CN116845110A - 一种具有低续流损耗的功率半导体器件及其制造方法 - Google Patents

一种具有低续流损耗的功率半导体器件及其制造方法 Download PDF

Info

Publication number
CN116845110A
CN116845110A CN202310914496.2A CN202310914496A CN116845110A CN 116845110 A CN116845110 A CN 116845110A CN 202310914496 A CN202310914496 A CN 202310914496A CN 116845110 A CN116845110 A CN 116845110A
Authority
CN
China
Prior art keywords
conductivity type
region
layer
body region
type body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310914496.2A
Other languages
English (en)
Inventor
刘斯扬
孙佳萌
隗兆祥
魏家行
孙伟锋
时龙兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University-Wuxi Institute Of Integrated Circuit Technology
Southeast University
Original Assignee
Southeast University-Wuxi Institute Of Integrated Circuit Technology
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University-Wuxi Institute Of Integrated Circuit Technology, Southeast University filed Critical Southeast University-Wuxi Institute Of Integrated Circuit Technology
Priority to CN202310914496.2A priority Critical patent/CN116845110A/zh
Publication of CN116845110A publication Critical patent/CN116845110A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种具有低续流损耗的功率半导体器件及其制造方法。器件包括金属、重掺杂第一导电类型衬底及外延层、第二导电类型体区、第一导电类型增强源区和重掺杂第二导电类型体接触区,第一导电类型半导体区,增强源区之下且贯穿体区的第一导电类型半导体层、介质层一、栅电极、介质层二、金属。方法:在重掺杂衬底上制得第一导电类型外延层;在外延层上形成第二导电类型体区;在体区上形成增强源区;在增强源区下方形成第一导电类型半导体层且贯穿体区;在体区上形成体接触区;在体区中形成第一导电类型半导体区;退火激活杂质;器件上表面生长介质层一、多晶硅、介质层二、栅电极;在增强源区和接触区生成金属,背面淀积金属。

Description

一种具有低续流损耗的功率半导体器件及其制造方法
技术领域
本发明属于功率半导体器件结构设计及制造技术领域,具体而言是一种具有低续流损耗的功率半导体器件及其制造方法。
背景技术
功率半导体器件是实现电能转换的核心器件,主要用途包括逆变、变频等。应用在电动设备(电动车、高铁、电机)、光伏逆变器、家电(空调、冰箱)。在桥式电路中,为了避免上下管同时导通而烧毁,常常设置死区时间,而死区时间采用MOSFET体二极管进行续流,因此续流损耗是功率半导体器件功率损耗的重要因素。
随着业界对新一代电力电子系统在功率密度和效率等方面的更高要求,功率半导体器件不仅需要具有出色的正向导通特性,反向导通特性的优化也需特别关注。作为开关器件,当电路中产生很大的瞬间电流时,MOSFET需要一个反向的续流二极管,避免击穿器件。目前对于续流二极管的选择主要有如下几种方案:1、采用外接二极管的方式,但是这会给系统带来额外的寄生电容及电感,增加系统的损耗,不利于功率器件高频性能的提升;2、采用二极管与开关器件集成封装的形式,但这种方法会额外增加芯片的面积,从而增加器件的成本,也会造成器件电容的显著增加,增大器件开关过程中的功耗;3、利用MOSFET器件自身的寄生体二极管作为反向工作时的续流管。但对于传统的碳化硅MOSFET来讲,体二极管的导通还会带来三个问题:一是碳化硅MOSFET体二极管接近4V的开启电压会造成系统额外的功率损耗;二是体二极管双极载流子续流,存在反向恢复电流尖峰,且开关震荡严重,其在高温情况下尤为严重;三是体二极管的导通会诱发双极退化现象,这是由于电子空穴对的复合所释放出的能量导致堆垛层错在基底面位错处蔓延,被扩大的堆垛层错覆盖的区域无法导电,因此芯片的有效有源区域缩小,最终导致器件导通电阻的退化。
为解决上述问题,通常在碳化硅MOSFET中集成肖特基二极管,这可以极大地缩小功率模块的总面积,从而降低成本和封装复杂度。但是,在碳化硅MOSFET元胞中集成肖特基二极管,需要关注反向阻断电压下肖特基接触处的电场过大问题,以及高温及镜像力引起的势垒降低促进肖特基二极管热电子发射,导致高温时反向漏电流增加的问题,因此不利于集成芯片的高温、可靠性的提升。
发明内容
本发明针对上述问题,提出了一种与现有功率器件制造工艺兼容、既可以降低器件续流损耗又不影响器件正向导通及反向阻断特性的具有低续流损耗的功率半导体器件及其制造方法。
本发明采用的技术方案如下:
本发明所述的一种具有低续流损耗的功率半导体器件,包括,金属、重掺杂第一导电类型衬底、第一导电类型外延层、第二导电类型体区、位于第二导电类型体区上方的第一导电类型增强源区和重掺杂第二导电类型体接触区,位于第二导电类型体区之间的第一导电类型半导体区,位于第一导电类型增强源区之下且贯穿第二导电类型体区的第一导电类型半导体层、介质层一、栅电极、介质层二、金属。
本发明所述的一种具有低续流损耗的功率半导体器件的制造方法:
第一步:采用外延工艺,在重掺杂第一导电类型衬底上表面制得第一导电类型外延层;
第二步:采用光刻和离子注入工艺,在所述第一导电类型外延层上层的两端注入第二导电类型半导体杂质形成第二导电类型体区;
第三步:采用沟道自对准工艺,在第二导电类型体区上层注入第一导电类型半导体杂质形成第一导电类型增强源区;
第四步:采用第一导电类型半导体层自对准工艺,在第一导电类型增强源区下方注入第一导电类型半导体杂质形成第一导电类型半导体层,且贯穿第二导电类型体区;
第五步:采用光刻和离子注入工艺,在第二导电类型体区上层注入第二导电类型半导体杂质形成重掺杂第二导电类型体接触区;
第六步:采用光刻和离子注入工艺,在第二导电类型体区中间多步注入第一导电类型半导体杂质形成第一导电类型半导体区;
第七步:通过高温退火激活注入的杂质;
第八步:在器件上表面生长介质层一,在介质层一上淀积多晶硅,然后淀积介质层二,淀积金属形成栅电极;
第九步:采用金属淀积和刻蚀工艺,在部分第一导电类型增强源区和重掺杂第二导电类型体接触区上表面生成金属,将器件背面减薄淀积金属。
与现有器件结构及制造技术相比,本发明具有如下优点:
(1)如图2所示,区域一为本发明新增加的第一导电类型半导体层8与被分开的第二导电类型体区4形成的结构。以第一导电类型是N型半导体为例,其工作原理可用图4a-图4c的能带图阐述。能带图从左至右的N+、N-、N型区域分别对应图3所示的第一导电类型增强源区5、第一导电类型半导体层8、第一导电类型外延层3。当器件不施加电压时,能带图如图4a所示;当金属电极12加正向电压时,电压由第一导电类型半导体层8与第一导电类型外延层3形成的耗尽层承担,其能带图如图4b所示,势垒高度降低,电子可以从金属电极1经过第一导电类型外延层3-第一导电类型半导体层8-第一导电类型增强源区5流向金属电极12,形成第三象限电流通路。综上所述,该发明结构利用第一导电类型半导体势垒差导电,其低于PN结势垒,因此,器件的第三象限导通压降降低,因此器件续流损耗降低。
(2)该结构引入的第一导电类型半导体层8与第一导电类型增强源区5和第一导电类型外延层3形成第三象限电流通路,导通电流为单极电流,避免了由第一导电类型外延层3和第二导电类型体区4组成的体二极管在双极载流子导电时引起的外延层的堆垛失效而导致的器件导通电阻的退化问题。
(3)该结构引入的第一导电类型半导体层8与第一导电类型增强源区5和第一导电类型外延层3形成第三象限电流通路,导通电流为单极电流,避免了由第一导电类型外延层3和第二导电类型体区4组成的体二极管双极载流子续流存在的反向恢复尖峰,很好地抑制开关震荡。
(4)该发明在正向导通与反向阻断工作条件下,当金属电极1加正向电压、金属电极12不加电压时,电压同样由第一导电类型半导体层8与第一导电类型外延层3形成的耗尽层承担,能带图如图4c所示,势垒高度增高,电子无法越过势垒,即第二导电类型体区4将第一导电类型半导体层8夹断,因此第一导电类型半导体层8的引入不影响器件正向导通和反向阻断能力。
(5)与集成肖特基二极管的结构相比,该发明不占用器件元胞面积,即没有降低沟道密度,从而在没有改变器件的比导通电阻的情况下提高了器件的续流能力。
附图说明
图1是传统的平栅功率半导体器件元胞结构剖面图。
图2是本发明实施例的具有低续流损耗的功率半导体器件元胞结构剖面图。
图3a~图3c是本发明实施例的能带图。
图4a~图4k是本发明实施例的制备过程示意图。
图5是传统的平栅功率半导体器件与本发明器件的续流电压仿真曲线图。
图6是传统的平栅功率半导体器件与本发明器件的反向阻塞电压仿真曲线图。
具体实施方式:
实施例1
一种具有低续流损耗的功率半导体器件,包括,金属1、重掺杂第一导电类型衬底2、第一导电类型外延层3、第二导电类型体区4、位于第二导电类型体区4上方的第一导电类型增强源区5和重掺杂第二导电类型体接触区6,位于第二导电类型体区4之间的第一导电类型半导体区7,位于第一导电类型增强源区5之下且贯穿第二导电类型体区4的第一导电类型半导体层8、介质层一9、栅电极10、介质层二11、金属12。
在本实施例中,
所述第二导电类型体区4内设有第一导电类型半导体层8,其在第一导电类型增强源区5下方的任何位置,且贯穿第二导电类型体区4,即第一导电类型半导体层8上边与第一导电类型增强源区5衔接,下边与第一导电类型外延层3衔接。所述半导体材料为碳化硅材料。所述介质层一9和介质层二11为SiO2介质材料。所述器件中各掺杂类型相应变为相反的掺杂,即第二导电类型掺杂变为第一导电类型掺杂的同时第一导电类型掺杂变为第二导电类型掺杂。
实施例2
一种具有低续流损耗的功率半导体器件的制造方法,
第一步:如图4a所示,采用外延工艺,在重掺杂第一导电类型衬底2上表面制得第一导电类型外延层3;
第二步:如图4b所示,采用光刻和离子注入工艺,在所述第一导电类型外延层3上层的两端注入第二导电类型半导体杂质形成第二导电类型体区4,该步骤采用不同能量、不同剂量的多步离子注入;
第三步:如图4c所示,采用沟道自对准工艺,在第二导电类型体区4上层注入第一导电类型半导体杂质形成第一导电类型增强源区5;
第四步:采用第一导电类型半导体层8自对准工艺,在第一导电类型增强源区5下方注入第一导电类型半导体杂质形成第一导电类型半导体层8,且贯穿第二导电类型体区4;
第五步:如图4h所示,采用光刻和离子注入工艺,在第二导电类型体区4上层注入第二导电类型半导体杂质形成重掺杂第二导电类型体接触区6;
第六步:如图4i所示,采用光刻和离子注入工艺,在第二导电类型体区4中间多步注入第一导电类型半导体杂质形成第一导电类型半导体区7;
第七步:通过高温退火激活注入的杂质;
第八步:如图4j所示,在器件上表面生长介质层一9,在介质层一9上淀积多晶硅,然后淀积介质层二11,淀积金属形成栅电极10;
第九步:如图4k所示,采用金属淀积和刻蚀工艺,在部分第一导电类型增强源区5和重掺杂第二导电类型体接触区6上表面生成金属12,将器件背面减薄,淀积金属1。所述第四步的详细具体步骤如下:①如图4d所示,保留第一导电类型增强源区5的掩膜版,淀积SiO2;②如图4e所示,刻蚀表面SiO2;③如图4f所示,采用不同能量、不同剂量的多步离子注入;④如图4g所示,刻蚀半导体表面掩膜版及氧化物。

Claims (7)

1.一种具有低续流损耗的功率半导体器件,其特征在于,包括,金属(1)、重掺杂第一导电类型衬底(2)、第一导电类型外延层(3)、第二导电类型体区(4)、位于第二导电类型体区(4)上方的第一导电类型增强源区(5)和重掺杂第二导电类型体接触区(6),位于第二导电类型体区(4)之间的第一导电类型半导体区(7),位于第一导电类型增强源区(5)之下且贯穿第二导电类型体区(4)的第一导电类型半导体层(8)、介质层一(9)、栅电极(10)、介质层二(11)、金属(12)。
2.根据权利要求1所述的具有低续流损耗的功率半导体器件,其特征在于:所述第二导电类型体区(4)内设有第一导电类型半导体层(8),其在第一导电类型增强源区(5)下方的任何位置,且贯穿第二导电类型体区(4)。
3.根据权利要求1所述的具有低续流损耗的功率半导体器件,其特征在于:所述半导体材料为碳化硅材料。
4.根据权利要求1所述的具有低续流损耗的功率半导体器件,其特征在于:所述介质层一(9)和介质层二(11)为SiO2介质材料。
5.根据权利要求1~4任意一项所述的具有低续流损耗的功率半导体器件,其特征在于:所述器件中各掺杂类型相应变为相反的掺杂。
6.一种权利要求1所述的具有低续流损耗的功率半导体器件的制造方法,其特征在于,
第一步:采用外延工艺,在重掺杂第一导电类型衬底(2)上表面制得第一导电类型外延层(3);
第二步:采用光刻和离子注入工艺,在所述第一导电类型外延层(3)上层的两端注入第二导电类型半导体杂质形成第二导电类型体区(4);
第三步:采用沟道自对准工艺,在第二导电类型体区(4)上层注入第一导电类型半导体杂质形成第一导电类型增强源区(5);
第四步:采用第一导电类型半导体层(8)自对准工艺,在第一导电类型增强源区(5)下方注入第一导电类型半导体杂质形成第一导电类型半导体层(8),且贯穿第二导电类型体区(4);
第五步:采用光刻和离子注入工艺,在第二导电类型体区(4)上层注入第二导电类型半导体杂质形成重掺杂第二导电类型体接触区(6);
第六步:采用光刻和离子注入工艺,在第二导电类型体区(4)中间多步注入第一导电类型半导体杂质形成第一导电类型半导体区(7);
第七步:通过高温退火激活注入的杂质;
第八步:在器件上表面生长介质层一(9),在介质层一(9)上淀积多晶硅,然后淀积介质层二(11),淀积金属形成栅电极(10);
第九步:采用金属淀积和刻蚀工艺,在部分第一导电类型增强源区(5)和重掺杂第二导电类型体接触区(6)上表面生成金属(12),将器件背面减薄淀积金属(1)。
7.根据权利要求6所述的具有低续流损耗的功率半导体器件,其特征在于:第四步的详细具体步骤如下:①保留第一导电类型增强源区(5)的掩膜版,淀积SiO2;②刻蚀表面SiO2;③采用不同能量、不同剂量的多步离子注入;④刻蚀半导体表面掩膜版及氧化物。
CN202310914496.2A 2023-07-25 2023-07-25 一种具有低续流损耗的功率半导体器件及其制造方法 Pending CN116845110A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310914496.2A CN116845110A (zh) 2023-07-25 2023-07-25 一种具有低续流损耗的功率半导体器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310914496.2A CN116845110A (zh) 2023-07-25 2023-07-25 一种具有低续流损耗的功率半导体器件及其制造方法

Publications (1)

Publication Number Publication Date
CN116845110A true CN116845110A (zh) 2023-10-03

Family

ID=88167056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310914496.2A Pending CN116845110A (zh) 2023-07-25 2023-07-25 一种具有低续流损耗的功率半导体器件及其制造方法

Country Status (1)

Country Link
CN (1) CN116845110A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118198146A (zh) * 2024-05-17 2024-06-14 清纯半导体(宁波)有限公司 一种半导体功率器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118198146A (zh) * 2024-05-17 2024-06-14 清纯半导体(宁波)有限公司 一种半导体功率器件及其制备方法

Similar Documents

Publication Publication Date Title
CN109192779B (zh) 一种碳化硅mosfet器件及其制造方法
CN110047910B (zh) 一种高耐压能力的异质结半导体器件
CN108807505B (zh) 一种碳化硅mosfet器件及其制造方法
CN103383958A (zh) 一种rc-igbt器件及其制作方法
CN109065621B (zh) 一种绝缘栅双极晶体管及其制备方法
CN104538446A (zh) 一种双向mos型器件及其制造方法
CN105206656A (zh) 一种逆导型igbt器件
CN113644129B (zh) 一种具有台阶式P型GaN漏极结构的逆阻型HEMT
CN104701380B (zh) 一种双向mos型器件及其制造方法
CN114937689B (zh) 一种平面型SiC IGBT及其制作方法
CN110729356B (zh) 一种具有内嵌沟道二极管的SiC MOSFET结构
CN116845110A (zh) 一种具有低续流损耗的功率半导体器件及其制造方法
CN117497579B (zh) 碳化硅igbt的结构、制造方法及电子设备
CN109148566B (zh) 碳化硅mosfet器件及其制造方法
CN109192780B (zh) 一种横向mosfet器件及其制备方法
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN114784102B (zh) 一种具有混合导电模式的ligbt
CN115425064A (zh) 集成反向sbd的高可靠性碳化硅mosfet器件及制备方法
CN110739219B (zh) 一种内嵌沟道二极管的SiC MOSFET制备方法
CN114944421A (zh) 一种沟槽型碳化硅绝缘栅场效应晶体管及其制作方法
CN109065638B (zh) 一种功率二极管器件
CN108550630B (zh) 一种二极管及其制作方法
CN113725295B (zh) 一种逆导型mos栅控晶闸管及其制造方法
US11374094B2 (en) Silicon carbide diode having high surge current capability and manufacturing method thereof
CN111883577B (zh) 一种SiC耐高压抗浪涌pn结单极二极管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination