CN116815027A - 一种轻质高强高模量Al-Mg基复合材料及其制备方法 - Google Patents
一种轻质高强高模量Al-Mg基复合材料及其制备方法 Download PDFInfo
- Publication number
- CN116815027A CN116815027A CN202310879600.9A CN202310879600A CN116815027A CN 116815027 A CN116815027 A CN 116815027A CN 202310879600 A CN202310879600 A CN 202310879600A CN 116815027 A CN116815027 A CN 116815027A
- Authority
- CN
- China
- Prior art keywords
- composite material
- based composite
- modulus
- powder
- ball milling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 56
- 229910018134 Al-Mg Inorganic materials 0.000 title claims abstract description 50
- 229910018467 Al—Mg Inorganic materials 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000000843 powder Substances 0.000 claims abstract description 48
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 43
- 238000000498 ball milling Methods 0.000 claims abstract description 41
- 239000002245 particle Substances 0.000 claims abstract description 41
- 239000011159 matrix material Substances 0.000 claims abstract description 29
- 229910020068 MgAl Inorganic materials 0.000 claims abstract description 27
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 19
- 229910052810 boron oxide Inorganic materials 0.000 claims abstract description 15
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims abstract description 15
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000011065 in-situ storage Methods 0.000 claims abstract description 7
- 238000003825 pressing Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 17
- 238000000875 high-speed ball milling Methods 0.000 claims description 11
- 239000012300 argon atmosphere Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003966 growth inhibitor Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/23—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/059—Making alloys comprising less than 5% by weight of dispersed reinforcing phases
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0005—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Fluid Mechanics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明提供了一种轻质高强高模量Al‑Mg基复合材料及其制备方法。该Al‑Mg基复合材料包括铝基体和原位反应生成的MgAl2O4颗粒和AlB2颗粒;所述MgAl2O4颗粒沿铝基体晶界分布;所述AlB2颗粒均匀分布在铝基体上。其制备方法是:按以下质量百分比准备原料:工业纯铝粉69.8~91.9%、Al‑50Mg合金粉6.0~20.0%、无定型氧化硼粉2.0~10.0%、氧化锆粉0.1~0.2%;将工业纯铝粉和Al‑50Mg合金粉低速球磨后与无定型氧化硼粉、氧化锆粉高速球磨;采用冷等静压机将所得混合物料压制成预制体,经热处理,得到。本发明的材料具有密度低且弹性模量和强度高的优势,制备工艺简单。
Description
技术领域
本发明属于金属基复合材料领域,具体涉及一种轻质高强高模量Al-Mg基复合材料及其制备方法。
背景技术
Al-Mg基合金因具有轻质耐蚀等优异性能,在船舶、汽车、3C领域得到了广泛应用。然而,随节能减排要求的日益严苛,各行业对铝合金性能的要求也越来越高。相比于利用合金化元素改善合金性能,颗粒增强Al-Mg基复合材料由于微观组织可设计性强,且兼具铝基体与增强颗粒的优势,为拓展铝合金的应用领域提供了新途径。然而,传统的增强颗粒(如TiC、SiC等)一方面极易与Al-Mg基体发生有害界面反应而损害材料塑韧性能,另一方面又会显著降低合金的耐腐蚀性能。
MgAl2O4具有高熔点(2135℃)、高硬度(16GPa)、高弹性模量(273GPa)、强抗化学腐蚀性能、高电阻率和低热膨胀系数等优点,理论上可作为Al-Mg基合金优异的增强体。文献[Measurement,2018,129:389-394]向Al-4Mg熔体中添加H3BO3制备了一种MgAl2O4增强Al-Mg基复合材料,通过施加超声处理,凝固后的材料晶粒得到了显著细化;文献[Journal ofAlloys and Compounds,2022,891:161991]在Al-3Mg-7ZnO体系中制备了MgAl2O4增强Al-Mg-Zn复合材料,材料具有良好的抗拉强度。然而,上述方法还存在以下问题:一方面,由于Mg元素在铝熔体中极易挥发且Mg的蒸气压较高,该类方法制备的复合材料中Mg含量受到较大限制,通常其质量分数不高于5%,致使材料综合性能的可设计性受到限制;第二方面,材料制备过程需要超声处理等复杂工艺以改善MgAl2O4的分散性,致使材料制备过程复杂、成本增加;第三方面,原位合成的MgAl2O4通常为微米颗粒或晶须,相比于纳米粒子,微米尺度的增强体强化效果有限且晶须具有各向异性,影响了材料组织和性能的均一性;第四方面,MgAl2O4的分布难以调控,其通常呈聚集的团簇状或随机分布,显著削弱了强化效果,极大地限制了MgAl2O4在Al-Mg基复合材料中的应用。
因此,开发一种成本低廉、制备工艺简单的轻质高强高模量MgAl2O4增强Al-Mg基复合材料,具有重要的意义。
发明内容
针对现有技术的不足,本发明提供了一种轻质高强高模量Al-Mg基复合材料及其制备方法。本发明通过原位反应生成的MgAl2O4与AlB2颗粒协同增强Al-Mg基复合材料,使得材料具有密度低且弹性模量和强度高的优势,并且本发明制备方法成本低廉、工艺简单。
本发明是通过以下方式实现的:
一种轻质高强高模量Al-Mg基复合材料,所述轻质高强高模量Al-Mg基复合材料包括铝基体和原位反应生成的MgAl2O4颗粒和AlB2颗粒;所述MgAl2O4颗粒的质量百分比为3.0~15.2%,MgAl2O4颗粒沿铝基体晶粒的晶界分布;所述AlB2颗粒的质量百分比为1.4~7.0%,AlB2颗粒均匀分布在铝基体上;所述Mg含量为0.4~9.5%,固溶于铝基体中。
根据本发明优选的,所述MgAl2O4颗粒的尺寸为10~100nm;所述AlB2颗粒的尺寸为0.2~2μm。
根据本发明优选的,所述铝基体的晶粒尺寸为1~20μm。
根据本发明,所述轻质高强高模量Al-Mg基复合材料还含有质量百分比为0.07~0.15%的锆,固溶于铝基体中。
根据本发明,上述轻质高强高模量Al-Mg基复合材料的制备方法,包括以下步骤:
(1)按以下质量百分比准备所需原料:工业纯铝粉69.8~91.9%、Al-50Mg合金粉6.0~20.0%、无定型氧化硼粉2.0~10.0%、氧化锆粉0.1~0.2%;
(2)将步骤(1)中的工业纯铝粉和Al-50Mg合金粉在氩气氛围下低速球磨,得到物料;
(3)将步骤(2)球磨所得物料与无定型氧化硼粉、氧化锆粉混合,在氩气氛围下高速球磨,得到混合物料;
(4)采用冷等静压机将步骤(3)球磨所得混合物料压制成预制体;之后将预制体放于真空炉中进行热处理,得到轻质高强高模量Al-Mg基复合材料。
根据本发明优选的,步骤(1)中所述工业纯铝粉的尺寸≤50μm,进一步优选为1~20μm;所述Al-50Mg合金粉的尺寸≤150μm,进一步优选为10~100μm;所述无定型氧化硼粉的尺寸≤5μm;所述氧化锆粉的尺寸≤5μm。
根据本发明优选的,步骤(2)中所述低速球磨的转速≤150r/min,进一步优选为50~150r/min;所述低速球磨的时间为1~3h,所述低速球磨的球料比为5~8:1。
根据本发明优选的,步骤(3)中所述高速球磨的转速≥350r/min,进一步优选为350~480r/min;所述高速球磨的时间为2~6h,所述高速球磨的球料比为3~10:1。
根据本发明优选的,步骤(4)中,冷等静压机的压力为100~300MPa,保压时间5~30min。
根据本发明优选的,步骤(4)中所述热处理的温度为500~720℃,热处理的时间为30~150min,所述热处理在真空度为1×10-5~1×10-2Pa下进行。
本发明的技术特点及有益效果如下:
1、本发明所得轻质高强高模量Al-Mg基复合材料中MgAl2O4与AlB2颗粒协同增强材料性能,本发明通过原位内生原理在Al-Mg基体生成MgAl2O4与AlB2颗粒,MgAl2O4颗粒的尺寸为10~100nm,AlB2颗粒的尺寸为0.2~2μm,二者与基体界面结合强、稳定性好,显著增强了Al-Mg基复合材料的性能。
2、本发明的复合材料制备过程共包括两步球磨:第一步球磨过程中,铝粉与Al-50Mg粉低速球磨即可保证原料混合均匀,又避免了因球磨产生过高热量而导致Mg元素活性增高产生危险,从而提高材料制备过程的安全性;第二步球磨过程中,无定型氧化硼粉可在铝粉和Al-50Mg粉外围充分包裹,并可借助球磨过程中的热量实现晶化,继而确保后续反应的可控进行。相比于工业Mg粉,Al-50Mg粉的上述特征大幅提升了复合材料中Mg含量的选择范围,本发明的复合材料中,Mg含量可在0.4~9.5%范围内调控,为材料综合性能的设计与调控提供了保障。此外,由于生长抑制剂氧化锆的存在,原位反应形成的MgAl2O4颗粒生长过程受到限制,最终表现为纳米级尺寸分布于铝基体晶粒的晶界上,与均匀分布的AlB2颗粒发挥协同强化作用。
3、本发明的Al-Mg基复合材料具有轻质、高强、高模量的性能特征,其密度为2.45~2.70g/cm3,室温强度可达550MPa,弹性模量可达90GPa以上,可用于汽车、航空航天、轨道交通等领域零部件的制作。
4、本发明Al-Mg基复合材料的制备方法工艺简单,可通过控制原料配比、球磨速率与时间、反应温度与时间来控制增强相的尺寸和分布情况,继而实现Al-Mg基复合材料综合性能的设计与调控。本发明方法所用材料成本低、工艺简单、制备方法对环境友好,可用于大规模生产。
附图说明
图1为实施例1制备的轻质高强高模量Al-Mg基复合材料的透射电镜照片;图中1为AlB2颗粒,2为铝基体晶粒,3为MgAl2O4颗粒。
图2为实施例1制备的轻质高强高模量Al-Mg基复合材料的透射电镜照片(BF)、HAADF图像及面扫描图片。
具体实施方式
下面结合具体实施例对本发明做进一步说明,但不限于此。
同时下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂、材料和设备,如无特殊说明,均可从商业途径获得。
实施例1
一种轻质高强高模量Al-Mg基复合材料的制备方法,包括以下步骤:
(1)按以下质量百分比准备好所需原料:工业纯铝粉83.9%(尺寸为1μm)、Al-50Mg合金粉6.0%(尺寸为10μm)、无定型氧化硼粉10.0%(尺寸为5μm)、生长抑制剂氧化锆粉0.1%(尺寸为1μm);
(2)将步骤(1)中的工业纯铝粉和Al-50Mg合金粉放入球磨罐中低速球磨3h,球磨在氩气氛围下进行,球料比为8:1,球磨机转速为150r/min,得到物料;
(3)将步骤(2)球磨所得物料与无定型氧化硼粉、氧化锆粉混合,随后高速球磨6h,球磨在氩气氛围下进行,球料比为10:1,球磨机转速为480r/min,得到混合物料;
(4)采用冷等静压机将步骤(3)球磨所得混合物料压制成预制体,压力为300MPa,保压时间30min;
(5)将预制体放于真空炉中加热,设定真空度为1×10-5Pa,控制温度为720℃,保温时间为150min。
按照上述配比和工艺可得到由MgAl2O4与AlB2颗粒协同增强的轻质高强高模量Al-Mg基复合材料,其成分(质量百分比)为Al-0.4Mg-15.2MgAl2O4-7AlB2,即复合材料中包括质量分数为15.2%的MgAl2O4的颗粒,质量分数为7.0%的AlB2颗粒,质量分数为0.4%的Mg,Mg固溶于铝基体中;所述Al-Mg基复合材料中还包括0.07%锆固溶于铝基体中,其含量计入铝基体中。
本实施例所得Al-Mg基复合材料的密度为2.70g/cm3,室温强度为550MPa,弹性模量为92GPa。
图1为本实施例制备得到轻质高强高模量Al-Mg基复合材料透射电镜照片,从图1中可以看出,复合材料的晶粒尺寸为亚微米级,晶粒之间弥散分布着亚微米级的AlB2颗粒,晶界处则分布有纳米级的MgAl2O4颗粒。
图2为本实施例制备得到轻质高强高模量Al-Mg基复合材料某典型区域的透射电镜照片、HAADF图像及面扫描图片,从图2中可以看出MgAl2O4和AlB2颗粒尺寸分别约为80nm和0.2μm。
实施例2
一种轻质高强高模量Al-Mg基复合材料的制备方法,包括以下步骤:
(1)按以下质量百分比准备好所需原料:工业纯铝粉77.8%(尺寸为20μm)、Al-50Mg合金粉20.0%(尺寸为40μm)、无定型氧化硼粉2.0%(尺寸为1μm)、生长抑制剂氧化锆粉0.2%(尺寸为2μm);
(2)将步骤(1)中的工业纯铝粉和Al-50Mg合金粉放入球磨罐中低速球磨1h,球磨在氩气氛围下进行,球料比为5:1,球磨机转速为50r/min,得到物料;
(3)将步骤(2)球磨所得物料与无定型氧化硼粉、氧化锆粉混合,随后高速球磨2h,球磨在氩气氛围下进行,球料比为3:1,球磨机转速为350r/min,得到混合物料;
(4)采用冷等静压机将步骤(3)球磨所得混合物料压制成预制体,压力为100MPa,保压时间5min;
(5)将预制体放于真空炉中加热,设定真空度为1×10-2Pa,控制温度为560℃,保温时间为30min。
按照上述配比和工艺可得到由MgAl2O4与AlB2颗粒协同增强的轻质高强高模量Al-Mg基复合材料,其成分(质量百分比)为:Al-9.5Mg-3MgAl2O4-1.4AlB2,即复合材料中包括质量分数为3.0%的MgAl2O4的颗粒,质量分数为1.4%的AlB2颗粒,质量分数为9.5%的Mg,Mg固溶于铝基体中;所述Al-Mg基复合材料中还包括0.15%锆固溶于铝基体中,其含量计入铝基体中。
本实施例所得Al-Mg基复合材料的密度为2.45g/cm3,室温强度为455MPa,弹性模量为75GPa。
实施例3
一种轻质高强高模量Al-Mg基复合材料的制备方法,包括以下步骤:
(1)按以下质量百分比准备好所需原料:工业纯铝粉79.9%(尺寸为10μm)、Al-50Mg合金粉15.0%(尺寸为100μm)、无定型氧化硼粉5.0%(尺寸为2μm)、生长抑制剂氧化锆粉0.1%(尺寸为2μm);
(2)将步骤(1)中的工业纯铝粉和Al-50Mg合金粉放入球磨罐中低速球磨2h,球磨在氩气氛围下进行,球料比为7:1,球磨机转速为100r/min,得到物料;
(3)将步骤(2)球磨所得物料与无定型氧化硼粉、氧化锆粉混合,随后高速球磨3h,球磨在氩气氛围下进行,球料比为8:1,球磨机转速为400r/min,得到混合物料;
(4)采用冷等静压机将步骤(3)球磨所得混合物料压制成预制体,压力为200MPa,保压时间15min;
(5)将预制体放于真空炉中加热,设定真空度为1×10-3Pa,控制温度为680℃,保温时间为60min。
按照上述配比和工艺可得到由MgAl2O4与AlB2颗粒协同增强的轻质高强高模量Al-Mg基复合材料,其成分(质量百分比)为:Al-6.2Mg-7.6MgAl2O4-3.5AlB2,即复合材料中包括质量分数为7.6%的MgAl2O4的颗粒,质量分数为3.5%的AlB2颗粒,质量分数为6.2%的Mg,Mg固溶于铝基体中;所述Al-Mg基复合材料中还包括0.07%锆固溶于铝基体中,其含量计入铝基体中。
本实施例所得Al-Mg基复合材料的密度为2.63g/cm3,室温强度为505MPa,弹性模量为84GPa。
Claims (9)
1.一种轻质高强高模量Al-Mg基复合材料,其特征在于,所述轻质高强高模量Al-Mg基复合材料包括铝基体和原位反应生成的MgAl2O4颗粒和AlB2颗粒;所述MgAl2O4颗粒的质量百分比为3.0~15.2%,MgAl2O4颗粒沿铝基体晶粒的晶界分布;所述AlB2颗粒的质量百分比为1.4~7.0%,AlB2颗粒均匀分布在铝基体上;所述Mg含量为0.4~9.5%,固溶于铝基体中。
2.根据权利要求1所述轻质高强高模量Al-Mg基复合材料,其特征在于,所述MgAl2O4颗粒的尺寸为10~100nm;所述AlB2颗粒的尺寸为0.2~2μm。
3.根据权利要求1所述轻质高强高模量Al-Mg基复合材料,其特征在于,所述铝基体的晶粒尺寸为1~20μm。
4.权利要求1所述轻质高强高模量Al-Mg基复合材料的制备方法,包括以下步骤:
(1)按以下质量百分比准备所需原料:工业纯铝粉69.8~91.9%、Al-50Mg合金粉6.0~20.0%、无定型氧化硼粉2.0~10.0%、氧化锆粉0.1~0.2%;
(2)将步骤(1)中的工业纯铝粉和Al-50Mg合金粉在氩气氛围下低速球磨,得到物料;
(3)将步骤(2)球磨所得物料与无定型氧化硼粉、氧化锆粉混合,在氩气氛围下高速球磨,得到混合物料;
(4)采用冷等静压机将步骤(3)球磨所得混合物料压制成预制体;之后将预制体放于真空炉中进行热处理,得到轻质高强高模量Al-Mg基复合材料。
5.根据权利要求4所述轻质高强高模量Al-Mg基复合材料的制备方法,其特征在于,步骤(1)中所述工业纯铝粉的尺寸≤50μm,优选为1~20μm;所述Al-50Mg合金粉的尺寸≤150μm,优选为10~100μm;所述无定型氧化硼粉的尺寸≤5μm;所述氧化锆粉的尺寸≤5μm。
6.根据权利要求4所述轻质高强高模量Al-Mg基复合材料的制备方法,其特征在于,步骤(2)中所述低速球磨的转速≤150r/min,优选为50~150r/min;所述低速球磨的时间为1~3h,所述低速球磨的球料比为5~8:1。
7.根据权利要求4所述轻质高强高模量Al-Mg基复合材料的制备方法,其特征在于,步骤(3)中所述高速球磨的转速≥350r/min,优选为350~480r/min;所述高速球磨的时间为2~6h,所述高速球磨的球料比为3~10:1。
8.根据权利要求4所述轻质高强高模量Al-Mg基复合材料的制备方法,其特征在于,步骤(4)中,冷等静压机的压力为100~300MPa,保压时间5~30min。
9.根据权利要求4所述轻质高强高模量Al-Mg基复合材料的制备方法,其特征在于,步骤(4)中所述热处理的温度为500~720℃,热处理的时间为30~150min,所述热处理在真空度为1×10-5~1×10-2Pa下进行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310879600.9A CN116815027A (zh) | 2023-07-18 | 2023-07-18 | 一种轻质高强高模量Al-Mg基复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310879600.9A CN116815027A (zh) | 2023-07-18 | 2023-07-18 | 一种轻质高强高模量Al-Mg基复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116815027A true CN116815027A (zh) | 2023-09-29 |
Family
ID=88127503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310879600.9A Pending CN116815027A (zh) | 2023-07-18 | 2023-07-18 | 一种轻质高强高模量Al-Mg基复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116815027A (zh) |
-
2023
- 2023-07-18 CN CN202310879600.9A patent/CN116815027A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111644615B (zh) | 一种共强化法实现tc4钛合金高强韧性的制备方法 | |
CN111593218B (zh) | 一种微纳米颗粒增强铝基复合材料及其制备方法 | |
CN111996406B (zh) | 一种原位自生氧化铝-氮化铝协同石墨烯增强铝基复合材料的制备方法 | |
CN112695262B (zh) | 一种具有微构型的钛合金基复合材料及其制备方法 | |
Liu et al. | Recent research progress in TiAl matrix composites: a review | |
CN109207780B (zh) | 一种增强az31镁合金的轧制方法 | |
CN110157950B (zh) | 一种还原氧化石墨烯增强的锌基医用材料及其制备方法 | |
CN117626076A (zh) | 一种镁基复合材料及其制备方法与应用 | |
CN117626039A (zh) | 一种高强塑多级混杂异质结构钛基复合材料及其制备方法 | |
CN113862499A (zh) | 一种新型双态组织钛基复合材料的加工制造方法 | |
CN116815027A (zh) | 一种轻质高强高模量Al-Mg基复合材料及其制备方法 | |
CN116727684A (zh) | 一种基于激光3D打印的TiAl基轻质高温材料及其制备方法 | |
CN116287827B (zh) | 一种异质性可调的异质结构铝合金及其制备方法 | |
WO2022178944A1 (zh) | 一种高热稳定性混晶结构镁合金及可控性制备方法与应用 | |
CN114309587B (zh) | 跨尺度核壳结构铝基复材及制备方法 | |
Gong et al. | Effect of aging treatment on the microstructure and mechanical properties of TiO2@ CNTs/2024 composite | |
CN113403517A (zh) | 异质结构的CrCoNi-Al2O3纳米复合材料及制备方法 | |
Wu et al. | Microstructure and mechanical properties of in-situ hybrid reinforced (TiB+ TiC)/Ti composites prepared by laser powder bed fusion | |
CN115029589B (zh) | 一种核壳型氮化铝颗粒增强铝基复合材料及其制备方法 | |
CN113957288B (zh) | 一种低成本高性能的TiBw/Ti复合材料及其制备方法与应用 | |
CN117926079B (zh) | 一种高性能(TiB+TiC)/Ti复合材料及制备方法 | |
CN1796589A (zh) | 一种双尺寸陶瓷粒子增强的抗高温铝基复合材料 | |
Guo et al. | High-Performance Ti-6554 Alloy Manufactured Using Irregular Powder via Vacuum Pressureless Sintering Followed by Forging | |
CN117684069A (zh) | 一种高刚度高强铝基复合材料及其制备方法 | |
CN115772615B (zh) | 三维球团微构型高温钛合金基复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |