CN116625640A - On-line testing method and system for irradiation under-plane array CCD - Google Patents
On-line testing method and system for irradiation under-plane array CCD Download PDFInfo
- Publication number
- CN116625640A CN116625640A CN202310442820.5A CN202310442820A CN116625640A CN 116625640 A CN116625640 A CN 116625640A CN 202310442820 A CN202310442820 A CN 202310442820A CN 116625640 A CN116625640 A CN 116625640A
- Authority
- CN
- China
- Prior art keywords
- ccd
- irradiated
- irradiation
- ccd device
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 52
- 230000005855 radiation Effects 0.000 claims abstract description 45
- 230000008859 change Effects 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 230000010354 integration Effects 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims 4
- 238000012935 Averaging Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 12
- 238000004088 simulation Methods 0.000 abstract description 9
- 230000008569 process Effects 0.000 abstract description 7
- 238000010998 test method Methods 0.000 abstract description 7
- 230000000191 radiation effect Effects 0.000 abstract description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003471 anti-radiation Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/002—Diagnosis, testing or measuring for television systems or their details for television cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种辐射效应测试系统及方法,具体涉及一种辐照下面阵CCD的在线测试方法及测试系统。The invention relates to a radiation effect test system and method, in particular to an on-line test method and test system for irradiating a CCD array below.
背景技术Background technique
电荷耦合器件(charge-coupled device,CCD)作为一种以光注入或电子注入的方式产生电荷、通过在器件栅极加偏压以存储电荷,并运用耗尽层耦合原理与输出放大器进行电荷的传递与输出的光电图像传感器,有小尺寸、轻质量、低功耗、高量子效率、高图像分辨率和动态范围宽的优点,被广泛应用于航天探测、空间扫描以及卫星观测等领域。然而,由于空间环境的特殊性,当CCD应用于在轨卫星或航天成像系统中时,CCD会产生由辐照损伤引起的性能退化甚至是功能失效现象。CCD的辐射损伤效应一般包括总剂量效应、位移效应和单粒子瞬态效应。A charge-coupled device (CCD) generates charges by light injection or electron injection, stores charges by biasing the gate of the device, and uses the principle of depletion layer coupling with the output amplifier to carry out charges. Photoelectric image sensors for transmission and output have the advantages of small size, light weight, low power consumption, high quantum efficiency, high image resolution, and wide dynamic range, and are widely used in aerospace exploration, space scanning, and satellite observation. However, due to the particularity of the space environment, when the CCD is used in an orbiting satellite or an aerospace imaging system, the CCD will have performance degradation or even functional failure caused by radiation damage. Radiation damage effects of CCD generally include total dose effect, displacement effect and single event transient effect.
空间环境中的高能粒子如质子、电子、重离子等均会诱发CCD的辐射损伤效应,导致CCD性能参数退化,进而影响CCD正常工作甚至损坏CCD内部结构。因此开展CCD辐射损伤效应地面模拟实验对研究CCD辐射损伤机理以及CCD抗辐射加固设计具有重要意义。在对CCD进行地面模拟实验时,由于目前的测试系统体积过于庞大,CCD的辐照后测试均为离线测试,即辐照剂量累积至目标剂量点后需取出被测CCD,完成测试后再次放入辐照室进行辐照,这样给辐照实验带来极大的不便且无法获取辐照过程中性能参数的实时变化规律。High-energy particles in the space environment, such as protons, electrons, and heavy ions, will induce radiation damage to CCDs, leading to degradation of CCD performance parameters, which will affect the normal operation of CCDs and even damage the internal structure of CCDs. Therefore, it is of great significance to carry out the ground simulation experiment of CCD radiation damage effect to study the mechanism of CCD radiation damage and the design of CCD anti-radiation reinforcement. When conducting ground simulation experiments on CCDs, due to the large size of the current test system, the post-irradiation tests of CCDs are all offline tests, that is, the CCD under test needs to be taken out after the radiation dose has accumulated to the target dose point, and then placed again after the test is completed. Into the irradiation room for irradiation, which brings great inconvenience to the irradiation experiment and cannot obtain the real-time change law of the performance parameters during the irradiation process.
发明内容Contents of the invention
本发明的目的是解决在开展面阵CCD辐射损伤效应地面模拟实验时,无法在线实时反馈面阵面阵CCD的工作情况以及辐照过程中性能参数实时变化规律的技术问题,而提供一种辐照下面阵CCD的在线测试方法及测试系统,能够有效降低现有测试系统在开展面阵CCD辐射损伤效应地面模拟实验时测试的繁琐度和实验人员的危险性,从而提高实验效率。The purpose of the present invention is to solve the technical problem that the working condition of the area array CCD and the real-time change law of the performance parameters in the irradiation process cannot be fed back in real time when carrying out the ground simulation experiment of the radiation damage effect of the area array CCD, and to provide a radiation According to the online test method and test system of the array CCD, it can effectively reduce the tediousness of the existing test system and the danger of the experimenters when carrying out the ground simulation experiment of the radiation damage effect of the area array CCD, thereby improving the experimental efficiency.
为解决上述技术问题,本发明所采用的技术方案为:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
一种辐照下面阵CCD的在线测试方法,其特殊之处在于,包括以下步骤:An online test method for irradiating the array CCD below, which is special in that it includes the following steps:
1)试验前准备1) Preparation before the test
1.1、将待辐照CCD器件设置于辐射源的出射路线上;1.1. Set the CCD device to be irradiated on the exit route of the radiation source;
1.2、设定实验环境温度;1.2. Set the experimental environment temperature;
1.3、在实验环境内搭建光源,使待辐照CCD器件感光面位于光源出射光路上;1.3. Build a light source in the experimental environment, so that the photosensitive surface of the CCD device to be irradiated is located on the light exit path of the light source;
2)测试待辐照CCD器件辐照前的性能参数2) Test the performance parameters of the CCD device to be irradiated before irradiation
2.1、设置待辐照CCD器件的积分时间,开启光源,采集N次待辐照CCD器件辐照前的第一参数,并保存;N为大于1的整数;所述第一参数包括线性饱和输出和总增益;2.1. Set the integration time of the CCD device to be irradiated, turn on the light source, collect the first parameter before the irradiation of the CCD device to be irradiated N times, and save it; N is an integer greater than 1; the first parameter includes a linear saturation output and total gain;
2.2、剔除每次采集的第一参数中所有像素的极值后再求平均值,获得辐照前性能参数变化曲线;2.2. Calculate the average value after removing the extreme values of all pixels in the first parameter collected each time, and obtain the performance parameter change curve before irradiation;
2.3、根据辐照前性能参数变化曲线是否平稳判断待辐照CCD器件是否工作稳定;2.3. Judging whether the CCD device to be irradiated is stable according to whether the performance parameter change curve before irradiation is stable;
若待辐照CCD器件工作稳定,则关闭光源,记录光源强度,执行步骤3);If the CCD device to be irradiated works stably, turn off the light source, record the light source intensity, and perform step 3);
若待辐照CCD器件工作不稳定,则调整待辐照CCD器件的积分时间,返回步骤2.1;If the CCD device to be irradiated works unstable, then adjust the integration time of the CCD device to be irradiated, and return to step 2.1;
3)测试待辐照CCD器件的辐照下的性能参数3) Test the performance parameters under the irradiation of the CCD device to be irradiated
3.1、开启辐射源和辐照前等强度的光源,并采集n次待辐照CCD器件的辐照后的第二参数,并保存;n为大于1的整数;所述第二参数包括线性饱和输出和总增益;3.1, turn on the radiation source and the light source of equal intensity before irradiation, and collect the second parameter after the irradiation of the CCD device to be irradiated n times, and save it; n is an integer greater than 1; the second parameter includes linear saturation output and overall gain;
3.2、剔除辐照后的第二参数中所有像素的极值后求平均值,获得待辐照CCD器件辐照后性能参数变化曲线;3.2. Calculate the average value after removing the extreme values of all pixels in the second parameter after irradiation, and obtain the performance parameter change curve of the CCD device to be irradiated after irradiation;
3.3、根据辐照后性能参数变化曲线是否平稳判断待辐照CCD器件是否损坏;3.3. Judging whether the CCD device to be irradiated is damaged according to whether the performance parameter change curve after irradiation is stable;
若待辐照CCD器件损坏,则关闭辐射源和光源,标记该待辐照CCD器件损坏,返回步骤1),继续进行后续工作;If the CCD device to be irradiated is damaged, turn off the radiation source and the light source, mark the CCD device to be irradiated as damaged, return to step 1), and continue the follow-up work;
若待辐照CCD器件未损坏,则保存该待辐照CCD器件辐照后性能参数,完成辐照下面阵CCD的在线测试。If the CCD device to be irradiated is not damaged, save the performance parameters of the CCD device to be irradiated after irradiation, and complete the online test of the CCD array below the irradiation.
进一步地,还包括步骤4):Further, step 4) is also included:
将辐照后性能参数变化曲线与辐照前性能参数变化曲线进行对比,获得辐照对待辐照CCD器件性能参数的影响。The performance parameter change curve after irradiation is compared with the performance parameter change curve before irradiation to obtain the effect of irradiation on the performance parameters of the CCD device to be irradiated.
进一步地,步骤2.1中,通过上位机设置待辐照CCD器件的积分时间。Further, in step 2.1, the integration time of the CCD device to be irradiated is set through the host computer.
进一步地,步骤1.1具体为:Further, step 1.1 is specifically:
将待辐照CCD器件感光面擦拭干净后,设置辐射源的束流方向与待辐照CCD器件的感光面垂直。After wiping the photosensitive surface of the CCD device to be irradiated, the beam current direction of the radiation source is set to be perpendicular to the photosensitive surface of the CCD device to be irradiated.
进一步地,步骤1.3具体为:Further, step 1.3 is specifically:
在实验环境内搭建光源,使待辐照CCD器件感光面与光源出射光路垂直。The light source is set up in the experimental environment so that the photosensitive surface of the CCD device to be irradiated is perpendicular to the outgoing light path of the light source.
进一步地,步骤2.3中,所述根据辐照前性能参数变化曲线是否平稳具体为:Further, in step 2.3, whether the change curve of the performance parameter before irradiation is stable is specifically:
判断每次采集的线性饱和输出参数之间的误差是否为±1000DN,且每次采集的总增益参数之间的误差是否为±0.05DN/e-;Determine whether the error between the linear saturation output parameters collected each time is ±1000DN, and whether the error between the total gain parameters collected each time is ±0.05DN/e - ;
步骤3.3中,所述根据辐照后性能参数变化曲线是否平稳具体为:In step 3.3, it is specifically as follows according to whether the performance parameter change curve after irradiation is stable:
判断每次采集的线性饱和输出参数之间的误差是否为±1000DN,且每次采集的总增益参数之间的误差是否为±0.05DN/e-。Determine whether the error between the linear saturation output parameters collected each time is ±1000DN, and whether the error between the total gain parameters collected each time is ±0.05DN/e - .
进一步地,步骤1.2中,实验环境温度为25°±5°;Further, in step 1.2, the experimental environment temperature is 25°±5°;
步骤2.1中,N的取值为30;In step 2.1, the value of N is 30;
步骤3.1中,n的取值为100。In step 3.1, the value of n is 100.
同时,本发明还提供了一种辐照下面阵CCD的在线测试系统,用于实现上述一种辐照下面阵CCD的在线测试方法,其特殊之处在于:包括设置于辐照室内的辐射源、光源、驱动控制器、辐照板及设置于辐照室外且与驱动控制器连接的采集处理器;At the same time, the present invention also provides an on-line test system for irradiating the lower array CCD, which is used to realize the above-mentioned online test method for irradiating the lower array CCD. , a light source, a drive controller, an irradiation panel, and an acquisition processor installed outside the irradiation room and connected to the drive controller;
辐照板上设置有CCD驱动电路;A CCD drive circuit is arranged on the radiation plate;
驱动控制器外部设置有信号屏蔽盒There is a signal shielding box outside the drive controller
辐射源和光源的出射光路上用于设置待辐照CCD器件,且CCD驱动电路与待辐照CCD器件连接;The radiation source and the outgoing optical path of the light source are used to set the CCD device to be irradiated, and the CCD drive circuit is connected to the CCD device to be irradiated;
驱动控制器包括A/D转换模块和FPGA主控模块;The drive controller includes A/D conversion module and FPGA main control module;
FPGA主控模块分别与CCD驱动电路、A/D转换模块和采集处理器连接;The FPGA main control module is respectively connected with the CCD drive circuit, the A/D conversion module and the acquisition processor;
A/D转换模块与待辐照CCD器件连接;The A/D conversion module is connected with the CCD device to be irradiated;
A/D转换模块用于将待辐照CCD器件的原始CCD模拟信号进行双采样处理后,并将该原始CCD模拟信号转化为数字信号,输送至FPGA主控模块;The A/D conversion module is used to perform double-sampling processing on the original CCD analog signal of the CCD device to be irradiated, and convert the original CCD analog signal into a digital signal, which is sent to the FPGA main control module;
FPGA主控模块用于产生满足待辐照CCD器件电压要求的时序驱动信号,并将数字信号输送至采集处理器;The FPGA main control module is used to generate timing driving signals that meet the voltage requirements of the CCD device to be irradiated, and transmit the digital signals to the acquisition processor;
CCD驱动电路用于将时序驱动信号转换成CCD驱动信号,进而驱动待辐照CCD器件。The CCD drive circuit is used to convert the timing drive signal into a CCD drive signal, and then drive the CCD device to be irradiated.
进一步地,还包括与光源连接的光源移动电机,用于控制光源的上下位置;Further, it also includes a light source moving motor connected to the light source for controlling the up and down position of the light source;
辐照板上还设置有与CCD驱动电路连接的CCD插座。A CCD socket connected to the CCD driving circuit is also arranged on the radiation plate.
进一步地,还包括与辐照板连接的运动电机,用于通过驱动辐照板调整待辐照CCD器件的位置。Further, it also includes a motion motor connected to the irradiation plate, which is used to adjust the position of the CCD device to be irradiated by driving the irradiation plate.
与现有技术相比,本发明技术方案的有益效果是:Compared with the prior art, the beneficial effects of the technical solution of the present invention are:
1.本发明辐照下面阵CCD的在线测试方法,能够解决在开展CCD辐射损伤效应地面模拟实验时测试繁琐的问题,提高了实验效率,并且能获取辐照过程中的面阵CCD性能参数,为研究面阵CCD的辐射损伤机理以及面阵CCD抗辐射加固设计提供了实验测试技术支撑。1. The online test method of the array CCD below the irradiation of the present invention can solve the problem of complicated testing when carrying out the CCD radiation damage effect ground simulation experiment, improves the experimental efficiency, and can obtain the area array CCD performance parameters in the irradiation process, It provides experimental test technical support for the study of the radiation damage mechanism of the area array CCD and the anti-radiation reinforcement design of the area array CCD.
2.本发明辐照下面阵CCD的在线测试系统,采用辐照板和驱动控制器分离的子母板设计方式,能有效减小辐射源对驱动控制器的影响,确保系统的稳定运行。2. The on-line test system for irradiating the lower array CCD of the present invention adopts the sub-motherboard design method in which the irradiation board and the drive controller are separated, which can effectively reduce the influence of the radiation source on the drive controller and ensure the stable operation of the system.
3.本发明辐照下面阵CCD的在线测试系统,通过将采集处理器设置于辐照室外,可以实现远距离传输和通信,简化了系统连接方式,可以使接收数据的采集处理器处以安全的位置避免辐照的影响,并通过采集处理器的远程控制功能实现实验人员在安全环境中对测试系统远程操作,减少实验人员进入辐照室的频率,有效降低了实验人员的危险性,解决地面辐射损伤效应模拟辐照实验后面阵CCD的在线测量的问题。3. The online test system of the array CCD under irradiation of the present invention can realize long-distance transmission and communication by setting the acquisition processor outside the irradiation room, simplifies the system connection mode, and can make the acquisition processor of the receiving data operate in a safe manner. The location avoids the influence of radiation, and through the remote control function of the acquisition processor, the experimenter can remotely operate the test system in a safe environment, reducing the frequency of the experimenter entering the irradiation room, effectively reducing the danger of the experimenter, and solving the problem of ground On-line measurement of array CCD after radiation damage simulation experiment.
4.本发明辐照下面阵CCD的在线测试系统,在实验时,将FPGA主控模块设置在信号屏蔽盒中,减小辐射源对信号处理的影响,确保系统的稳定运行。4. The present invention irradiates the online test system of the lower array CCD. During the experiment, the FPGA main control module is arranged in the signal shielding box to reduce the influence of the radiation source on the signal processing and ensure the stable operation of the system.
附图说明Description of drawings
图1为本发明辐照下面阵CCD的在线测试系统实施例的结构示意图;Fig. 1 is the structural representation of the online test system embodiment of array CCD below irradiation of the present invention;
图2为本发明辐照下面阵CCD的在线测试系统实施例中驱动控制器的控制框图;Fig. 2 is the control block diagram of drive controller in the online test system embodiment of array CCD below irradiation of the present invention;
图3为本发明辐照下面阵CCD的在线测试方法实施例的流程图。Fig. 3 is a flow chart of an embodiment of an online test method for irradiating the lower array CCD of the present invention.
图中附图标记为:The reference signs in the figure are:
1-辐射源,2-光源,3-光源移动电机,4-CCD图像传感器,5-辐照板,51-CCD插座,52-CCD驱动电路,6-运动电机,7-驱动控制器,71-A/D转换模块,72-FPGA主控模块,8-信号屏蔽盒,9-软排线,10-USB数据线,11-采集处理器。1-radiation source, 2-light source, 3-light source moving motor, 4-CCD image sensor, 5-radiation plate, 51-CCD socket, 52-CCD drive circuit, 6-motion motor, 7-drive controller, 71 -A/D conversion module, 72-FPGA main control module, 8-signal shielding box, 9-flexible cable, 10-USB data cable, 11-acquisition processor.
具体实施方式Detailed ways
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的技术方案,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are part of the embodiments of the present invention, not all of them. Based on the technical solutions in the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1所示,一种辐照下面阵CCD的在线测试系统,包括设置于辐照室内的辐射源1、光源2、光源移动电机3、辐照板5、运动电机6、驱动控制器7、信号屏蔽盒8及设置于辐照室外且与驱动控制器7连接的采集处理器11。As shown in Figure 1, an on-line test system for irradiating the lower array CCD includes a radiation source 1, a light source 2, a light source moving motor 3, an irradiating plate 5, a moving motor 6, and a drive controller 7 arranged in the irradiation room , a signal shielding box 8 and an acquisition processor 11 arranged outside the irradiation room and connected to the drive controller 7 .
如图2所示,辐照板5上设置有CCD插座51和CCD驱动电路52;驱动控制器7外部设置有信号屏蔽盒8;待辐照CCD器件位于辐射源1和光源2的出射光路上,并通过CCD插座51与CCD驱动电路52连接;驱动控制器7包括A/D转换模块71和FPGA主控模块72;FPGA主控模块72分别与CCD驱动电路52、A/D转换模块71和采集处理器11连接;A/D转换模块71与待辐照CCD器件连接。As shown in Figure 2, a CCD socket 51 and a CCD drive circuit 52 are arranged on the irradiation plate 5; a signal shielding box 8 is arranged outside the drive controller 7; , and be connected with CCD drive circuit 52 by CCD socket 51; Drive controller 7 comprises A/D conversion module 71 and FPGA main control module 72; FPGA main control module 72 is connected with CCD drive circuit 52, A/D conversion module 71 and The acquisition processor 11 is connected; the A/D conversion module 71 is connected with the CCD device to be irradiated.
辐射源1用于诱发待辐照CCD器件产生辐射损伤。光源2为待辐照CCD器件提供稳定均匀光源2;光源移动电机3用于控制光源2的位置,使得光源2能够上下移动。运动电机6用于驱动辐照板5的位置,使得辐照板5能够上下左右移动。实验时,可将待辐照CCD器件安装于CCD插座51上,利用光源2、辐射源1与辐照板5保持同一水平位置,使得辐射源1的束流、光源2的出射光垂直照射在待辐照CCD器件上。待辐照CCD器件在时序驱动信号的驱动下完成图像采集,并输出原始CCD模拟信号;CCD驱动电路52用于将FPGA主控模块72产生的时序驱动信号转换为满足待辐照CCD器件电压要求的时序驱动信号。The radiation source 1 is used to induce radiation damage to the CCD device to be irradiated. The light source 2 provides a stable and uniform light source 2 for the CCD device to be irradiated; the light source moving motor 3 is used to control the position of the light source 2 so that the light source 2 can move up and down. The motion motor 6 is used to drive the position of the irradiation plate 5, so that the irradiation plate 5 can move up, down, left, and right. During the experiment, the CCD device to be irradiated can be installed on the CCD socket 51, and the light source 2, the radiation source 1 and the irradiation plate 5 are kept at the same horizontal position, so that the beam current of the radiation source 1 and the outgoing light of the light source 2 are irradiated vertically on the On the CCD device to be irradiated. The CCD device to be irradiated completes image acquisition under the drive of the time sequence drive signal, and outputs the original CCD analog signal; the CCD drive circuit 52 is used to convert the time sequence drive signal generated by the FPGA main control module 72 to meet the voltage requirements of the CCD device to be irradiated Timing drive signal.
A/D转换模块71包括模拟信号预处理电路和模数转换电路;模拟信号预处理电路包括恒流驱动电路和滤波放大电路,其对输入的原始CCD模拟信号进行前级滤波、信号放大、暗电平钳位、去噪声相关双采样处理,并通过A/D转换模块71中的模数转换电路将待辐照CCD器件输出的原始CCD模拟信号转化为数字信号传输至FPGA主控模块72。The A/D conversion module 71 includes an analog signal preprocessing circuit and an analog-to-digital conversion circuit; the analog signal preprocessing circuit includes a constant current drive circuit and a filter amplifier circuit, which performs pre-filtering, signal amplification, and darkening to the original CCD analog signal input. Level clamping, denoising correlation double sampling processing, and the original CCD analog signal output by the CCD device to be irradiated is converted into a digital signal through the analog-to-digital conversion circuit in the A/D conversion module 71 and transmitted to the FPGA main control module 72 .
FPGA主控模块72为本发明系统的核心,用于产生满足待辐照CCD器件电压要求的时序驱动信号,提供原始CCD模拟信号A/D处理所需的嵌位和采样/保持脉冲信号,同时利用内置存储资源缓存图像数据并发送给采集处理器11。The FPGA main control module 72 is the core of the system of the present invention, and is used for generating the timing drive signal meeting the voltage requirements of the CCD device to be irradiated, providing the required clamping and sampling/holding pulse signals for the original CCD analog signal A/D processing, and simultaneously The image data is cached by built-in storage resources and sent to the acquisition processor 11 .
开展辐照实验时,驱动控制器7设置在信号屏蔽盒8中,信号屏蔽盒8用于屏蔽辐射源1对驱动控制器7的影响,使得驱动控制器7设置在辐照室内,减小辐照板5和驱动控制器7的传输距离,确保本发明系统的稳定运行。辐照板5通过软排线9与A/D转换模块71以及FPGA主控模块72相连,将FPGA主控模块72提供的驱动时序信号经CCD驱动电路52转换得到满足待辐照CCD器件电压要求的驱动时序信号,控制CCD输出原始CCD模拟信号并通过A/D转换模块71转换成量化数字数据。驱动控制器7将采集到的量化数字数据通过USB数据线10传输到上位机进行处理和保存。When carrying out the irradiation experiment, the drive controller 7 is set in the signal shielding box 8, and the signal shielding box 8 is used to shield the influence of the radiation source 1 on the drive controller 7, so that the drive controller 7 is set in the irradiation room to reduce the radiation. The transmission distance between the photo board 5 and the drive controller 7 ensures the stable operation of the system of the present invention. The irradiation board 5 is connected to the A/D conversion module 71 and the FPGA main control module 72 through the flexible cable 9, and the drive timing signal provided by the FPGA main control module 72 is converted by the CCD drive circuit 52 to meet the voltage requirements of the CCD device to be irradiated. The driving timing signal controls the CCD to output the original CCD analog signal and converts it into quantized digital data through the A/D conversion module 71 . The drive controller 7 transmits the collected quantized digital data to the host computer through the USB data line 10 for processing and storage.
本实施例中,驱动控制器7中的CCD驱动时序和A/D转换模块71转换处理所需的嵌位和采样/保持脉冲信号均由FPGA主控模块72通过Verilog HDL硬件描述语言编程实现,CCD驱动时序以FPGA主控模块72外部系统时钟源为参考时钟,利用内部锁相环倍频后再通过计数器进行小数分频后得到满足CCD各路时序要求的时序驱动信号;A/D转换模块71需FPGA主控模块72提供正确的寄存器配置数据和满足时序要求的采样时钟信号,才能保证其正常工作,内部寄存器由FPGA主控模块72通过三线串口进行设置,实现对输入钳位、模数转换以及相关双采样等功能的设定,以FPGA主控模块72的外部系统时钟为参考时钟,利用计数器分频得到满足A/D转换模块71各路时序要求的时序信号。In this embodiment, the CCD drive timing in the drive controller 7 and the clamping and sampling/holding pulse signals required for the conversion process of the A/D conversion module 71 are all implemented by the FPGA main control module 72 through the Verilog HDL hardware description language programming, The CCD drive sequence takes the external system clock source of the FPGA main control module 72 as the reference clock, uses the internal phase-locked loop to multiply the frequency, and then divides the frequency by a counter to obtain a sequence drive signal that meets the timing requirements of each channel of the CCD; A/D conversion module 71 requires the FPGA main control module 72 to provide correct register configuration data and sampling clock signals that meet the timing requirements to ensure its normal operation. The internal registers are set by the FPGA main control module 72 through the three-wire serial port to realize input clamping, modulus For the setting of functions such as conversion and related double sampling, the external system clock of the FPGA main control module 72 is used as the reference clock, and the timing signal meeting the timing requirements of each channel of the A/D conversion module 71 is obtained by frequency division by a counter.
具体地,待辐照CCD器件采用面阵CCD图像传感器4,采集处理器11选用上位机,FPGA主控模块72产生的驱动时序经CCD驱动电路52模块得到满足CCD图像传感器4电压要求的时序驱动信号,CCD图像传感器4在时序驱动信号的作用下输出原始模拟信号,A/D转换模块71对该原始模拟信号进行滤波、去噪声以及模数转换,得到的数字数据缓存于FPGA主控模块72的内部存储资源中,再通过USB芯片及接口将采集的数字数据传输给上位机,经上位机处理后得到CCD性能参数。Specifically, the CCD device to be irradiated adopts an area array CCD image sensor 4, the acquisition processor 11 selects a host computer, and the drive timing generated by the FPGA main control module 72 is driven by the timing sequence that meets the voltage requirements of the CCD image sensor 4 through the CCD drive circuit 52 module. signal, the CCD image sensor 4 outputs the original analog signal under the action of the timing drive signal, and the A/D conversion module 71 performs filtering, denoising and analog-to-digital conversion on the original analog signal, and the obtained digital data is cached in the FPGA main control module 72 In the internal storage resources of the computer, the collected digital data is transmitted to the host computer through the USB chip and interface, and the CCD performance parameters are obtained after being processed by the host computer.
如图3所示,利用本发明系统进行辐照下面阵CCD的在线测试方法,具体包括以下步骤:As shown in Figure 3, utilize system of the present invention to carry out the on-line testing method of array CCD below irradiation, specifically comprise the following steps:
步骤一、试验前准备Step 1. Preparation before the test
1.1、将CCD图像传感器4感光面擦拭干净后,使辐射源1束流方向与CCD图像传感器4的感光面垂直;1.1. After wiping the photosensitive surface of the CCD image sensor 4 clean, make the beam flow direction of the radiation source 1 perpendicular to the photosensitive surface of the CCD image sensor 4;
1.2、将实验环境温度控制在25°±5°,控制温度对CCD图像传感器4性能参数的影响;1.2. Control the temperature of the experimental environment at 25°±5°, and control the influence of the temperature on the performance parameters of the CCD image sensor 4;
1.3、在辐照室内搭建可见光源2,使光源2出射光能够照射到CCD图像传感器4的感光面,确保测试时CCD图像传感器4工作于均匀光照条件下;1.3. Build a visible light source 2 in the irradiation room, so that the light emitted by the light source 2 can irradiate the photosensitive surface of the CCD image sensor 4, so as to ensure that the CCD image sensor 4 works under uniform illumination conditions during the test;
步骤二、测试待辐照CCD器件辐照前的性能参数Step 2. Test the performance parameters of the CCD device to be irradiated before irradiation
2.1、通过上位机设置待辐照CCD器件的积分时间,开启光源2,采集30次待辐照CCD器件辐照前的第一参数,并保存。所述第一参数包括线性饱和输出和总增益;2.1. Set the integration time of the CCD device to be irradiated through the host computer, turn on the light source 2, collect the first parameter before the irradiation of the CCD device to be irradiated 30 times, and save it. The first parameters include a linear saturation output and an overall gain;
2.2、剔除每次采集的第一参数中所有像素的极值后再求平均值,获得辐照前性能参数变化曲线;2.2. Calculate the average value after removing the extreme values of all pixels in the first parameter collected each time, and obtain the performance parameter change curve before irradiation;
2.3、根据辐照前性能参数变化曲线判断CCD图像传感器4是否工作稳定;2.3. Judging whether the CCD image sensor 4 is working stably according to the performance parameter change curve before irradiation;
若待辐照CCD器件工作稳定,则关闭光源2,记录光源2强度,执行步骤3);If the CCD device to be irradiated works stably, turn off the light source 2, record the intensity of the light source 2, and perform step 3);
若待辐照CCD器件工作不稳定,则调整待辐照CCD器件的积分时间,返回步骤2.1;If the CCD device to be irradiated works unstable, then adjust the integration time of the CCD device to be irradiated, and return to step 2.1;
步骤三、测试待辐照CCD器件的辐照下的性能参数Step 3. Test the performance parameters of the CCD device to be irradiated under the irradiation
3.1、开启辐射源1和辐照前等强度的光源2,并采集100次待辐照CCD器件的辐照后的第二参数,并保存;所述第二参数包括线性饱和输出和总增益;3.1, turn on the radiation source 1 and the light source 2 of equal intensity before irradiation, and collect the second parameter after the irradiation of the CCD device to be irradiated 100 times, and save it; the second parameter includes linear saturation output and total gain;
3.2、剔除辐照后的第二参数中所有像素的极值后求平均值,获得待辐照CCD器件辐照后性能参数变化曲线;3.2. Calculate the average value after removing the extreme values of all pixels in the second parameter after irradiation, and obtain the performance parameter change curve of the CCD device to be irradiated after irradiation;
3.3、根据辐照后性能参数变化曲线是否平稳判断待辐照CCD器件是否损坏;3.3. Judging whether the CCD device to be irradiated is damaged according to whether the performance parameter change curve after irradiation is stable;
若待辐照CCD器件损坏,则关闭辐射源1和光源2,标记该待辐照CCD器件损坏,返回步骤1),继续进行后续工作;If the CCD device to be irradiated is damaged, turn off the radiation source 1 and light source 2, mark the CCD device to be irradiated as damaged, return to step 1), and continue the follow-up work;
若待辐照CCD器件未损坏,则保存该待辐照CCD器件辐照后性能参数,完成辐照下面阵CCD的在线测试。If the CCD device to be irradiated is not damaged, save the performance parameters of the CCD device to be irradiated after irradiation, and complete the online test of the CCD array below the irradiation.
步骤四、对比Step 4. Comparison
将辐照后性能参数变化曲线与辐照前性能参数变化曲线进行对比,获得辐照对待辐照CCD器件性能参数的影响。The performance parameter change curve after irradiation is compared with the performance parameter change curve before irradiation to obtain the effect of irradiation on the performance parameters of the CCD device to be irradiated.
本市实施例中,步骤2.3中,根据辐照前性能参数变化曲线是否平稳具体为:当每次采集的线性饱和输出参数之间的误差为±1000DN,且每次采集的总增益参数之间的误差为±0.05DN/e-,则辐照前性能参数变化曲线平稳。步骤3.3中,根据辐照后性能参数变化曲线是否平稳具体为:当每次采集的线性饱和输出参数之间的误差为±1000DN,且每次采集的总增益参数之间的误差为±0.05DN/e-,则辐照后性能参数变化曲线。In the embodiment of this city, in step 2.3, according to whether the performance parameter change curve before irradiation is stable or not, it is specifically: when the error between the linear saturation output parameters collected each time is ±1000DN, and the total gain parameters collected each time The error of ±0.05DN/e - , the performance parameter change curve before irradiation is stable. In step 3.3, according to whether the performance parameter change curve after irradiation is stable or not, it is specifically: when the error between the linear saturation output parameters collected each time is ±1000DN, and the error between the total gain parameters collected each time is ±0.05DN /e - , the change curve of performance parameters after irradiation.
本发明辐照下面阵CCD的在线测试方法,能够有效降低现有测试系统在开展CCD图像传感器4辐射损伤效应地面辐照模拟实验时测试的繁琐度和实验人员的危险性,从而提高实验效率,并且能获取辐照过程中的CCD图像传感器4辐性能参数;同时,该系统采用辐照板5和驱动控制器7分离的子母板设计方案,能有效减小辐射源1对驱动控制器7的影响,确保系统的稳定运行。The online testing method of the array CCD under the irradiation of the present invention can effectively reduce the cumbersomeness of testing and the danger of the experimenters when the existing testing system is carrying out the CCD image sensor 4 radiation damage effect ground irradiation simulation experiment, thereby improving the experimental efficiency, And it can obtain the radiation performance parameters of the CCD image sensor 4 in the irradiation process; at the same time, the system adopts the sub-motherboard design scheme in which the irradiation board 5 and the drive controller 7 are separated, which can effectively reduce the radiation source 1 to the drive controller 7. influence to ensure the stable operation of the system.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310442820.5A CN116625640A (en) | 2023-04-23 | 2023-04-23 | On-line testing method and system for irradiation under-plane array CCD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310442820.5A CN116625640A (en) | 2023-04-23 | 2023-04-23 | On-line testing method and system for irradiation under-plane array CCD |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116625640A true CN116625640A (en) | 2023-08-22 |
Family
ID=87601666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310442820.5A Pending CN116625640A (en) | 2023-04-23 | 2023-04-23 | On-line testing method and system for irradiation under-plane array CCD |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116625640A (en) |
-
2023
- 2023-04-23 CN CN202310442820.5A patent/CN116625640A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7173230B2 (en) | Electromagnetic wave detection arrangement with capacitive feedback | |
CN104469356B (en) | Image sensor characteristic parameter measuring and analyzing system | |
CN103197499B (en) | A kind of electrophotographic system of framing, scanning ultra high-speed optical simultaneously | |
TWI704809B (en) | Dark-field inspection using a low-noise sensor | |
CN102829879B (en) | Infrared imaging detection chip integrated with liquid crystal optically-controlled array and area array photosensitive structure | |
CN101089612A (en) | Time-resolved laser-induced atomic emission spectroscopy detection system and method | |
CN111650600B (en) | Double-spectrum laser imaging device for extremely weak signals | |
Lietti et al. | A microstrip silicon telescope for high performance particle tracking | |
CN113038121B (en) | In-situ measurement system and method for dark signal of charge coupled device after neutron irradiation | |
CN116625640A (en) | On-line testing method and system for irradiation under-plane array CCD | |
CN109470362A (en) | An infrared interference signal acquisition system and data processing method | |
CN109907770B (en) | X-ray detector and charge clearing method | |
CN109833050B (en) | X-ray automatic exposure control system and control method thereof | |
CN208537452U (en) | Flat panel detector and its radiation image-forming system | |
CN102087099B (en) | FPGA (Field Programmable Gate Array)-based laser caliper measurement system | |
KR102092331B1 (en) | Compact oct spectrometer suitable for mobile environment | |
CN108279247A (en) | A kind of a wide range of direct detection imaging device of electron-beam excitation fluorescence and its method | |
Campagne et al. | PMm2: R&D on triggerless acquisition for next generation neutrino experiments | |
CN108462808B (en) | Scanner photoelectric system and control method thereof | |
CN115291272A (en) | Miniaturized satellite-borne high-energy particle detection device and method based on silicon detector module | |
CN111366340B (en) | A Channel Separation-Based Evaluation Method for Saturation Gray Values of Large Area Array Color CMOS Image Sensors After Irradiation | |
CN102572307A (en) | Cassette type digital X-ray scanning imaging plate | |
CN111307418B (en) | Low-temperature irradiation test method based on proton displacement effect of infrared detector | |
Donato et al. | First functionality tests of a 64× 64 pixel DSSC sensor module connected to the complete ladder readout | |
CN112188127B (en) | Calibration method, device, medium and equipment for integrating pixel array detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |