HDDR处理,合成具有各向异性织构的钕铁硼相,即可得到各向异性磁粉。
S13:将各向异性磁粉进行预处理使其粒径为30~200μm。
具体地,将出炉后HDDR各向磁粉经气流磨、球磨等方式将粒径调整至≤200um;优选地,粒径30~200μm。
S2、将各向异性磁粉与合金B粉末按一定比例混合,将混合后的粉末在磁场下进行取向压制烧结成型得到多极磁环初胚;
具体地,将HDDR各向异性磁粉与低熔点合金粉末按一定比例混合,低熔点合金通常为熔点低于600℃的轻稀土合金如NdCu、NdAl、NdGaCu、NdFeGaCu、CeCu、LaCu等合金,粉末粒径≤50um。
具体地,将混合粉末加入到放电等离子体烧结装置模腔内,传统多极烧结磁环的磁粉原料粒径在2~5μm,比表面能高,容易氧化,需要真空度10-2Pa才能烧结。而本申请中的HDDR各向异性磁粉的粒径为30~200μm,在真空度达到5Pa时即可施加20~100Mpa压力进行烧结。Nd2Fe14B基体相具有四方结构,是单轴晶体,C轴为易磁化轴,在取向成型过程中要使每一个粉末颗粒的易磁化C轴尽量沿相同方向取向排列,磁体才能获得高的剩磁Br与磁能积(BH)max,因此在磁环受到低压力时即磁粉还处于松装状态时,在模具径向周边要施加1.0~2.5T取向磁场,使磁环中磁粉易磁化C轴沿径向高度取向。
具体地,在压制、磁场取向的同时,放电等离子体烧结装置快速升温至450~650℃,保持0.5~2min,粉末间的有效放电可产生局部高温,使粉末表面局部熔化,尤其是低熔点合金粉末的快速熔化与冷却凝固,使HDDR磁粉间牢牢结合,磁环初胚脱模后保持一定力学强度同时维持磁环的取向度。
S3、将多极磁环初胚于热处理炉内经过高温烧结和晶界扩散得到多极烧结磁环;
具体操作步骤为将磁环初胚放置在热处理炉内,真空度达到(2~5)×10-2Pa时加热到500~800℃保温40~90min,使磁环组织更加致密、均匀,消除空隙,同时低熔点合金粉末作为扩散元,沿HDDR磁粉晶界扩散。
为了进一步提高密度,改进粉末之间的接触性质,提高强度,使磁体具有高永磁性能的显微组织特征,需要将磁环压胚加热到到粉末基体相熔点以下的温度,进行热处理一段时间,这一过程称为烧结。传统钕铁硼烧结温度一般在1080℃左右,烧结时磁体初胚中的磁粉颗粒(2~5μm)为了减小表面积和表面能,颗粒之间的接触将由点到面并逐步扩大,其结果是烧结体的收缩与致密化。
本发明的多极取向钕铁硼磁环由30~200μm HDDR磁粉和低熔点合金粉末构成,其烧结热处理一方面是为了融化低熔点合金粉末使其液化,与HDDR磁粉接触面更大,结合更牢固,减少孔隙率,提高磁环密度与强度,同时低熔点合金元素沿磁粉晶界扩散进入内部,使晶界变宽、富稀土晶界相分布更加连续均匀,从而提高磁环矫顽力;另一方面烧结热处理相当于给HDDR磁粉回火处理,使晶界富稀土相与Nd2Fe14B主相边界更加清晰、光滑、连续,进一步提升矫顽力。
本发明钕铁硼磁体烧结致密化机理与传统烧结致密化不同,烧结温度处于低熔点合金熔点与富钕相熔点(655℃)左右,明显低于传统钕铁硼烧结温度1080℃,可有效避免烧结致密化过程中磁体不同方向收缩率不同引起的裂纹甚至开裂。
S4、将多极烧结磁环进行表面处理、充磁得到径向多极取向钕铁硼磁环。
具体地,根据产品防腐需求,进行电镀、电泳等表面处理后多极充磁。
下面通过具体实施例,对本发明的技术方案作进一步描述说明,应当理解的是,此处所描述的具体实施例仅用于帮助理解本发明,不用于本发明的具体限制。实施例1
按照分子式Nd12.7Dy0.3Fe80.4B6.1Ga0.3Zr0.2配料,稀土金属多配0.05wt%,其中工业纯铁、钕、镝、镓、锆等金属或合金纯度都应大于99.5%。将配制好的原材料装在真空感应炉中,抽真空至2×10-2Pa后预热,待真空度再次达到5×10-2Pa时,停止抽真空并冲入高纯度Ar气(99.99%以上),然后大功率加热升温至1400~1460℃熔炼。将熔炼的合金液体直接或经过中间包浇铸到快速旋转的水冷铜辊表面,得到厚度约3mm左右速凝薄带,辊轮表面的线速度为1.2~1.6m/s,降温速率约104~105℃/s。
将速凝薄带置于氢压为20~110kPa的HDDR炉内,并在200~850℃温度范围内完成HDDR处理,即可得到HDDR各向异性磁粉。
将HDDR各向异性磁粉气流磨破碎至粒径50~180μm,添加2wt%的2~3μmNd80Ga15Cu5粉末混合,混合均匀后添加到放电等离子体烧结装置模腔中,真空度达到4Pa时开始压制并施加1.7T取向磁场,之后进行放电等离子烧结470℃,持续1min,烧结后样品迅速冷却到室温,随后移置于热处理炉内,在真空度(2~3)×10-2Pa条件下进行700℃×1h热处理。冷却后经电泳表面处理并多极充磁。所制得的径向四极梯形波磁环,壁厚1毫米,表面磁通密度峰值为155~175mT,磁极磁感波形与角度坐标之间所包围的面积为11000~12000mT.deg,磁环强度为85~100MPa。
实施例2
按照分子式Pr2.4Nd10.6Fe80.3B6.2Cu0.2Ga0.2Nb0.1配料,稀土金属多配0.05wt%,其中工业纯铁、钕、镝、镓、锆等金属或合金纯度都应大于99.5%。将配制好的原材料装在熔炼感应炉中,抽真空至2×10-2Pa后预热,待真空度再次达到5×10-2Pa时,停止抽真空并冲入高纯度Ar气(99.99%以上),然后大功率加热升温至1420~1460℃熔炼。将熔炼的合金液体浇铸到水冷铜模上,生成薄板状合金钢锭(厚度约10mm左右);将合金钢锭置于均匀化热处理炉中,在真空或者惰性气体中,900~1200℃温度条件下保温12~48h,完成合金钢锭组织均匀化处理,尽量软磁相α-Fe。
将合金钢锭置于氢压为30~120kPa的HDDR炉内,并在550~850℃温度范围内完成HDDR处理,即可得到HDDR各向异性磁粉。
将HDDR各向异性磁粉气流磨破碎至粒径40~150μm,添加1.5wt%的4~6μmNd70Cu30粉末混合,混合均匀后添加到放电等离子体烧结装置模腔中,真空度达到3Pa时开始压制并施加1.5T取向磁场,之后进行放电等离子烧结510℃,持续0.5min,烧结后样品迅速冷却到室温,随后移置于热处理炉内,在真空度(3~5)×10-2Pa条件下进行750℃×1h热处理。冷却后经电泳表面处理并多极充磁。所制得的径向六极梯形波磁环,壁厚1.1毫米,表面磁通密度峰值为140~150mT,磁极磁感波形与角度坐标之间所包围的面积为9000~10000mT.deg,磁环强度为80~90MPa。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

1.一种径向多极取向钕铁硼磁环的制备方法,其特征在于,包括如下步骤:
S1、采用合金A制备各向异性磁粉,合金B制备晶界扩散源粉末;
所述合金A的分子式为RxFe100-x-y-zByMz,其中R为钕Nd、镨Pr、镝Dy、铽Tb、铈Ce、镧La、钇Y、钬Ho中的至少一种,Fe为铁元素,B为硼元素,M为钴Co元素,镓Ga元素、锆Zr元素、铌Nb元素、铜Cu元素、铝Al元素、硅Si元素、锰Mn元素中的至少一种;分子式中的x、y、z分别表示R、B、M的原子百分比,它们分别满足如下条件:8≤x≤16、4≤y≤8、0≤z≤2;
所述合金B为低熔点合金,所述低熔点合金为熔点低于600℃的轻稀土合金;
S2、将各向异性磁粉与合金B粉末按一定比例混合,将混合后的粉末在磁场下进行取向压制烧结成型得到多极磁环初胚;
S3、将多极磁环初胚于热处理炉内经过高温烧结和晶界扩散得到多极烧结磁环;
S4、将多极烧结磁环进行表面处理、充磁得到径向多极取向钕铁硼磁环。
2.根据权利要求1所述的制备方法,其特征在于,步骤S2具体执行如下步骤:
S21:磁环在低压力施加取向磁场,其中施加压力为20~100Mpa,真空度为1~5Pa,施加磁场强度为1.0~2.5T;
S22:磁环在压制、磁场取向时进行烧结,其中,烧结温度为450~650℃,烧结时间0.5~2min。
3.根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述烧结时的真空度为(2~5)×10-2Pa时,加热温度为500~800℃,保温时间为40~90min。
4.根据权利要求1所述的制备方法,其特征在于,步骤S1具体执行如下步骤:
S11:按照合金A分子式配备原料,于真空感应炉内熔炼,浇铸得到薄板状稀土合金钢锭或喷射得到鳞片状合金速凝铸片;
S12:将薄板状稀土合金钢锭或鳞片状合金速凝铸片进行HDDR处理得到各向异性磁粉;
S13:将各向异性磁粉进行预处理使其粒径为30~200μm。
5.根据权利要求4所述的制备方法,其特征在于,步骤S11中,在熔炼时,真空度为(1~5)×10-2Pa,在高纯氩气下,加热温度为1400~1500℃。
6.根据权利要求4所述的制备方法,其特征在于,步骤S12中,所述HDDR处理时的温度为200~850℃,真空度为20~120kPa。
7.根据权利要求4所述的制备方法,其特征在于,所述薄板状稀土合金钢锭为浇铸在水冷铜盘上得到,薄板状稀土合金钢锭的厚度为5~15mm;所述鳞片状合金速凝铸片为直接喷射到冷却辊轮表面上得到,所述鳞片状合金速凝铸片的厚度为0.2~0.4mm。
8.根据权利要求4所述的制备方法,其特征在于,当浇铸得到薄板状稀土合金钢锭时,步骤S11还包括将薄板状稀土合金钢锭置于均匀化热处理炉中,在真空或者惰性气体中,900~1200℃温度条件下保温12~48h,完成薄板状稀土合金钢锭组织均匀化处理。
9.根据权利要求1所述的制备方法,其特征在于,所述低熔点合金包括NdCu、NdAl、NdGaCu、NdFeGaCu、CeCu、LaCu中的一种。
10.一种径向多极取向钕铁硼磁环,采用权利要求1~9任一项所述的制备方法得到。
CN202310725408.4A 2023-06-19 2023-06-19 一种径向多极取向钕铁硼磁环及其制备方法 Pending CN116846165A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310725408.4A CN116846165A (zh) 2023-06-19 2023-06-19 一种径向多极取向钕铁硼磁环及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310725408.4A CN116846165A (zh) 2023-06-19 2023-06-19 一种径向多极取向钕铁硼磁环及其制备方法

Publications (1)

Publication Number Publication Date
CN116846165A true CN116846165A (zh) 2023-10-03

Family

ID=88164430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310725408.4A Pending CN116846165A (zh) 2023-06-19 2023-06-19 一种径向多极取向钕铁硼磁环及其制备方法

Country Status (1)

Country Link
CN (1) CN116846165A (zh)

Similar Documents

Publication Publication Date Title
KR101680900B1 (ko) 축방향 갭형 영구자석식 회전기용 회전자
EP1746611B1 (en) Rare earth permanent magnet, making method, and permanent magnet rotary machine
JP4656325B2 (ja) 希土類永久磁石、その製造方法、並びに永久磁石回転機
JP4737431B2 (ja) 永久磁石回転機
KR101678221B1 (ko) Ipm형 영구자석 회전기용 회전자의 조립 방법
KR101495613B1 (ko) Nd계 소결 자석 및 그 제조방법
JP4719568B2 (ja) 圧粉磁石およびそれを用いた回転機
EP2063438B1 (en) Production method of a radial anisotropic sintered magnet
US8638017B2 (en) Rotor for permanent magnet rotating machine
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
EP1717828A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet
KR20190064764A (ko) 희토류 영구자석 제조방법
CN104851545A (zh) 一种具有晶界扩散层的永磁材料制备方法
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
CN109411173B (zh) 一种可调控内禀矫顽力梯度的NdFeB稀土永磁体制造方法
JP4919109B2 (ja) 永久磁石回転機及び永久磁石回転機用永久磁石セグメントの製造方法
KR101638090B1 (ko) 영구자석식 회전기용 회전자
JP2012074470A (ja) 希土類磁石、希土類磁石の製造方法及び回転機
CN111599587A (zh) 一种大尺寸热变形钕铁硼磁体的制备方法
CN116846165A (zh) 一种径向多极取向钕铁硼磁环及其制备方法
JP2011199183A (ja) 希土類磁石及び回転機
CN105161240A (zh) 一种高性能稀土永磁材料
JP2579787B2 (ja) 永久磁石の製造法
JP2011019401A (ja) 永久磁石回転機用永久磁石セグメントの製造方法
JP7180479B2 (ja) モータコアの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination