CN116794611A - 一种恒干信比有源隐身目标干扰方法及系统 - Google Patents

一种恒干信比有源隐身目标干扰方法及系统 Download PDF

Info

Publication number
CN116794611A
CN116794611A CN202311086122.2A CN202311086122A CN116794611A CN 116794611 A CN116794611 A CN 116794611A CN 202311086122 A CN202311086122 A CN 202311086122A CN 116794611 A CN116794611 A CN 116794611A
Authority
CN
China
Prior art keywords
current
jammer
interference
signal
output power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311086122.2A
Other languages
English (en)
Other versions
CN116794611B (zh
Inventor
奚宏亚
王志春
张勇强
陆晨阳
赵毅
夏晨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Aerospace Industry Technology Co ltd
Original Assignee
Nanjing Aerospace Industry Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Aerospace Industry Technology Co ltd filed Critical Nanjing Aerospace Industry Technology Co ltd
Priority to CN202311086122.2A priority Critical patent/CN116794611B/zh
Publication of CN116794611A publication Critical patent/CN116794611A/zh
Application granted granted Critical
Publication of CN116794611B publication Critical patent/CN116794611B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种恒干信比有源隐身目标干扰方法及系统,属于雷达技术领域。包括以下步骤:S1、构建数据库和数据库S2、接收当前雷达信号,获取当前雷达信号的当前频率值、当前测幅码值;S3、基于当前频率值、当前测幅码值,于数据库中确定当前干扰机的接收功率;S4、基于当前干扰机的接收功率,采用预设干信比、以及预设公式计算得到当前干扰机的输出功率;S5、对当前雷达信号依次进行采样、转发、脉内相位随机调制,产生隐身目标干扰信号。本发明用脉内相位随机调制方式对雷达信号采样、转发、调制,雷达在目标回波中很难检测和发现目标飞机,干扰效果显著。

Description

一种恒干信比有源隐身目标干扰方法及系统
技术领域
本发明属于雷达技术领域,具体涉及一种恒干信比有源隐身目标干扰方法及系统。
背景技术
干信比是干扰信号强度(J)与目标回波信号强度(S)的比值,用J/S表示,单位用dB表示。在遮蔽干扰中,增大J/S(或提高干扰信号强度)掩护目标飞机在到达烧穿距离前尽可能地对雷达产生威胁,所以传统干扰方式都让干扰信号功率越大越好。但现代雷达都有各种信号处理技术和抗干扰措施,干扰信号的有效性并不是与干信比成正比,过大的J/S反而会让雷达启动相应的抗干扰措施对干扰信号进行剔除。
因此对抗特定体制的雷达需采用预设的干信比来实现对雷达的有效干扰,在目标距离雷达不同距离上也需要进行恒干信比控制,这样才能在电子对抗中取得最大的效益。
然而,在恒干信比控制下,当雷达信号不断发生变化时,如何基于雷达信号的变化产生隐形目标干扰是一个难题。
发明内容
发明目的:为了解决上述问题,本发明提供了一种恒干信比有源隐身目标干扰方法及系统。
技术方案:一种恒干信比有源隐身目标干扰方法,包括以下步骤:
S1、构建关于频率值、干扰机的接收功率、测幅码值三者对应的数据库,以及关 于频率值、干扰机的输出功率、发射衰减码三者对应的数据库
S2、接收当前雷达信号,并获取所述当前雷达信号的当前频率值、当前测幅码值;
S3、基于所述当前频率值、当前测幅码值,于所述数据库中确定当前干扰机的接 收功率;
S4、基于所述当前干扰机的接收功率,采用预设干信比、以及预设公式计算得到当前干扰机的输出功率;
S5、对所述当前雷达信号依次进行采样、转发、脉内相位随机调制,以所述当前干扰机的输出功率输出产生隐身目标干扰信号。
进一步地,S4中还包括以下步骤:
基于所述当前干扰机的输出功率,以及当前频率值,于所述数据库中,确定当前 发射衰减码;
基于所述当前发射衰减码,调控干扰机的实际输出功率为所述当前干扰机的输出功率。
进一步地,S5中隐身目标干扰信号的输出产生包括以下步骤:
S5.1、AD芯片对所述当前雷达信号进行采样量化;
S5.2、设置采样宽度pw,于所述当前雷达信号截取相应的雷达信号样本;
S5.3、转发所述雷达信号样本,并基于所述雷达信号样本复制n个雷达信号样本;
S5.4、对n个雷达信号样本均进行脉内相位随机调制,得到长度为n*pw的干扰信号;
S5.5、将长度为n*pw的干扰信号通过DA芯片转为干扰机输出信号;所述干扰机输出信号的输出功率被设置为所述当前干扰机的输出功率;
S5.6对每次收到的雷达信号重复S5.1~ S5.5,产生隐身目标干扰信号。
进一步地,S4中所述预设公式为:
其中,为干扰机的输出功率、为干扰机的接收功率、为干信比、为干扰机发 射天线增益。
进一步地,S1中所述数据库、数据库构建过程包括以下步骤:
设置频率范围、干扰机的接收功率范围、发射衰减码范围;于所述频率范围内设置m个频率点,赋予每个频率点上具有相应的频率值;
基于m个频率点、干扰机的接收功率范围,遍历每个频率点和每个干扰机的接收功 率值,测得所有相对应的测幅码值;基于所述频率点、干扰机的接收功率值、测幅码值构建 数据库
基于m个频率点、发射衰减码范围,遍历每个频率点和每个发射衰减码,测得所有 相对应的干扰机的输出功率;基于所述频率点、发射衰减码、干扰机的输出功率构建数据库
进一步地,所述频率范围为:3000MHz ~4000MHz。
在另一个技术方案中,提供了一种恒干信比有源隐身目标干扰系统,用于实现如上述的一种恒干信比有源隐身目标干扰方法,所述系统包括:
第一模块,被设置为构建关于频率值、干扰机的接收功率、测幅码值三者对应的数 据库,以及关于频率值、干扰机的输出功率、发射衰减码三者对应的数据库
第二模块,被设置为接收当前雷达信号,并获取所述当前雷达信号的当前频率值、当前测幅码值;
第三模块,被设置为基于所述当前频率值、当前测幅码值,于所述数据库中确定 当前干扰机的接收功率;
第四模块,被设置为基于所述当前干扰机的接收功率,采用预设干信比、以及预设公式计算得到当前干扰机的输出功率;
第五模块,被设置为对所述当前雷达信号依次进行采样、转发、脉内相位随机调制,以所述当前干扰机的输出功率输出产生隐身目标干扰信号。
有益效果:
(1)本发明首先建立干扰机的接收功率和测幅码值表格,建立干扰机的发射功率和发射衰减码表格,通过在目标飞机上对雷达信号测频和DLVA检波,在FPGA查找幅度码表得出干扰机的接收功率,基于恒干信比计算干扰机的发射功率,查找衰减码表来控制干扰机的输出功率,最后对雷达信号采样、转发、脉内相位随机调制,产生有源隐身目标干扰信号。
(2)本发明采用收发同时模式,对接收到的雷达信号进行测频测幅,用恒干信比公式实时计算和控制干扰机的输出功率;同时对雷达回波进行调制,减小雷达回波信号的相关性,从而降低雷达对目标飞机的检测概率,达到有源隐身目标的目的;减小了雷达在时域信号检测概率,提升了雷达信号处理难度,恒干信比控制使得目标飞机难以被雷达跟踪,从而能够达到有源隐身目标的目的。
(3)本发明在FPGA实现us级恒干信比功率控制,在地面搜索雷达对飞行中的目标探测时干扰功率变化响应时间短,始终能隐蔽目标飞机;同时用脉内相位随机调制方式对雷达信号采样、转发、调制,雷达在目标回波中很难检测和发现目标飞机,干扰效果显著。
附图说明
图1是本发明的方法流程图;
图2是单基地雷达探测目标的物理描述和等效电路;
图3是本发明干扰信号的时域波形;
图4是多普勒噪声干扰和相位随机干扰分别与雷达信号的相关性分析结果;
图5是雷达接收信号频域FFT分析结果。
具体实施方式
实施例1
本实施例提供了一种恒干信比有源隐身目标干扰方法,包括以下步骤:
S1、构建关于频率值、干扰机的接收功率、测幅码值三者对应的数据库,以及关 于频率值、干扰机的输出功率、发射衰减码三者对应的数据库
进一步地,S1中所述数据库、数据库构建过程包括以下步骤:
设置频率范围、干扰机的接收功率范围、发射衰减码范围;于所述频率范围内设置m个频率点,赋予每个频率点上具有相应的频率值;
基于m个频率点、干扰机的接收功率范围,遍历每个频率点和每个干扰机的接收功 率值,测得所有相对应的测幅码值;基于所述频率点、干扰机的接收功率值、测幅码值构建 数据库
基于m个频率点、发射衰减码范围,遍历每个频率点和每个发射衰减码,测得所有 相对应的干扰机的输出功率;基于所述频率点、发射衰减码、干扰机的输出功率构建数据库
所述频率范围为:3000MHz ~4000MHz。
以下举例说明数据库、数据库的构建过程:
(1)建立数据库,如表1所示:
在频率范围3000MHz ~4000MHz内,设置每100MHz为一个频率点,如设置频率点f1、f2、f3,每个频率点都代表着相应的频率值。表1以三个频率点、三个不同的干扰机接收功率值来进行举例说明,不作穷举,以示理解,实际上不限于以上数量。
干扰机的接收功率(dBm) f1 f2 f3
-10 2015 1998 2050
-20 1573 1560 1592
-30 1023 1001 1048
表1
测幅码值指的是采用AD7237数模转换器对接收的信号测幅电平进行量化后的结 果(范围0 ~4096,对应电平0 ~3.3V)。表格第一行中f1、f2、f3为不同频率点,第一列是不同 干扰机的接收功率,每个频率点与每个干扰机的接收功率之间都对应着相应的测幅码值。 如:频率点f1、干扰机的接收功率-10dBm对应的测幅码值为2015。通过遍历每个频率点和每 个接收功率值,将所有对应的测幅码值记录生成三维表储存,生成数据库。频率点、干扰 机的接收功率、测幅码值三者的关系通过校准测试得到:信号源设置一个频率点和信号源 功率(即干扰机的接收功率),测出对应的测幅码值。
(2)建立数据库,如表2所示:
在频率范围3000MHz ~4000MHz内,设置每100MHz为一个频率点,如设置频率点f1、f2、f3,每个频率点都代表着相应的频率值。表1以三个频率点、三个不同的发射衰减码来进行举例说明,不作穷举,以示理解,实际上不限于以上数量。
发射衰减码(dB) f1 f2 f3
0 59dBm 58dBm 59dBm
30 32dBm 30dBm 33dBm
60 3dBm 2dBm 4dBm
表2
发射衰减码是6bit的衰减控制位(范围0~63dB)。表格第一行中f1、f2、f3为不同频 率点,第一列是不同的发射衰减码值,每个频率点与每个发射衰减码之间都具有相应的干 扰机的输出功率。如:频率点f1、发射衰减码30dB,对应的干扰机的输出功率为32dBm。通过 遍历每个频率点和每个发射衰减码,将所有对应的干扰机的输出功率记录生成三维表格储 存,生成数据库。频率点、发射衰减码、干扰机的输出功率三者的关系通过校准测试得到: 信号源设置一个频率点和发射衰减码,用频谱仪测出发射功率(即干扰机的发射功率)。
S2、接收当前雷达信号,并获取所述当前雷达信号的当前频率值、当前测幅码值。
根据AD9237数模转换器对接收的当前雷达信号测幅电平进行量化得到当前测幅码值。
S3、基于所述当前频率值、当前测幅码值,于所述数据库中确定当前干扰机的接 收功率。
基于S2获得当前雷达信号的当前频率值f,通过公式计算到相应的频率点, 即频率索引。当前测幅码值即为测幅码索引。借助两个频率索引、测幅码索引在数据库中 查找确定对应的当前干扰机的接收功率。
S4、基于所述当前干扰机的接收功率,采用预设干信比、以及预设公式计算得到当前干扰机的输出功率。
进一步地,S4中所述预设公式为:
其中,为干扰机的输出功率、为干扰机的接收功率、为干信比、为干扰机发 射天线增益。
上述公式中,干信比数值为基于特定体制的雷达设置的数值,是一个定值。一 般也是已知值(如10dBm)。
上述公式的推导过程如下:
根据雷达距离方程,目标上干扰机的接收功率为:
其中,表示雷达发射功率,表示雷达发射天线增益,表示雷达接收天线增 益,表示雷达信号波长,表示雷达和目标之间距离。
目标回波在雷达接收机输入端的信号功率为:
干扰信号在雷达接收机输入端的信号功率为:
干信比计算公式为:
将方程简化为对数形式:
由此可见干信比可以由干扰机的输出功率、干扰机发射天线增益、干扰机的接 收功率接收到的信号功率计算得到。
干扰机发射天线增益一般为固定已知值,要实现恒干信比(即干信比保持不变) 控制只需要控制干扰机的接收功率和为干扰机的输出功率。所以,在针对特定体制的雷 达设置相应的干信比,干信比已知,转换上述对数方程,得到:
由此可见,干扰机输出功率可基于干扰机的接收功率实时计算得到。
表3为举例汇总在实际操作时,针对特定体制的雷达,目标和雷达在不同距离上的 接收信号功率、干扰信号发射功率和干信比情况(假设天线增益为10dBm)。其中,该特定 体制的雷达的干信比为50.7 dB。在表3中,要实现干信比为恒定,则需要基于干扰机的接收 功率实时计算调整干扰机的发射功率,所以表3中干扰机的发射功率随着干扰机的接 收功率变化。
干信比J/S(dB) 接收功率Pr(dBm) 发射功率Pj(dBm) 距离R(km)
50.7 -31 9.7 400
50.7 -28.5 12.2 300
50.7 -25 15.7 200
50.7 -18.9 21.8 100
50.7 -12.9 27.8 50
表3
进一步地,S4中还包括以下步骤:基于所述当前干扰机的输出功率,以及当前频率 值,于所述数据库中,确定当前发射衰减码;基于所述当前发射衰减码,调控干扰机的实 际输出功率为所述当前干扰机的输出功率。
也就是说,当上述预设公式计算出当前干扰机的输出功率时,基于当前干扰机的 输出功率,以及当前频率值(具体地为上述的频率索引),在上述的数据库检索查找相对 应的当前发射衰减码。基于当前发射衰减码,去调控干扰机的实际输出功率,使得实际输出 功率与计算得到的当前干扰机的输出功率一致。
发射衰减码0 ~63dB可控,精度1dB,通过调整发射衰减码,从而控制干扰机的发射功率。
S5、对所述当前雷达信号依次进行采样、转发、脉内相位随机调制,以所述当前干扰机的输出功率输出产生隐身目标干扰信号。
进一步地,S5中隐身目标干扰信号的输出产生包括以下步骤:
S5.1、AD芯片对所述当前雷达信号进行采样量化;
S5.2、设置采样宽度pw,于所述当前雷达信号截取相应的雷达信号样本;
S5.3、转发所述雷达信号样本,并基于所述雷达信号样本复制n个雷达信号样本;
S5.4、对n个雷达信号样本均进行脉内相位随机调制,得到长度为n*pw的干扰信号;
S5.5、将长度为n*pw的干扰信号通过DA芯片转为干扰机输出信号;所述干扰机输出信号的输出功率被设置为所述当前干扰机的输出功率;
S5.6对每次收到的雷达信号重复S5.1~ S5.5,产生隐身目标干扰信号。
以下结合图2至5来说明本实施例所能达到的效果:
图2是单基地雷达探测目标的物理描述和等效电路。单基地雷达是指发射机和接收机处于同一位置。图2中S+J为雷达回波和干扰信号在雷达接收机输入端的总信号。
图3是本实施例输出的干扰信号的时域波形,可见脉内信号相位随机变化,总干扰信号长度是n倍的采样信号宽度。
图4是多普勒噪声干扰和相位随机干扰分别与雷达信号的相关性分析结果,可见本实施例产生的干扰信号显著降低了回波信号和雷达信号的相关性,雷达在时域目标回波检测难度加大。
图5是对目标回波分别叠加压制噪声干扰和相位随机干扰信号的雷达接收信号进行频域FFT分析结果,可见叠加相位随机干扰信号的目标回波频域特征被掩盖,难以被雷达识别。
表4给出了在干信比相同的条件下目标回波分别叠加了压制噪声干扰信号、多普勒噪声干扰信号和相位随机干扰信号后的回波频域仿真分析结果,可见相位随机干扰大大降低了信噪比,隐蔽效果良好,雷达很难从多普勒域分析出目标特征参数。
参数 压制噪声(非相参) 多普勒噪声(相参) 相位随机干扰
信噪比(dB) 9.56 3.28 1.04
表4
实施例2
本实施例提供了一种恒干信比有源隐身目标干扰系统,用于实现如实施例1所述的一种恒干信比有源隐身目标干扰方法,所述系统包括:
第一模块,被设置为构建关于频率值、干扰机的接收功率、测幅码值三者对应的数 据库、以及关于频率值、干扰机的输出功率、发射衰减码三者对应的数据库
第二模块,被设置为接收当前雷达信号,并获取所述当前雷达信号的当前频率值、当前测幅码值;
第三模块,被设置为基于所述当前频率值、当前测幅码值,于所述数据库中确定 当前干扰机的接收功率;
第四模块,被设置为基于所述当前干扰机的接收功率,采用预设干信比、以及预设公式计算得到当前干扰机的输出功率;
第五模块,被设置为对所述当前雷达信号依次进行采样、转发、脉内相位随机调制,以所述当前干扰机的输出功率输出产生隐身目标干扰信号。

Claims (7)

1.一种恒干信比有源隐身目标干扰方法,其特征在于,包括以下步骤:
S1、构建关于频率值、干扰机的接收功率、测幅码值三者对应的数据库,以及关于频率值、干扰机的输出功率、发射衰减码三者对应的数据库/>
S2、接收当前雷达信号,并获取所述当前雷达信号的当前频率值、当前测幅码值;
S3、基于所述当前频率值、当前测幅码值,于所述数据库中确定当前干扰机的接收功率;
S4、基于所述当前干扰机的接收功率,采用预设干信比、以及预设公式计算得到当前干扰机的输出功率;
S5、对所述当前雷达信号依次进行采样、转发、脉内相位随机调制,以所述当前干扰机的输出功率输出产生隐身目标干扰信号。
2.如权利要求1所述的一种恒干信比有源隐身目标干扰方法,其特征在于,S4中还包括以下步骤:
基于所述当前干扰机的输出功率,以及当前频率值,于所述数据库中,确定当前发射衰减码;
基于所述当前发射衰减码,调控干扰机的实际输出功率为所述当前干扰机的输出功率。
3.如权利要求1所述的一种恒干信比有源隐身目标干扰方法,其特征在于,S5中隐身目标干扰信号的输出产生包括以下步骤:
S5.1、AD芯片对所述当前雷达信号进行采样量化;
S5.2、设置采样宽度pw,于所述当前雷达信号截取相应的雷达信号样本;
S5.3、转发所述雷达信号样本,并基于所述雷达信号样本复制n个雷达信号样本;
S5.4、对n个雷达信号样本均进行脉内相位随机调制,得到长度为n*pw的干扰信号;
S5.5、将长度为n*pw的干扰信号通过DA芯片转为干扰机输出信号;所述干扰机输出信号的输出功率被设置为所述当前干扰机的输出功率;
S5.6对每次收到的雷达信号重复S5.1~ S5.5,产生隐身目标干扰信号。
4.如权利要求1所述的一种恒干信比有源隐身目标干扰方法,其特征在于,S4中所述预设公式为:
其中,为干扰机的输出功率、/>为干扰机的接收功率、/>为干信比、/>为干扰机发射天线增益。
5.如权利要求1所述的一种恒干信比有源隐身目标干扰方法,其特征在于,S1中所述数据库、数据库/>构建过程包括以下步骤:
设置频率范围、干扰机的接收功率范围、发射衰减码范围;于所述频率范围内设置m个频率点,赋予每个频率点上具有相应的频率值;
基于m个频率点、干扰机的接收功率范围,遍历每个频率点和每个干扰机的接收功率值,测得所有相对应的测幅码值;基于所述频率点、干扰机的接收功率值、测幅码值构建数据库
基于m个频率点、发射衰减码范围,遍历每个频率点和每个发射衰减码,测得所有相对应的干扰机的输出功率;基于所述频率点、发射衰减码、干扰机的输出功率构建数据库
6. 如权利要求5所述的一种恒干信比有源隐身目标干扰方法,其特征在于,所述频率范围为:3000MHz ~4000MHz
7.一种恒干信比有源隐身目标干扰系统,其特征在于,用于实现如权利要求1至6任意一项所述的一种恒干信比有源隐身目标干扰方法,所述系统包括:
第一模块,被设置为构建关于频率值、干扰机的接收功率、测幅码值三者对应的数据库,以及关于频率值、干扰机的输出功率、发射衰减码三者对应的数据库/>
第二模块,被设置为接收当前雷达信号,并获取所述当前雷达信号的当前频率值、当前测幅码值;
第三模块,被设置为基于所述当前频率值、当前测幅码值,于所述数据库中确定当前干扰机的接收功率;
第四模块,被设置为基于所述当前干扰机的接收功率,采用预设干信比、以及预设公式计算得到当前干扰机的输出功率;
第五模块,被设置为对所述当前雷达信号依次进行采样、转发、脉内相位随机调制,以所述当前干扰机的输出功率输出产生隐身目标干扰信号。
CN202311086122.2A 2023-08-28 2023-08-28 一种恒干信比有源隐身目标干扰方法及系统 Active CN116794611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311086122.2A CN116794611B (zh) 2023-08-28 2023-08-28 一种恒干信比有源隐身目标干扰方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311086122.2A CN116794611B (zh) 2023-08-28 2023-08-28 一种恒干信比有源隐身目标干扰方法及系统

Publications (2)

Publication Number Publication Date
CN116794611A true CN116794611A (zh) 2023-09-22
CN116794611B CN116794611B (zh) 2023-11-03

Family

ID=88048349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311086122.2A Active CN116794611B (zh) 2023-08-28 2023-08-28 一种恒干信比有源隐身目标干扰方法及系统

Country Status (1)

Country Link
CN (1) CN116794611B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117741590A (zh) * 2023-12-14 2024-03-22 武汉大学 一种距离干扰迷惑系统及方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428530A (en) * 1992-05-05 1995-06-27 Kaman Sciences Corporation Airborne reactive threat simulator
US5872540A (en) * 1997-06-26 1999-02-16 Electro-Radiation Incorporated Digital interference suppression system for radio frequency interference cancellation
KR20000015268U (ko) * 1998-12-31 2000-07-25 서평원 적응형 광대역과 부분대역 재밍 신호 발생기
KR20000015270U (ko) * 1998-12-31 2000-07-25 서평원 적응형 펄스 및 톤 재밍신호 발생기
KR20020081776A (ko) * 2001-04-19 2002-10-30 엘지전자 주식회사 디에스-씨디엠에이 시스템에서 협대역 간섭신호 제거장치
US20070115175A1 (en) * 2005-11-22 2007-05-24 Velicer Gregory J Handheld GPS jammer locator
CN105223435A (zh) * 2015-08-31 2016-01-06 北京航天长征飞行器研究所 一种弹载抗干扰天线自动测试系统及测试方法
CN106383340A (zh) * 2016-11-24 2017-02-08 中国人民解放军国防科学技术大学 一种随机脉冲初始相位雷达的速度假目标识别方法
CN109541558A (zh) * 2018-09-30 2019-03-29 航天恒星科技有限公司 一种全流程全系统主动相控阵雷达导引头的校准方法
CN111158263A (zh) * 2019-12-27 2020-05-15 中国航天科工集团八五一一研究所 一种内场仿真中间控制系统及实现方法
CN112311483A (zh) * 2020-09-22 2021-02-02 中国空间技术研究院 卫星导航信号无源互调测试评估方法
CN112949100A (zh) * 2020-11-06 2021-06-11 中国人民解放军空军工程大学 一种机载雷达抗主瓣干扰的方法
CN113093123A (zh) * 2021-04-06 2021-07-09 南京工程学院 一种对抗脉冲多普勒雷达的干扰机及其干扰方法
CN113484549A (zh) * 2021-06-18 2021-10-08 华南理工大学 一种适用于ota测试的evm测量方法
CN114237074A (zh) * 2021-12-17 2022-03-25 中国人民解放军96901部队26分队 一种战役级反舰导弹抗干扰效能评估方法
CN114676721A (zh) * 2022-03-01 2022-06-28 上海机电工程研究所 基于径向基神经网络的雷达有源压制干扰识别方法及系统
CN114781190A (zh) * 2022-06-16 2022-07-22 航天宏图信息技术股份有限公司 一种雷达探测能力仿真方法及装置
CN116125400A (zh) * 2023-02-02 2023-05-16 中国人民解放军空军工程大学 一种基于对消隐身的同步慢闪烁角度欺骗干扰方法
CN116299151A (zh) * 2023-02-21 2023-06-23 浙江嘉科电子有限公司 一种针对静止或低慢速无人机的比幅测向设备及方法
CN116449311A (zh) * 2023-04-03 2023-07-18 安徽雷鼎电子科技有限公司 一种产生任意极化目标和干扰信号的模拟系统及实现方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5428530A (en) * 1992-05-05 1995-06-27 Kaman Sciences Corporation Airborne reactive threat simulator
US5872540A (en) * 1997-06-26 1999-02-16 Electro-Radiation Incorporated Digital interference suppression system for radio frequency interference cancellation
KR20000015268U (ko) * 1998-12-31 2000-07-25 서평원 적응형 광대역과 부분대역 재밍 신호 발생기
KR20000015270U (ko) * 1998-12-31 2000-07-25 서평원 적응형 펄스 및 톤 재밍신호 발생기
KR20020081776A (ko) * 2001-04-19 2002-10-30 엘지전자 주식회사 디에스-씨디엠에이 시스템에서 협대역 간섭신호 제거장치
US20070115175A1 (en) * 2005-11-22 2007-05-24 Velicer Gregory J Handheld GPS jammer locator
CN105223435A (zh) * 2015-08-31 2016-01-06 北京航天长征飞行器研究所 一种弹载抗干扰天线自动测试系统及测试方法
CN106383340A (zh) * 2016-11-24 2017-02-08 中国人民解放军国防科学技术大学 一种随机脉冲初始相位雷达的速度假目标识别方法
CN109541558A (zh) * 2018-09-30 2019-03-29 航天恒星科技有限公司 一种全流程全系统主动相控阵雷达导引头的校准方法
CN111158263A (zh) * 2019-12-27 2020-05-15 中国航天科工集团八五一一研究所 一种内场仿真中间控制系统及实现方法
CN112311483A (zh) * 2020-09-22 2021-02-02 中国空间技术研究院 卫星导航信号无源互调测试评估方法
CN112949100A (zh) * 2020-11-06 2021-06-11 中国人民解放军空军工程大学 一种机载雷达抗主瓣干扰的方法
CN113093123A (zh) * 2021-04-06 2021-07-09 南京工程学院 一种对抗脉冲多普勒雷达的干扰机及其干扰方法
CN113484549A (zh) * 2021-06-18 2021-10-08 华南理工大学 一种适用于ota测试的evm测量方法
CN114237074A (zh) * 2021-12-17 2022-03-25 中国人民解放军96901部队26分队 一种战役级反舰导弹抗干扰效能评估方法
CN114676721A (zh) * 2022-03-01 2022-06-28 上海机电工程研究所 基于径向基神经网络的雷达有源压制干扰识别方法及系统
CN114781190A (zh) * 2022-06-16 2022-07-22 航天宏图信息技术股份有限公司 一种雷达探测能力仿真方法及装置
CN116125400A (zh) * 2023-02-02 2023-05-16 中国人民解放军空军工程大学 一种基于对消隐身的同步慢闪烁角度欺骗干扰方法
CN116299151A (zh) * 2023-02-21 2023-06-23 浙江嘉科电子有限公司 一种针对静止或低慢速无人机的比幅测向设备及方法
CN116449311A (zh) * 2023-04-03 2023-07-18 安徽雷鼎电子科技有限公司 一种产生任意极化目标和干扰信号的模拟系统及实现方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, Z等: "Power Allocation Method for Coexistence of Multicarrier Radar and Jamming System", 《2022 5TH INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING》, pages 669 - 673 *
南昊;彭世蕤;王广学;王晓燕;: "高重频脉冲对被动导引头的干扰效能分析", 现代防御技术, no. 02 *
张崔永;赵风东;杨志祥;: "新型干扰样式对某型雷达干扰效果研究", 雷达科学与技术, no. 03 *
王宇: "雷达抗干扰试验系统中的干扰信号环境设计", 《中国优秀硕士学位论文全文数据库 信息科技辑》, pages 136 - 614 *
王月: "GNSS欺骗干扰效能评估指标与方法研究", 《中国优秀硕士学位论文全文数据库基础科学辑》, pages 008 - 83 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117741590A (zh) * 2023-12-14 2024-03-22 武汉大学 一种距离干扰迷惑系统及方法
CN117741590B (zh) * 2023-12-14 2024-08-13 武汉大学 一种距离干扰迷惑系统及方法

Also Published As

Publication number Publication date
CN116794611B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN116794611B (zh) 一种恒干信比有源隐身目标干扰方法及系统
CN111157963B (zh) 一种对有源相控阵雷达的干扰效果在线评估方法
US8542145B2 (en) Locating system based on noisy type waveforms
CN110764068B (zh) 一种多探头准远场电磁散射截面(rcs)外推测试系统
CN106125052A (zh) 一种线性调频连续波雷达调制泄露的消除方法和系统
CN108267723A (zh) 陆基短距k波段雷达的离线在线式幅相误差校正方法
CN109375203B (zh) 基于fmcw雷达信号处理的测距设备及其测距算法
RU86286U1 (ru) Радиолокационная станция обнаружения целей
Chen et al. Suppression method for main-lobe interrupted sampling repeater jamming in distributed radar
KR101019075B1 (ko) 비선형 주파수 변조 파형을 이용한 레이더 신호처리 장치 및 그 방법
RU2694891C1 (ru) Способ функционирования импульсно-доплеровской бортовой радиолокационной станции истребителя при обеспечении энергетической скрытности её работы на излучение
CN109061568A (zh) 一种基于目标特性的窄带雷达波形设计方法
CN109669165B (zh) 基于射频隐身的多基雷达发射机与波形联合选择优化方法
CN113759359B (zh) 基于空管雷达的无源双基地雷达接收装置及目标探测方法
CN113190989B (zh) 复杂电磁环境下复合制导舰空导弹截获目标概率仿真方法
RU2731875C1 (ru) Адаптивная антенная решетка для бистатической радиолокационной системы
AU2014266849A1 (en) Coherent radar
CN114994669A (zh) 雷达检测成像系统及其输电线路电晕放电监测方法
Marques Noise radar detection optimized for selected targets
Liu et al. Design and analysis of multiple false targets against pulse compression radar based on OS-CFAR
RU165382U1 (ru) Приемо-передающий модуль радиолокационной системы
Kou et al. High power microwave interference effect of radar system
Kuzmin et al. Synthesis of sequences for short range pulse radar
RU2677853C1 (ru) Радиолокационная станция с квазинепрерывным шумовым сигналом
CN212845908U (zh) 一种电磁对抗特种装备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant