CN116606831A - OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法 - Google Patents

OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法 Download PDF

Info

Publication number
CN116606831A
CN116606831A CN202310230398.7A CN202310230398A CN116606831A CN 116606831 A CN116606831 A CN 116606831A CN 202310230398 A CN202310230398 A CN 202310230398A CN 116606831 A CN116606831 A CN 116606831A
Authority
CN
China
Prior art keywords
rice
oskasi
low temperature
gene
temperature resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310230398.7A
Other languages
English (en)
Inventor
毛丹丹
张霖
王思瑶
陈依君
王晓辉
陈燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN202310230398.7A priority Critical patent/CN116606831A/zh
Publication of CN116606831A publication Critical patent/CN116606831A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01041Beta-ketoacyl-acyl-carrier-protein synthase I (2.3.1.41)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于生物领域和作物育种领域,具体公开了OsKASI‑2基因在培育耐低温水稻中的应用和培育耐低温水稻的方法。利用CRISPER/Cas9技术定向敲除水稻OsKASI‑2基因,发现OsKASI‑2基因敲除的转基因植株对低温敏感,在低温处理下植株叶片枯萎,植株存活率低。将OsKASI‑2基因在水稻中过表达,发现OsKASI‑2基因过表达的植株对低温耐受,在低温条件下长势较好,植株存活率高。上述结果表明,OsKASI‑2基因参与水稻耐低温信号途径,是一个水稻耐低温基因。本发明可为提高水稻耐低温能力及培育耐低温水稻品种提供保障。

Description

OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水 稻的方法
技术领域
本发明属于基因工程领域,涉及OsKASI-2基因在培育耐低温水稻中的应用。
背景技术
在全球变暖的趋势下,极端天气频发。作为重要的非生物胁迫,低温胁迫会引起植物细胞结构和组织发生变化,造成植物生理生化代谢紊乱,进而抑制植物正常的生长发育,引发叶片产生斑点、落花落果严重,严重情况下造成植株死亡,严重影响植物的生长发育,导致全球范围内农作物产量和品质的大量损失。
水稻是世界上的主要粮食作物之一,起源于热带、亚热带,相对于小麦、大麦等作物,水稻对低温胁迫更加敏感。因此,挖掘优良耐低温基因,对提高水稻耐低温性,保障国家粮食安全具有重要意义。但迄今为止,可利用的优势耐低温基因资源有待进一步发掘。
脂肪酸是生物体重要的能量储备和膜脂的组成成分,在植物生长发育和非生物胁迫等方面发挥着重要的作用。β-Ketoacyl-[acyl carrier protein]synthase I(KASI)家族基因负责以丁酰-肉豆蔻酰-ACP(C4:0-C14:0ACP)为底物合成己酰基-棕榈酰-ACP(C6:0-C16:0ACP)。OsKASⅠ-2是水稻中KASⅠ家族成员之一,但其在水稻中的生理功能还未见报道,其是否参与水稻对低温胁迫的响应也还不清楚。
发明内容
本发明在研究中发现OsKASⅠ-2基因具有参与脱落酸反应,干旱高盐等逆境响应元件,而经实验发现OsKASⅠ-2基因的表达量受低温诱导,在此基础上,利用基因敲除技术和过表达技术分别创制出OsKASⅠ-2的敲除突变体及其过表达水稻植株,获得相关低温敏感和耐低温水稻材料。由此本发明利用OsKASⅠ-2基因提供了一种培育耐低温水稻中的方法。
因此,本发明提供OsKASI-2基因在培育耐低温水稻或低温敏感水稻中的应用,所述OsKASI-2基因编码的氨基酸序列如SEQ ID NO:2所示。
优选地,所述OsKASI-2基因的核苷酸序列如SEQ ID NO:1所示。
具体地,将OsKASI-2基因导入水稻,得到对低温逆境胁迫耐受能力增强的转基因植株;或者利用CRISPER/Cas9技术定向敲除水稻OsKASI-2基因,得到对低温逆境胁迫敏感的转基因植株。
进一步地,所述水稻是粳稻。
本发明提供一种培育耐低温或低温敏感水稻的方法,其包括如下步骤:将OsKASI-2基因导入水稻,得到对低温耐受能力增强的转基因植株;或者利用定向敲除水稻OsKASI-2基因,得到对低温敏感的转基因植株。
具体地,培育耐低温水稻的方法是将OsKASI-2基因导入水稻是通过导入含有OsKASI-2基因的过表达重组载体,获得过表达阳性植株;任选地,进一步培育成耐低温水稻品种。更具体包括如下步骤:将OsKASI-2过表达重组质粒转化水稻,获得OsKASI-2过表达阳性植株,进而得到耐低温水稻植株进一步培育成耐低温水稻品种。
另外具体地,培育低温敏感水稻的方法通过CRISPER/Cas9敲除的OsKASI-2基因,获得OsKASI-2基因被敲除阳性植株;任选地,进一步培育成低温敏感的水稻品种。更具体地,通过设计敲除的OsKASI-2靶标序列,构建含所述靶标序列片段的pCRISPER/Cas9重组质粒,转化水稻以得到OsKASI-2敲除阳性植株,进而得到低温敏感水稻植株进一步培育成低温敏感水稻品种。
具体地,所述水稻是粳稻。
本发明公开了OsKASI-2基因在提高水稻耐低温能力的应用。OsKASI-2基因的敲除突变体对低温敏感,水稻存活率显著下降,获得低温敏感水稻可以作为研究材料和对照品种,以及特定育种用途等。OsKASI-2基因过表达植株对低温耐受能力明显增强,水稻存活率显著明显提高,则可为提高水稻耐低温能力,为培育低温耐受水稻新品种提供保障。
附图说明
图1为OsKASI-2基因在低温处理下(4℃)的表达量结果。
图2A为OsKASI-2过表达株系的检测结果。
图2B为OsKASI-2敲除突变体的检测结果。
图3为OsKASI-2的敲除突变植株(OskasI-2-1、OskasI-2-2)和其过表达植株(OsKASI-2-1、OsKASI-2-2)在低温处理下(4℃)的表型观察结果。
图4为OsKASI-2的敲除突变植株(OskasI-2-1、OskasI-2-2)和其过表达植株(OsKASI-2-1、OsKASI-2-2)在低温处理下(4℃)的存活率结果。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并结合附图,对本发明进一步详细说明。
实施例中所用到的培养基的配方如下所示:
(1)LB液体培养基:10g/L胰蛋白胨,5g/L酵母提取物,10g/L NaCl,用NaOH调pH值到7.0,
121℃高温高压灭菌15min。
(2)AB培养基:NaH2PO4·2H2O 1300mg/L,K2HPO4 2950mg/L,KCl 150mg/L,MgSO4·7H2O 296mg/L,
CaCl2·2H2O 10mg/L,NH4Cl 1000mg/L。
(3)水稻愈伤组织培养基配方:
预培养培养基N6D(诱导愈伤组织分化),AAM培养液(浸染),共培养培养基2N6-AS(暗培养浸染后愈伤组织),筛选培养基(筛选抗性愈伤组织),分化培养基(RE-III),生根培养基(HF),CS培养基(阳性筛选)。筛选培养基需加Hygromycin B、Carbenicillindisodium;共培养培养基需加Acetosyringone;分化培养基需加KT、NAA;生根培养基需加NAA;CS培养基需加Hygromycin B、6-BA。
(4)水稻水培液配方:
实施例1
在本实施例中,OsKASI-2基因在培育耐低温水稻中的应用,具体包括以下步骤:1利用OsKASI-2基因获得低钾耐受水稻
1.1水稻OsKASI-2基因的克隆
通过定量PCR检测,发现OsKASI-2基因的表达量受到低温诱导,,在低温处理2小时,其表达量明显上调;当低温处理4小时,其表达量达到顶峰(如图1所示)。所用上游引物序列为:F1:5’-AACGAGGTGGACGCCTTCTA-3’;下游引物序列为R1:5’-GTTCTTGCCGTCGATGTACC-3’。用上述引物进行PCR扩增,测序得到OsKASI-2基因在低温处理下的表达量结果(如图1所示)。因此,我们推测OsKASI-2基因可能参与水稻对低温胁迫的响应。为了鉴定OsKASI-2基因是否与水稻对低温胁迫的响应有关。首先,我们进行水稻OsKASI-2基因的克隆。选取饱满一致的日本晴种子于37℃烘箱或Ms板催芽,选取长势一致的幼苗放入正常水培液培养7天,培养期间每2天更换一次水培液,提取所取材料的RNA,反转录成cDNA。设计特异性的引物序列克隆OsKASI-2的编码区序列并测序;所用上游引物序列为:F2:5’-ATGCAGGCGCACGCCCAC-3’;下游引物序列为R2:5’-TCATGGCTTGAATGGCGC-3’。用上述引物进行PCR扩增,测序得到日本晴OsKASI-2基因的编码区序列。
OsKASI-2基因编码区序列全长1389bp,序列如下:
1ATGCAGGCGC ACGCCCACAC GCTCGGGCTC CGCATCTCCC CGCCGCCGCCTGCGCCGCCG61CGGCGCCGCG CTCGCCCGCG CCGGCGCGCA GTCCGTGTCG CCGCGGCGGCGTCGGCGCCG121CGGCGGGAGA CGGACCCGAG GAAGCGGGTG GTGATCACGG GGATGGGGCTGGTGTCCGTG181TTCGGGAACG AGGTGGACGC CTTCTACGAG CGGCTGCTCG CCGGGGAGAGCGGGGTCGGC241GCCATCGACC GCTTCGACGC CGGCGGCTTC CCCACGAGGT TCGCCGGCCAGATACGCGGG301TTCTCCTCGG AGGGGTACAT CGACGGCAAG AACGACCGGA GGCTCGACGACTGCCTCCGC361TACTGCATCG TCAGCGGCAA GAAGGCGCTC GAGAACGCCG GCCTCGGCAAGGGCTCCGAT421GGCCACACCA AGCTTGACAA AGTCCGGGCT GGTGTTCTTG TGGGAACTGGCATGGGTGGC481CTCACTGTGT TTTCCGATGG TGTTCAAAAC CTTATTGAGA AGGGATACAAGAAAATTTCG541CCTTTCTTTA TCCCATACGC TATAACTAAC ATGGGCTCGG CATTGCTAGCAATGGATGCT601GGTTTTATGG GTCCAAACTA CTCAATTTCA ACAGCTTGTG CGACCTCCAACTACTGCTTC661TATGCTGCTG CCAACCATAT ACGTCGGGGT GAGGCTGATG TTATCGTTGCTGGTGGTACT721GAAGCTGCAA TTATTCCAAT TGGCCTTGGA GGTTTTGTGG CCTGTAGAGCACTATCGCAG781AGGAACGATG ACCCAGAAAC TGCATCTAGG CCATGGGACA AAGAGCGAGATGGTTTTGTT841ATGGGCGAAG GTGCTGGTGT ACTGGTCATG GAGAGCCTGG AGCATGCGATGAAGCGGGAT901GCACCAATAA TTGCTGAATA TTTGGGAGGT GCAGTAAACT GTGATGCTTACCATATGACT961GATCCTAGGT CAGATGGACT GGGTGTATCG TCCTGTATTA CTCAGAGCCTTGAAGATGCA1021GGTGTTGCGC CAGAGGAGGT AAATTACATC AATGCACATG CAACTTCAACTCTTGCTGGT1081GACTTGGCTG AAGTAAGAGC CATTAAGCAA GTCTTCAAGA ATCCATCTGATATTAAAATC1141AATTCAACGA AGTCTATGAT AGGCCATTGC CTAGGTGCCG CTGGTGGGTTAGAAGCTATT1201GCCGTTGTCA AAGCCATAAC TACTGGATGG GTGCATCCTA CTATTAACCAATTTAACCCC1261GAGCCTGAAG TTGATTTTGA TACAGTAGCC AACGAGAAGC AGCAGCACGAAGTGAATGTT1321GCTATCTCTA ATTCATTTGG ATTTGGAGGT CACAATTCAG TGGTAGTATTTGCGCCATTC1381AAGCCATGA
1.2pHB-OsKASI-2过表达重组质粒的构建
用于构建pHB-OsKASI-2重组质粒的上游引物序列为:F3:5’-accagtctctctctcaagctt ATGCAGGCGCACGCCCAC-3’,下游引物序列为:R3:5’-gatacgaacgaaagctctaga TCATGGCTTGAATGGCGC-3’。利用上述引物PCR扩增日本晴cDNA模板,回收1389bp的目的带,用HindIII+XbaI将OsKASI-2的目的片段和pHB空载体分别进行双酶切,回收酶切产物,通过同源重组的方法将OsKASI-2的目的片段连到pHB载体上。
1.3OsKASI-2过表达阳性植株的获得
将步骤1.2构建成功的pHB-OsKASI-2重组质粒用电转的方法转入农杆菌EHA105中,用日本晴种子在N6D培养基上诱导培养7天产生愈伤组织。将含有重组载体的EHA105菌在AB平板上划线,放置30℃生长3天后,用无菌的枪头将生长的菌转到AAM液体培养基中悬浮,调OD600到0.1。用无菌的镊子将愈伤组织转入菌液中轻摇90秒,放置N6-AS平板上25℃黑暗培养3天,清洗干净后放置含50mg/L潮霉素和400mg/L的羧苄青霉素的N6D培养基筛选两周。将筛选出的新鲜愈伤组织转到分化培养基上进行分化培养,两周后将分化出的幼苗转移至生根培养基上进行生根培养,生根一周后移栽至温室田中培养。
取上述移栽的T0代小苗的叶片放置含潮霉素B的初筛板进行初筛,叶片不褐化的初步判断为阳性植株。提取初筛为阳性植株的RNA,反转录成cDNA,利用PCR进行OsKASI-2表达量的检测,OsKASI-2表达量上调的OsKASI-2过表达阳性植株,如图2A所示,为共检测到15株阳性植株。检测引物序列为:上游引物F4:5′-accagtctctctctcaagcttATGCAGGCGCACGCCCAC-3′,下游引物R4:5′-gatacgaacgaaagctctagaTCATGGCTTGAATGGCGC-3′。
1.4耐低温水稻的获得
将所述阳性植株OsKASI-2-1和OsKASI-2-2进行繁种,后代植株具有潮霉素抗性且OsKASI-2表达量上调即为耐低温水稻。
实施例2利用OsKASI-2基因获得低温敏感水稻
2.1进行CRISPER/Cas9敲除的OsKASI-2靶标序列的获得
利用CRISPER/Cas9系统,根据OsKASI-2编码区序列选择特异的使OsKASI-2蛋白失活的靶标序列。靶标序列:CCACTGCTCCACCACCATGC(靶点1)和GAGGAAGCGGGTGGTGATCA(靶点2)。
2.2含所述靶标序列片段的pCRISPER/Cas9重组质粒的构建
靶点1序列设计接头引物后的完整靶序列如下:
F5:5’-CCACTGCTCCACCACCATGCgttttagagctagaaat-3’
R5:5’-TGATCACCACCCGCTTCCTCcggcagccaagccagca-3’
靶点2序列设计接头引物后的完整靶序列如下:
F6:5’-GAGGAAGCGGGTGGTGATCA gttttagagctagaaat-3’
R6:5’-TGATCACCACCCGCTTCCTCCaacacaagcggcagc-3’
将F5引物、R5引物、F6引物、R6引物稀释成浓度为10μM的溶液,各取10μL混匀,在PCR仪中进行退火反应,使F5引物和R5引物,F6引物和R6引物分别互补形成双链小片段。用BsaⅠ酶切pOs-sgRNA原始载体,体系为:10×buffer BsaⅠ2μL,BsaⅠ酶1μL,pOs-sg RNA载体4μg,ddH2O补足20μL,37℃酶切12h,酶切产物用1%琼脂糖凝胶电泳检查条带大小后,回收酶切产物,加入灭菌的ddH2O溶解测定浓度后待用。用T4连接酶将上述双链小片段和酶切过的pOs-sgRNA载体连接,形成完整的包含针对OsKASI-2蛋白的靶序列和sg-RNA的重组载体。连接体系为:10×T4ligation buffer 1.5μL,双链小片段4μL,酶切过的pOs-sgRNA载体3μL,T4DNA ligase 1μL,于水浴锅中16℃连接12小时。将连接产物转化大肠杆菌TOP10,涂板到含卡那抗性的LB平板过夜培养,挑选阳性菌进行测序,得到正确的包含靶标序列和sg-RNA的重组载体。用LRmix将上述重组载体和包含Cas9的载体pH-Ubi-cas9-7进行LR反应重组,LR反应体系:包含靶标序列和sg-RNA的重组载体25-50ng,pH-Ubi-cas9-7载体75ng,5×LRClonaseTM-buffer 1μL,TE Buffer(pH8.0)到4.5μL,LR ClonaseTM 0.51mL;于25℃下温育2h后,加入2μL 2μg/μL的蛋白酶K于37℃下处理10min,取2μL该反应产物转入大肠杆菌TOP10,在含壮观霉素抗性LB平板培养过夜,挑选阳性菌进行测序,得到正确的包含OsKASI-2蛋白靶标序列-sg-RNA+Cas9的完整的重组质粒。
2.3OsKASI-2敲除阳性植株的获得
分别将上述构建成功的两种重组质粒电转转入农杆菌EHA105中,将日本晴种子在N6D培养基上诱导培养7天产生愈伤组织。将含有重组载体的EHA105菌在AB平板上划线30℃生长3天,挑取生长的菌转入AAM液体培养基中悬浮,调OD600到0.26。将愈伤组织转入菌液中轻摇90秒,于N6-AS平板上于25℃黑暗培养3天,清洗干净后在含50mg/L潮霉素和400mg/L的羧苄青霉素的N6D培养基筛选两周。将筛选出的新鲜愈伤组织挑到分化培养基上,进行分化培养两周后,将分化出的幼苗转移至生根培养基上进行生根培养,生根一周后移栽至温室田中培养。将移栽的小苗(T0代)提取DNA进行靶序列位点检测,共检测到28株阳性植株。将移栽的小苗提取DNA,设计特异性引物,扩增含靶标位点的DNA片段(含靶标位点1以及含靶标位点2的1000bp以内的DNA片段)、扩增得到的PCR产物经纯化后送公司测序,测序结果与野生型植株序列比对,部分突变分析结果如下表所示。
设计的靶标位点1和2的检测引物为F7:5’-AATCTCAAGATATGTCGGTCCAGAA-3’,R7:5’-TGCAGTAGCGGAGGCAGT-3’,扩增片段长度为714bp。根据测序比对结果,选取OsK ASI-2开放阅读框发生移码突变提前终止或缺失起始密码子的T0代纯合突变株系1和2(如图2B所示),繁种。
表1.T0代部分阳性植株靶位点变化
株系 靶位点序列 基因型
野生型(WT) CCACTGCTCCACCACCATGC 野生型
1 CCACTGCTCCACCACCACGC 纯合突变体
野生型(WT) GAGGAAGCGGGTGGTGATCA 野生型
2 ....AAGCGGGTGGTGATCA 纯合突变体
2.4低温敏感水稻的获得
将所述突变体植株进行繁种,于后代植株中分离OsKASI-2基因功能缺失的突变体,即为对低温敏感的水稻。分别命名为OskasI-2-1突变体和OskasI-2-2突变体。
实施例3低温耐受和低温敏感表型鉴定
将野生型日本晴(WT)、OsKASI-2的敲除突变体(OskasI-2-1、OskasI-2-2)和其过表达植株(OsKASI-2-1、OsKASI-2-2)的种子催芽5天后,水培液培养14天后,分别转移至正常温度(28℃)及低温(4℃)的水培液培养3天,观察各植株表型并拍照。结果发现在正常条件下(28℃),野生型日本晴、OsKASI-2的敲除突变体(OskasI-2-1、OskasI-2-1-2)和其过表达植株(OsKASI-2-1、OsKASI-2-2)的长势正常。而在低温处理下(4℃),OsKASI-2的敲除突变体(OskasI-2-1、OskasI-2-2)的植株叶片枯萎(如图3所示),植株存活率明显低于野生型日本晴和其过表达植株(OsKASI-2-1、OsKASI-2-2)(如图4所示)。而其过表达植株(OsKASI-2-1、OsKASI-2-2)的叶片正常(如图3所示),植株存活率明显高于野生型日本晴和其敲除突变体(OskasI-2-1、OskasI-2-2)(如图4所示)。
本发明公开了水稻OsKASI-2基因在提高植物对低温胁迫逆境耐受方面的应用。OsKASI-2基因的敲除突变体导致水稻对低温敏感,植株存活率明显降低。OsKASI-2基因过表达植物对低温耐受,植株存活率明显提高。本发明可为提高植物耐低温能力及培育耐低温水稻新品种提供保障。

Claims (8)

1.OsKASI-2基因在培育耐低温水稻或低温敏感水稻中的应用,所述OsKASI-2基因编码的氨基酸序列如SEQ ID NO:2所示。
2.如权利要求1所述的应用,其特征在于,所述OsKASI-2基因的核苷酸序列如SEQ IDNO:1所示。
3.如权利要求1所述的应用,其特征在于,将OsKASI-2基因导入水稻,得到对低温逆境胁迫耐受能力增强的转基因植株;或者利用CRISPER/Cas9技术定向敲除水稻OsKASI-2基因,得到对低温逆境胁迫敏感的转基因植株。
4.如权利要求1至3任一项所述的应用,其特征在于,所述水稻是粳稻或糯稻。
5.一种培育耐低温或低温敏感水稻的方法,其包括如下步骤:将OsKASI-2基因导入水稻,得到对低温耐受能力增强的转基因植株;或者利用定向敲除水稻OsKASI-2基因,得到对低温敏感的转基因植株。
6.如权利要求5所述的方法,其特征在于,培育耐低温水稻的方法是将OsKASI-2基因导入水稻是通过导入含有OsKASI-2基因的过表达重组载体,获得过表达阳性植株;任选地,进一步培育成耐低温水稻品种。
7.如权利要求5所述的方法,其特征在于,培育低温敏感水稻的方法通过CRISPER/Cas9敲除的OsKASI-2基因,获得OsKASI-2基因被敲除阳性植株;任选地,进一步培育成低温敏感的水稻品种。
8.如权利要求5-7任一项所述的方法,其特征在于,所述水稻是粳稻或糯稻。
CN202310230398.7A 2023-03-10 2023-03-10 OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法 Pending CN116606831A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310230398.7A CN116606831A (zh) 2023-03-10 2023-03-10 OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310230398.7A CN116606831A (zh) 2023-03-10 2023-03-10 OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法

Publications (1)

Publication Number Publication Date
CN116606831A true CN116606831A (zh) 2023-08-18

Family

ID=87684216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310230398.7A Pending CN116606831A (zh) 2023-03-10 2023-03-10 OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法

Country Status (1)

Country Link
CN (1) CN116606831A (zh)

Similar Documents

Publication Publication Date Title
CN110904071B (zh) Raf49蛋白及其编码基因在调控植物抗旱性中的应用
CN111187778B (zh) 小麦耐盐基因TaFLZ2及其应用
CN113308479B (zh) SlNAC100基因在提高番茄低温抗性中的应用
CN111996181A (zh) Drk蛋白及其编码基因在植物抗旱中的应用
CN110643630B (zh) Knat1基因在提高植物盐胁迫抗性中的应用
CN112342236B (zh) 水稻组蛋白甲基转移酶在增强作物干旱抗性及改善单株产量中的应用
CN112301051A (zh) GmUVR8基因突变提高大豆产量的方法及其应用
CN116218876A (zh) 一种调控水稻垩白的基因OsB12D3及其编码蛋白和应用
CN108690127B (zh) 抗逆相关蛋白TaMYB85及其编码基因与应用
CN108218967B (zh) 水稻抽穗期相关蛋白及其编码基因与应用
CN116606831A (zh) OsKASI-2基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法
CN107903312B (zh) 一种水稻锌指蛋白及其编码基因和应用
CN116574163A (zh) OsKUA1基因在培育耐低温水稻中的应用及其培育耐低温水稻的方法
CN116121298B (zh) 抑制hsrp1基因的表达在提高植物耐热性中的应用
CN115710588B (zh) 超量表达bna-miR166f在改良油菜收获指数等复杂数量性状中的应用
CN114591978B (zh) OsFLR14基因在提高水稻对杂草抗性中的应用
CN116769798B (zh) 狗尾草抗旱耐盐基因SvWRKY64及其应用
CN114277035B (zh) 木薯MeRS40基因及其蛋白和应用
CN110964735B (zh) 水稻基因OsHXK9在调控种子休眠性中的应用
CN117447575B (zh) 深根蛋白在特异性调控玉米根夹角中的应用
CN116063433B (zh) 一种调控油菜种子含油量的基因及应用
CN114231557B (zh) 水稻种子休眠性调控基因及其用途
WO2022213453A1 (zh) 一种调控植物抗铝性的铝离子受体alr1基因或蛋白的应用
KR102025257B1 (ko) 벼 유래의 v p 유전자의 수확량 및 환경 스트레스 조절자로서의 용도
CN117904150A (zh) 苹果酸脱氢酶基因在提高水稻耐高温方面的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination