CN116840700B - 电池状态的实时监测方法、装置、设备及存储介质 - Google Patents

电池状态的实时监测方法、装置、设备及存储介质 Download PDF

Info

Publication number
CN116840700B
CN116840700B CN202311107468.6A CN202311107468A CN116840700B CN 116840700 B CN116840700 B CN 116840700B CN 202311107468 A CN202311107468 A CN 202311107468A CN 116840700 B CN116840700 B CN 116840700B
Authority
CN
China
Prior art keywords
battery
chemical
information
electric quantity
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311107468.6A
Other languages
English (en)
Other versions
CN116840700A (zh
Inventor
吴涛
徐立平
谭曙光
廖肇军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Andep Power Technology Co ltd
Original Assignee
Shenzhen Andep Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Andep Power Technology Co ltd filed Critical Shenzhen Andep Power Technology Co ltd
Priority to CN202311107468.6A priority Critical patent/CN116840700B/zh
Publication of CN116840700A publication Critical patent/CN116840700A/zh
Application granted granted Critical
Publication of CN116840700B publication Critical patent/CN116840700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种电池状态的实时监测方法、装置、设备及存储介质,通过获取第一电池信息;采用双向时序混合模型对第一电池信息进行特征提取,以生成与第一电池信息匹配的化工向量和时态剩余电量向量;基于双向时序混合模型内置的关联算法,将化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;以第一电池剩余电量信息和第一化工数据为调用母版,调取最新时间戳下第二电池剩余电量信息和第二化工数据,并导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;若否,则认定电池状态发生损耗;通过使用双向时序混合模型实时监测和预测电池状态,有效提高了电池管理的准确性和效率。

Description

电池状态的实时监测方法、装置、设备及存储介质
技术领域
本发明涉及电变量测量的技术领域,特别涉及一种电池状态的实时监测方法、装置、设备及存储介质。
背景技术
电池状态的实时监测方法是一个重要并且发展迅速的领域,其目的在于更加有效和准确地评估电池的健康状况和使用寿命,目前的实现方式采用电化学阻抗谱法(EIS):这个方法通过对最小电流波动进行测量,可以在不同频率下获取电池的响应,帮助判断电池的内部电阻、电容等参数,进而评估电池健康状况。电池管理系统(BMS):这个系统通常包括电池电压、电流、温度的监测,并对电量进行估计,预测电池的衰退状态和终止时间,虽然通过EIS和BMS等技术可以实现电池状态的实时监测,但是由于电池自身的复杂性,这些监测方法也存在一定的误判问题。例如,电池在高温或低温环境下可能会显示出不一样的电阻和电性能,而这些因素并不意味着电池的健康状况有问题。
发明内容
本发明的主要目的为提供一种电池状态的实时监测方法、装置、设备及存储介质,通过使用双向时序混合模型实时监测和预测电池状态,有效提高了电池管理的准确性和效率,增强了电池使用的安全性和效率,并有助于延长电池寿命,提升电池制造和更新的效率。
为实现上述目的,本发明提供了一种电池状态的实时监测方法,包括以下步骤:
获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;
采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;
基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;
基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;
将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;
若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗。
进一步地,获取输入的第一电池信息的步骤,包括:
识别电池两极的电子转换量,以基于所述电子转换量确认出当前电池的电池状态,所述电池状态包括充电或放电;
通过所述电池状态调取预设的决策树模型中的与电池型号匹配的化工配比表;
通过所述电子转换量携带的电子流速计算出第一电池剩余电量信息,并将所述第一电池剩余电量信息输入至决策树模型,以由所述决策树模型根据第一电池剩余电量信息在化工配比表中调取对应的第一化工数据。
进一步地,所述双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量的步骤,包括:
采用预设的双象限坐标系加载所述第一电池信息,所述双象限坐标系包括第一象限和第二象限,其中Y轴用于确定剩余电量电量高低,X轴在第一象限中用于确定第一化工数据中内置材料配比的高低,X轴在第二象限中用于确认电子转换量;
对所述第一电池信息进行特征提取,以在双象限坐标系中的第一坐标系生成化工向量,用在第二坐标系上生成时态剩余电量向量。
进一步地,基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式的步骤,包括:
识别所述双象限坐标系中与化工向量匹配的化工斜率,以及与所述时态剩余电量向量匹配的剩余电量斜率;
将所述化工斜率和剩余电量斜率载入与关联算法中,生成剩余电量化工关系公式。
进一步地,所述剩余电量化工关系公式包括:
式中,为化工斜率,/>为剩余电量斜率,N为第一坐标系上的化工向量的向量长,n为第二坐标系上时态剩余电量向量的向量长,而N与n随剩余电量电量/>高低而对应改变,且时态剩余电量向量n与化工向量N具有夹角/>,且将夹角/>认定为剩余电量化工关系公式中化工向量和时态剩余电量向量的关系阈值。
进一步地,基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据的步骤,包括:
采用剩余电量化工关系公式中的化工斜率和剩余电量斜率进行反向调取过程,由所述化工斜率和剩余电量斜率对应调取出第一电池剩余电量信息和第一化工数据;
通过所述第一电池剩余电量信息和第一化工数据作为调用母版,调取关联的决策树模型中的化工配比表;
实时识别最新时间戳下的第二电池信息中的第二电池剩余电量信息以及对应的电子转换量,通过所述第二电池剩余电量信息从化工配比表中对应确认出第二化工数据,其中,所述第二电池剩余电量信息对应的电子转换量若不符合设定的电子流速,则从化工配比表中优先调取电子流速对应的化工数据,并基于被优先调取的化工数据在双象限坐标系中生成的化工斜率,进而使关系阈值产生不同。
进一步地,将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值的步骤,包括:
分别将第二电池剩余电量信息和第二化工数据加载在双象限坐标系上;
分析所述第二电池剩余电量信息和第二化工数据在双象限坐标系上的夹角,其中,因为未将第二电池剩余电量信息和第二化工数据进行向量化,而无法得到对应的向量长度值;
判断所述夹角是否发生变化。
本发明还提出一种电池状态的实时监测装置,包括:
获取单元,用于获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;
提取单元,用于采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;
关系单元,用于基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;
调取单元,用于基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;
判断单元,用于将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;
判定单元,用于若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗。
本发明还提供一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述电池状态的实时监测方法的步骤。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的电池状态的实时监测方法的步骤。
本发明提供的电池状态的实时监测方法、装置、设备及存储介质,具有以下有益效果:
(1)增强预测精准度:您的方案利用双向时序混合模型,能更准确地提取电池的各种特征数据,包括化工数据和剩余电量信息。这种方法可以提高电池状况预测的精度和实时性。
(2)增强模型的适应性:通过实时更新电池信息,并重新生成剩余电量化工关系公式及其关系阈值,模型的适应性得到了提升,能更好地应对各种电池状态的变化。
(3)优化电池管理:第一电池信息基于剩余电量化工关系公式,能够为第二电池信息的获取提供参考模板,这样一来,当新的电池状态数据出现,该模型可以更快地对新的电量状态做出应对,提供有效的电池管理决策。
(4)提高电池使用效率和安全性:通过对电池当前状态的精确判断,可以预测性地处理电池损耗问题,以此来防止过度充电或过度放电,提高电池的使用效率,同时保障设备的稳定运行。
附图说明
图1是本发明一实施例中电池状态的实时监测方法的示意图;
图2是本发明一实施例中电池状态的实时监测装置的结构框图;
图3是本发明一实施例的计算机设备的结构示意框图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1为本发明提出的一种电池状态的实时监测方法的流程示意图,包括以下步骤:
S1,获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;
在S1中,识别电池两极的电子转换量,以基于所述电子转换量确认出当前电池的电池状态,所述电池状态包括充电或放电;通过所述电池状态调取预设的决策树模型中的与电池型号匹配的化工配比表;通过所述电子转换量携带的电子流速计算出第一电池剩余电量(剩余电量即SOC)信息,并将所述第一电池剩余电量信息输入至决策树模型,以由所述决策树模型根据第一电池剩余电量信息在化工配比表中调取对应的第一化工数据。在此步骤中,首先通过电池两极的电子转换量检测电池的状态,包括是处于充电状态还是放电状态。然后,基于电池的状态和电池型号调用预设的决策树模型,获取与电池型号匹配的化工配比表。此外,还使用电子转换量携带的电子流速来计算第一电池剩余电量信息。输入第一电池剩余电量信息至决策树模型后,模型根据剩余电量信息在化工配比表中调取匹配的第一化工数据(这些数据包括电池内部的化学材料和材料的配比信息)。
S2,采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;
在S2中,使用一个预设的双向时序混合模型对第一电池的信息进行特征提取。这个模型是基于深度学习的,具有捕捉和挖掘复杂非线性关系的强大能力。"双向时序"表示该模型同时从过去到现在和从现在到未来的方向对电池的状态变化进行建模和分析。这样可以同时捕捉电池状态的历史信息和未来的变化趋势。"混合模型"表示该模型结合了多种模型或算法,可以同时考虑多种影响电池状态的因素,包括电池的化工特性、使用历史、环境条件等。在该模型中,第一电池的信息被转换为两个向量,化工向量和时态剩余电量向量。化工向量是电池的化工数据(化学材料和配比)在多维空间中的表示,它反映了电池内部的物理和化学特性。时态剩余电量向量则代表电池的剩余电量信息与时间的关系,反映了电池状态随时间的变化趋势。这一步骤的关键是通过深度学习模型深度挖掘和理解电池的特征,为后续的电池状态预测和管理提供更丰富和精确的信息。
S3,基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;
在S3中,使用双向时序混合模型中内置的关联算法来处理化工向量和时态剩余电量向量。这个关联算法的目的是找到化工向量(电池的内部化工属性)与时态剩余电量向量(电池状态随时间的变化)之间的关系。这个关系被表达为一个算法生成的剩余电量化工关系公式。这个公式描述了电池的内部化学性能(通过化工向量描述)和电池当前状态(通过时态剩余电量向量描述)之间的关系。通过这种方法,我们可以理解电池内部化学性能如何影响电池的充电状态和电量消耗,从而更准确地预测电池的性能和寿命。
S4,基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;
在S4中,之前建立的剩余电量化工关系公式被用来与第一电池的剩余电量信息和化工数据进行关联,这就形成了一个“调用母版”。这个"调用母版"就像一个模型或模板,用于处理新的电池信息。在具体实施时,该母版会按照时间戳获取第二电池最新信息,包括第二电池剩余电量信息和化工数据。
S5,将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;
在S5中,将第二电池剩余电量信息和第二化工数据的参数输入至确定好的剩余电量化工关系公式中,以判断能否输出相同的关系阈值,若是,则持续监听。
S6,若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗。
具体的,通过S1-S6的方式进行充电或放电,保障电池充放电稳定性。
放电过程:
在锂离子电池的放电状态下,电池内部的锂离子会从负极(一般为石墨素材料)通过电解液移动到正极(一般为金属氧化物)。这个过程会放出电子,这些电子在外部电路中流动以供应设备的电力。
a. 首先,锂离子电池的负极会释放出锂离子。
b. 锂离子通过电解液移动到正极。
c. 这种转移驱动电子在外部电路中移动,产生电流供设备使用。
充电过程:
充电过程与放电其实是相反的。在电池充电时,电源会将电流送到电池中,这使得电池的正极释放出锂离子,这些锂离子再次移动回负极,并在那里储存,等待下一次的放电过程。
a. 当电源接通,它将送电流到电池中。
b. 正极开始释放锂离子。
c. 这些锂离子通过电解液移动回到负极。
d. 这些锂离子储存在负极,为下次的放电储备能量。
在一个实施例中,所述双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量的步骤,包括:
采用预设的双象限坐标系加载所述第一电池信息,所述双象限坐标系包括第一象限和第二象限,其中Y轴用于确定剩余电量电量高低,X轴在第一象限中用于确定第一化工数据中内置材料配比的高低,X轴在第二象限中用于确认电子转换量;
对所述第一电池信息进行特征提取,以在双象限坐标系中的第一坐标系生成化工向量,用在第二坐标系上生成时态剩余电量向量。
在具体实施的过程中,在这个进一步详细的步骤中,将第一电池信息加载到预设的双象限坐标系中,它包括第一象限和第二象限。在这个坐标系统中,Y轴被用来表示剩余电量电量的高低。高的剩余电量电量表现为在Y轴上更高的位置,而低的剩余电量电量则位于Y轴的较低处。这为评估和比较电池的剩余能量提供了直观的视图。X轴在不同的象限中具有不同的用途。在第一象限中,X轴表示第一电池信息中的内置材料配比的高低。这意味着在此象限中,我们可以看到不同材料配比之间的关系,并根据其变化调整电池性能。在第二象限中,X轴用来确认电子转换量,这代表了电池中电子的流动,并洞悉电池的充电或放电状态。在做了上述工作后,进行第一电池信息的特征提取。在第一象限,根据电池的内部化工(化学材料和配比)数据,在坐标系中生成了化工向量,这个向量反映了电池的化学特性。然后,在第二象限上,根据电子转换量,生成了时态剩余电量向量,这个向量反映了电池剩余电量(剩余电量)随时间的变化趋势。
在一个实施例中,基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式的步骤,包括:
识别所述双象限坐标系中与化工向量匹配的化工斜率,以及与所述时态剩余电量向量匹配的剩余电量斜率;
将所述化工斜率和剩余电量斜率载入与关联算法中,生成剩余电量化工关系公式。
在具体实施的过程中,首先,需要在双象限坐标系中识别出与化工向量匹配的化工斜率和与时态剩余电量向量匹配的剩余电量斜率。这里的斜率指的是向量在坐标系中的斜率,根据向量的起始和终止位置可以计算出斜率,它反映了各自特性的变化情况。化工斜率展示了内置化学材料和料配比随着变化情况,而剩余电量斜率反映了电池电量状态随时间的变化趋势。然后,这两个斜率值会被输入到双向时序混合模型内置的关联算法中。算法将它们进行处理生成剩余电量化工关系公式。这个公式描述了电量(剩余电量)和化工数据的关系,对应到电池性能的实际应用中,便是连接了电池的物理化学属性与其剩余电量之间的关系。总的来说,通过计算并利用化工斜率和剩余电量斜率,我们可以生成详细且精确的剩余电量化工关系公式,这将有助于我们更好的理解和预测电池的性能和状态
具体的,所述剩余电量化工关系公式包括:
式中,为化工斜率,/>为剩余电量斜率,N为第一坐标系上的化工向量的向量长,n为第二坐标系上时态剩余电量向量的向量长,而N与n随剩余电量电量/>高低而对应改变,且时态剩余电量向量n与化工向量N具有夹角/>,且将夹角/>认定为剩余电量化工关系公式中化工向量和时态剩余电量向量的关系阈值。
在一个实施例中,基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据的步骤,包括:
采用剩余电量化工关系公式中的化工斜率和剩余电量斜率进行反向调取过程,由所述化工斜率和剩余电量斜率对应调取出第一电池剩余电量信息和第一化工数据;
通过所述第一电池剩余电量信息和第一化工数据作为调用母版,调取关联的决策树模型中的化工配比表;
实时识别最新时间戳下的第二电池信息中的第二电池剩余电量信息以及对应的电子转换量,通过所述第二电池剩余电量信息从化工配比表中对应确认出第二化工数据,其中,所述第二电池剩余电量信息对应的电子转换量若不符合设定的电子流速,则从化工配比表中优先调取电子流速对应的化工数据,并基于被优先调取的化工数据在双象限坐标系中生成的化工斜率,进而使关系阈值产生不同。
在具体实施的过程中,首先,剩余电量化工关系公式中的化工斜率和剩余电量斜率被用于反向调取过程。根据化工斜率和剩余电量斜率,我们可以确定第一电池的剩余电量信息和化工数据。然后,第一电池的剩余电量信息和化工数据作为调用母版,用来调取决策树模型中的化工配比表。决策树模型是一种预测模型,可以根据已知的数据预测未知数据。这里,化工配比表包含了在不同剩余电量和化工数据下,电池的效率和性能表现。最后,系统会实时识别最新时间戳下的第二电池信息中的第二电池剩余电量信息以及对应的电子转换量。然后,通过第二电池剩余电量信息,从化工配比表中对应确认出第二化工数据。如果第二电池剩余电量信息对应的电子转换量与设定的电子流速不符,那么系统会优先从化工配比表中调取电子流速对应的化工数据。基于这些被优先调取的化工数据,系统会在双象限坐标系中生成新的化工斜率,这可能会使关系阈值发生改变。
在一个实施例中,将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值的步骤,包括:
分别将第二电池剩余电量信息和第二化工数据加载在双象限坐标系上;
分析所述第二电池剩余电量信息和第二化工数据在双象限坐标系上的夹角,其中,因为未将第二电池剩余电量信息和第二化工数据进行向量化,而无法得到对应的向量长度值;
判断所述夹角是否发生变化。
在具体实施的过程中,这个步骤详细解释了如何使用第二电池剩余电量信息和化工数据,导入到剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值。首先,将第二电池剩余电量信息和化工数据分别表示在双象限坐标系上,形象直观的描绘出它们的相对位置和变化趋势。然后,我们需要分析第二电池剩余电量信息和化工数据在双象限坐标系中的夹角。夹角反映了剩余电量信息和化工数据的关系,通常,夹角的大小或变化情况可以帮助我们理解剩余电量和化工数据是如何相互影响的。这里指出了一点,就是因为没有对第二电池剩余电量信息和第二化工数据进行向量化,因此无法得到对应的向量长度值。向量长度是描述向量大小的一个重要参数,如向量化后将能够更加深入地揭示剩余电量信息和化工数据的内在关系。然后,判断这个夹角是否发生了变化。如果发生了变化,那可能意味着电池的状态发生了变化,比如电池的剩余电量信息和化工数据发生了变化。如果夹角没有发生变化,那我们可以认为第二电池状态持续稳定。
参考附图2为本发明提出的电池状态的实时监测装置,包括:
获取单元1,用于获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;
提取单元2,用于采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;
关系单元3,用于基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;
调取单元4,用于基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;
判断单元5,用于将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;
判定单元6,用于若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗。
在本实施例中,上述装置实施例中的各个单元的具体实现,请参照上述方法实施例中所述,在此不再进行赘述。
参照图3,本发明实施例中还提供一种计算机设备,该计算机设备可以是服务器,其内部结构可以如图3所示。该计算机设备包括通过系统总线连接的处理器、存储器、显示屏、输入装置、网络接口和数据库。其中,该计算机设计的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储本实施例中对应的数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现上述方法。
S1,获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;
S2,采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;
S3,基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;
S4,基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;
S5,将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;
S6,若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗。
本领域技术人员可以理解,图3中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的计算机设备的限定。
本发明一实施例还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述方法。可以理解的是,本实施例中的计算机可读存储介质可以是易失性可读存储介质,也可以为非易失性可读存储介质。
综上所述,通过获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗;通过使用双向时序混合模型实时监测和预测电池状态,有效提高了电池管理的准确性和效率,增强了电池使用的安全性和效率,并有助于延长电池寿命,提升电池制造和更新的效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的和实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可以包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM通过多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双速据率SDRAM(SSRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种电池状态的实时监测方法,其特征在于,包括以下步骤:
获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;
采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;
基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;
基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;
将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;
若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗。
2.根据权利要求1所述的电池状态的实时监测方法,其特征在于,获取输入的第一电池信息的步骤,包括:
识别电池两极的电子转换量,以基于所述电子转换量确认出当前电池的电池状态,所述电池状态包括充电或放电;
通过所述电池状态调取预设的决策树模型中的与电池型号匹配的化工配比表;
通过所述电子转换量携带的电子流速计算出第一电池剩余电量信息,并将所述第一电池剩余电量信息输入至决策树模型,以由所述决策树模型根据第一电池剩余电量信息在化工配比表中调取对应的第一化工数据。
3.根据权利要求2所述的电池状态的实时监测方法,其特征在于,所述双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量的步骤,包括:
采用预设的双象限坐标系加载所述第一电池信息,所述双象限坐标系包括第一象限和第二象限,其中Y轴用于确定剩余电量电量高低,X轴在第一象限中用于确定第一化工数据中内置材料配比的高低,X轴在第二象限中用于确认电子转换量;
对所述第一电池信息进行特征提取,以在双象限坐标系中的第一坐标系生成化工向量,用在第二坐标系上生成时态剩余电量向量。
4.根据权利要求3所述的电池状态的实时监测方法,其特征在于,基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式的步骤,包括:
识别所述双象限坐标系中与化工向量匹配的化工斜率,以及与所述时态剩余电量向量匹配的剩余电量斜率;
将所述化工斜率和剩余电量斜率载入于关联算法中,生成剩余电量化工关系公式。
5.根据权利要求4所述的电池状态的实时监测方法,其特征在于,所述剩余电量化工关系公式包括:
式中,为化工斜率,/>为剩余电量斜率,N为第一坐标系上的化工向量的向量长,n为第二坐标系上时态剩余电量向量的向量长,而N与n随剩余电量电量/>高低而对应改变,且时态剩余电量向量n与化工向量N具有夹角/>,且将夹角/>认定为剩余电量化工关系公式中化工向量和时态剩余电量向量的关系阈值。
6.根据权利要求5所述的电池状态的实时监测方法,其特征在于,基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据的步骤,包括:
采用剩余电量化工关系公式中的化工斜率和剩余电量斜率进行反向调取过程,由所述化工斜率和剩余电量斜率对应调取出第一电池剩余电量信息和第一化工数据;
通过所述第一电池剩余电量信息和第一化工数据作为调用母版,调取关联的决策树模型中的化工配比表;
实时识别最新时间戳下的第二电池信息中的第二电池剩余电量信息以及对应的电子转换量,通过所述第二电池剩余电量信息从化工配比表中对应确认出第二化工数据,其中,所述第二电池剩余电量信息对应的电子转换量若不符合设定的电子流速,则从化工配比表中优先调取电子流速对应的化工数据,并基于被优先调取的化工数据在双象限坐标系中生成的化工斜率,进而使关系阈值产生不同。
7.根据权利要求6所述的电池状态的实时监测方法,其特征在于,将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值的步骤,包括:
分别将第二电池剩余电量信息和第二化工数据加载在双象限坐标系上;
分析所述第二电池剩余电量信息和第二化工数据在双象限坐标系上的夹角,其中,因为未将第二电池剩余电量信息和第二化工数据进行向量化,而无法得到对应的向量长度值;
判断所述夹角是否发生变化。
8.一种电池状态的实时监测装置,其特征在于,包括:
获取单元,用于获取输入的第一电池信息,所述第一电池信息包括电池型号、第一化工数据和第一电池剩余电量信息;
提取单元,用于采用预设的双向时序混合模型对所述第一电池信息进行特征提取,以在双向时序混合模型内生成与第一电池信息匹配的化工向量和时态剩余电量向量;
关系单元,用于基于所述双向时序混合模型内置的关联算法,将所述化工向量和时态剩余电量向量进行算法生成处理,以生成剩余电量化工关系公式;
调取单元,用于基于所述剩余电量化工关系公式以第一电池剩余电量信息和第一化工数据为调用母版,反向调取最新时间戳下第二电池信息的第二电池剩余电量信息和第二化工数据,其中,所述第一化工数据和第二化工数据均包括内置化学材料和内置材料配比;
判断单元,用于将所述第二电池剩余电量信息和第二化工数据导入至剩余电量化工关系公式进行计算,以判断是否能够输出当前关系阈值;
判定单元,用于若否,则实时的将第二电池信息替换第一电池信息,并重新生成剩余电量化工关系公式及其关系阈值,且认定电池状态发生损耗。
9.一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述电池状态的实时监测方法的步骤。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的电池状态的实时监测方法的步骤。
CN202311107468.6A 2023-08-31 2023-08-31 电池状态的实时监测方法、装置、设备及存储介质 Active CN116840700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311107468.6A CN116840700B (zh) 2023-08-31 2023-08-31 电池状态的实时监测方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311107468.6A CN116840700B (zh) 2023-08-31 2023-08-31 电池状态的实时监测方法、装置、设备及存储介质

Publications (2)

Publication Number Publication Date
CN116840700A CN116840700A (zh) 2023-10-03
CN116840700B true CN116840700B (zh) 2023-10-31

Family

ID=88172767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311107468.6A Active CN116840700B (zh) 2023-08-31 2023-08-31 电池状态的实时监测方法、装置、设备及存储介质

Country Status (1)

Country Link
CN (1) CN116840700B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130126273A (ko) * 2012-05-11 2013-11-20 주식회사 엘지화학 이차 전지의 다성분 전극의 특성을 평가하는 방법 및 시스템
CN105244547A (zh) * 2015-10-20 2016-01-13 四川科能锂电有限公司 一种通信基站后备电源控制系统
JP2016076369A (ja) * 2014-10-06 2016-05-12 旭化成株式会社 リチウムイオン二次電池
KR20160107093A (ko) * 2015-03-03 2016-09-13 삼성전자주식회사 배터리의 잔존 유효 수명을 예측하는 방법 및 시스템
CN107066722A (zh) * 2017-04-06 2017-08-18 北京理工大学 一种基于电化学模型的动力电池系统荷电状态和健康状态的联合估计方法
CN114325403A (zh) * 2021-12-03 2022-04-12 北京航空航天大学 基于电化学阻抗谱测试的锂离子电池寿命检测方法和系统
CN114547969A (zh) * 2022-01-24 2022-05-27 华南理工大学 一种基于emd-mrvr的多应力下电池寿命预测方法
WO2022175212A1 (de) * 2021-02-17 2022-08-25 Technische Universität Wien Verfahren zur ermittlung des ladezustandes eines phasenwechselspeichers
CN116068399A (zh) * 2023-02-08 2023-05-05 天津华致能源科技有限公司 基于特征选择和时序注意力的锂电池健康状态估计方法
CN116106761A (zh) * 2023-01-12 2023-05-12 北京大学 基于典型相关分析的锂离子电池电量实时估计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10209314B2 (en) * 2016-11-21 2019-02-19 Battelle Energy Alliance, Llc Systems and methods for estimation and prediction of battery health and performance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130126273A (ko) * 2012-05-11 2013-11-20 주식회사 엘지화학 이차 전지의 다성분 전극의 특성을 평가하는 방법 및 시스템
JP2016076369A (ja) * 2014-10-06 2016-05-12 旭化成株式会社 リチウムイオン二次電池
KR20160107093A (ko) * 2015-03-03 2016-09-13 삼성전자주식회사 배터리의 잔존 유효 수명을 예측하는 방법 및 시스템
CN105244547A (zh) * 2015-10-20 2016-01-13 四川科能锂电有限公司 一种通信基站后备电源控制系统
CN107066722A (zh) * 2017-04-06 2017-08-18 北京理工大学 一种基于电化学模型的动力电池系统荷电状态和健康状态的联合估计方法
WO2022175212A1 (de) * 2021-02-17 2022-08-25 Technische Universität Wien Verfahren zur ermittlung des ladezustandes eines phasenwechselspeichers
CN114325403A (zh) * 2021-12-03 2022-04-12 北京航空航天大学 基于电化学阻抗谱测试的锂离子电池寿命检测方法和系统
CN114547969A (zh) * 2022-01-24 2022-05-27 华南理工大学 一种基于emd-mrvr的多应力下电池寿命预测方法
CN116106761A (zh) * 2023-01-12 2023-05-12 北京大学 基于典型相关分析的锂离子电池电量实时估计方法
CN116068399A (zh) * 2023-02-08 2023-05-05 天津华致能源科技有限公司 基于特征选择和时序注意力的锂电池健康状态估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电化学阻抗谱法预测锂电池荷电状态;李革臣 等;《电源技术》;第32卷(第9期);599-602 *

Also Published As

Publication number Publication date
CN116840700A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
Song et al. Lithium-ion battery remaining useful life prediction based on GRU-RNN
Leng et al. A practical framework of electrical based online state-of-charge estimation of lithium ion batteries
Dalal et al. Lithium-ion battery life prognostic health management system using particle filtering framework
KR102650965B1 (ko) 배터리 상태 추정 방법
CN108805217A (zh) 一种基于支持向量机的锂离子电池健康状态估计方法及系统
CN112883531B (zh) 锂离子电池数据处理方法、计算机设备和存储介质
CN105550452B (zh) 基于启发式算法的锂离子电池p2d模型参数的辨识方法
Burzyński et al. A novel method for the modeling of the state of health of lithium-ion cells using machine learning for practical applications
CN111361448A (zh) 电池的自放电检测方法、装置、电池控制器和存储介质
CN114325399A (zh) 电池的内阻预测方法、健康状态的评估方法、装置及设备
Kim et al. An enhanced hybrid battery model
Hamar et al. Anode potential estimation in lithium-ion batteries using data-driven models for online applications
CN114089193A (zh) 电池的温度和负极电位在线估计方法、装置和计算机设备
CN114609523A (zh) 一种电池容量的在线检测方法、电子设备及存储介质
Kim et al. Hysteresis modeling for model-based condition monitoring of lithium-ion batteries
CN113189500B (zh) 电池电量计算方法、装置、计算机设备和存储介质
CN109840353B (zh) 锂离子电池双因素不一致性预测方法及装置
CN113125965B (zh) 电池析锂检测方法、装置、设备及存储介质
CN116840700B (zh) 电池状态的实时监测方法、装置、设备及存储介质
Shin et al. Feature construction for on-board early prediction of electric vehicle battery cycle life
TW202134678A (zh) 電池性能評估裝置、電子機器、充電器及電池性能評估方法
CN117169743A (zh) 基于部分数据和模型融合的电池健康状态估计方法及设备
CN112240952A (zh) 功率测试方法、系统、计算机设备和存储介质
CN115267556A (zh) 电池寿命衰降分析方法、存储介质及电子设备
JP5323396B2 (ja) 入出力特性評価システム及びそれを組み込んだ充放電試験装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant