CN116593712A - 一种供体试剂在诊断主体心肌损伤中的用途 - Google Patents

一种供体试剂在诊断主体心肌损伤中的用途 Download PDF

Info

Publication number
CN116593712A
CN116593712A CN202310589939.5A CN202310589939A CN116593712A CN 116593712 A CN116593712 A CN 116593712A CN 202310589939 A CN202310589939 A CN 202310589939A CN 116593712 A CN116593712 A CN 116593712A
Authority
CN
China
Prior art keywords
donor
reagent
particles
carrier
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310589939.5A
Other languages
English (en)
Inventor
杨阳
康蔡俊
刘宇卉
李临
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kemei Boyang Diagnostic Technology Shanghai Co ltd
Chemclin Diagnostics Corp
Original Assignee
Kemei Boyang Diagnostic Technology Shanghai Co ltd
Chemclin Diagnostics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemei Boyang Diagnostic Technology Shanghai Co ltd, Chemclin Diagnostics Corp filed Critical Kemei Boyang Diagnostic Technology Shanghai Co ltd
Priority to CN202310589939.5A priority Critical patent/CN116593712A/zh
Publication of CN116593712A publication Critical patent/CN116593712A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/325Heart failure or cardiac arrest, e.g. cardiomyopathy, congestive heart failure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途,其中所述方法包括:将来自主体的体液与受体试剂和供体试剂相接触,反应后生成待测混合物;用激发光至少一次激发所述待测混合物,检测由此产生的化学发光的信号强度;根据所述化学发光的信号强度定量计算所述体液中至少一种心肌标志物的浓度,从而判断主体是否患有心肌损伤;其中,所述供体试剂包含能够在激发状态下生成活性氧的供体颗粒,所述供体颗粒包括第一载体,所述第一载体的内部填充有敏化剂,所述第一载体的表面化学键合特异性结合配对成员中的一员。所述方法既有超高的灵敏度,又有很宽的检测量程。

Description

一种供体试剂在诊断主体心肌损伤中的用途
技术领域
本发明属于化学发光分析领域,具体涉及一种供体试剂在诊断主体心肌损伤中的用途。
背景技术
心血管疾病是危害人类健康及生命的严重疾病,已成为21世纪人类健康的头号杀手。其中,急性心肌梗死最常见、最危险。
心血管检验是整个心血管领域中的“瓶颈”学科,因为只有在尽可能短的时间内正确诊断疾病,才能早发现、早治疗,最大程度防止致残、致死后果,改善患者预后和生活质量。近年来,对于心血管生物标志物的研究日益深入,积累了大量临床经验和证据,逐步明确了它们的临床适应症和新的研究领域,推动了他们的临床应用。生物标记物的检测可直接影响心血管疾病患者的临床诊断、危险分层、治疗方案选择和预后判断。心肌标志物全称为心脏损伤早期标志物,是指心脏损伤后6小时内血中水平升高的标志物,是临床中诊断心肌梗死、心肌缺血、心衰等心脏疾病的重要检测指标,主要包括心肌肌钙蛋白I(cTnⅠ)、肌红蛋白(MYO)、肌酸激酶同工酶(CK-MB)和N末端脑钠肽前体(NT-proBNP)等。随着科技不断发展,血液中的心衰标志物检测被逐步应用于临床,给心血管疾病的早期诊断、预后转归提供了方法。例如:NT-proBNP是BNP激素原分裂后没有活性的N-末端片段,与BNP相比,半衰期更长,更稳定,其浓度可以反映短暂时间内新合成的而不是贮存的BNP释放,因此更能反映BNP通路的激活。血浆NT-proBNP水平随心衰程度加重而升高。在急性心衰的诊断中,NT-proBNP有着重要意义。
目前,以上标志物已经被医院广泛接受。也有多种单独检测上述指标的试剂盒面市。但是目前采取的主流方法是非均相的测定方法(例如ELISA和磁微粒化学发光法等)。虽然能够测定上述标志物,但是存在检测速度慢、检测灵敏度低、检测成本高等缺点。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种供体试剂在诊断主体心肌损伤中的用途,利用所述供体颗粒进行检测时,既有超高的灵敏度,又具有很宽的检测量程。
为此,本发明第一方面提供了一种供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途,其中所述方法包括:将来自主体的体液与受体试剂和供体试剂相接触,反应后生成待测混合物;用激发光至少一次激发所述待测混合物,检测由此产生的化学发光的信号强度;根据所述化学发光的信号强度定量计算所述体液中至少一种心肌标志物的浓度,从而判断主体是否患有心肌损伤;
其中,所述供体试剂包含能够在激发状态下生成活性氧的供体颗粒,所述供体颗粒包括第一载体,所述第一载体的内部填充有敏化剂,所述第一载体的表面化学键合特异性结合配对成员中的一员;
所述心肌标志物选自肌钙蛋白T、肌钙蛋白I、肌钙蛋白激酶同工酶、肌红蛋白、白介素6和乳酸脱氢中的一种或多种。
在本发明的一些实施方式中,所述第一载体的表面没有包被或连接有多糖物质,其直接化学键合特异性结合配对成员中的一员。
在本发明的另一些实施方式中,所述第一载体的表面带有键合官能团,所述键合官能团用于将特异性结合配对成员中的一员化学键合在所述第一载体的表面。
在本发明的一些实施方式中,所述键合官能团选自胺基、酰胺基、羟基、醛基、羧基、马来酰亚胺基和巯基;优选选自醛基和/或羧基。
在本发明的一些实施方式中,所述第一载体表面的键合官能团的含量为100~500nmol/mg,优选为200~400nmol/mg。
在本发明的一些实施方式中,所述第一载体的表面包被至少两个连续多糖层的涂层,其中第一多糖层与第二多糖层自发关联。
在本发明的另一些实施方式中,所述连续多糖层中的每一层自发地与前一多糖层中的每一层相关联。
在本发明的一些实施方式中,所述多糖具有侧基官能团,所述连续多糖层的所述官能团与所述前一多糖层的所述官能团所带电荷相反。
在本发明的另一些实施方式中,所述多糖具有侧基官能团,并且所述连续多糖层通过所述官能团与所述前一多糖层的所述官能团之间的反应与所述前一多糖层共价连接。
在本发明的一些实施方式中,所述连续多糖层的所述官能团在胺官能团和胺反应性官能团之间交替。
在本发明的另一些实施方式中,所述胺反应性官能团是醛基或羧基。
在本发明的一些实施方式中,所述第一多糖层自发地与所述第一载体相关联。
在本发明的另一些实施方式中,所述涂层的最外一层多糖层具有至少一个侧基官能团。
在本发明的一些实施方式中,所述涂层的最外一层多糖层的侧基官能团选自醛基、羧基、巯基、氨基、羟基和马来胺基中的至少一种;优选选自醛基和/或羧基。
在本发明的另一些实施方式中,所述涂层的最外一层多糖层的侧基官能团直接地或间接地化学键合特异性结合配对成员中的一员结合。
在本发明的一些实施方式中,所述多糖选自含有三个或更多个未修饰或修饰的单糖单元的碳水化合物;优选选自葡聚糖、淀粉、糖原、菊粉、果聚糖、甘露聚糖、琼脂糖、半乳聚糖、羧基葡聚糖和氨基葡聚糖;更优选选自葡聚糖、淀粉、糖原和聚核糖。
在本发明的一些实施方式中,所述第一载体的粒径选自100~400nm,优选为150~350nm,更优选为180~220nm。
在本发明的另一些实施方式中,所述第一载体为磁性或非磁性的,优选为非磁性的。
在本发明的一些实施方式中,所述第一载体的形状选自带、片、棒、管、孔、微滴定板、珠子、粒子和微球;优选为微球。
在本发明的另一些实施方式中,所述第一载体的材质选自天然的、人工合成的或改性天然存在的聚合物;优选为人工合成的聚合物。
在本发明的一些具体实施方式中,所述第一载体的材质选自琼脂糖、纤维素、硝化纤维素、醋酸纤维素、聚氯乙烯、聚苯乙烯、聚乙烯、聚丙烯、聚(4-甲基丁烯)、聚丙烯酰胺、聚甲基丙烯酸酯、聚对苯二甲酸乙二醇酯、尼龙、聚丁酸乙烯或聚丙烯酸酯;优选选自聚苯乙烯、聚丙烯、聚(4-甲基丁烯)、聚丙烯酰胺、聚甲基丙烯酸酯、聚对苯二甲酸乙二醇酯或聚丙烯酸酯。
在本发明的一些实施方式中,所述第一载体为聚苯乙烯乳胶微球。
在本发明的另一些实施方式中,所述敏化剂是光活化的光敏剂和/或化学活化的引发剂,优选为光活化的光敏剂。
在本发明的一些实施方式中,所述敏化剂选自亚甲基蓝、玫瑰红、卟啉、酞菁和叶绿素。
在本发明的另一些实施方式中,所述特异性结合配对成员选自抗体、抗体片段、配体、寡核苷酸、寡核苷酸结合蛋白、凝集素、半抗原、抗原、免疫球蛋白结合蛋白、抗生物素蛋白、亲和素或生物素所组成的一对能够相互特异性结合的物质。
在本发明的一些实施方式中,所述特异性结合配对成员为亲和素-生物素。
在本发明的另一些实施方式中,所述亲和素选自卵白亲和素、链霉亲和素、卵黄亲和素、中性亲和素和类亲和素,优选为中性亲和素和/或链霉亲和素。
在本发明的一些实施方式中,所述亲和素通过氨基与所述第一载体表面的醛基反应形成席夫碱的方式化学键合在所述第一载体的表面。
在本发明的一些实施方式中,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥5%。
在本发明的另一些实施方式中,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥8%;优选地,控制所述供体颗粒在所述供试剂中的粒径分布变异系数C.V值≥10%。
在本发明的一些实施方式中,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≤40%;更进一步优选地,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≤20%。
在本发明的另一些实施方式中,所述供体颗粒在所述供体试剂中的粒径分布呈现多分散性。
在本发明的一些实施方式中,所述供体颗粒在所述供体试剂中的浓度为10μg/ml~1mg/ml,优选为20μg/ml~500μg/ml,更优选为50μg/ml~200μg/ml。
在本发明的另一些实施方式中,所述供体试剂中还包括PH值为7.0~9.0的缓冲溶液,所述供体颗粒悬浮于所述缓冲溶液中。
在本发明的一些实施方式中,所述缓冲溶液中含有多糖,所述多糖选自含有三个或更多个未修饰或修饰的单糖单元的碳水化合物,优选选自葡聚糖、淀粉、糖原、菊粉、果聚糖、甘露聚糖、琼脂糖、半乳聚糖、羧基葡聚糖和氨基葡聚糖;更优选选自葡聚糖、淀粉、糖原和聚核糖。
在本发明的另一些实施方式中,所述葡聚糖的分子量分布Mw选自10000~1000000KDa,优选选自100000~800000KDa,更优选选自300000~700000KDa。
在本发明的一些实施方式中,所述缓冲溶液中葡聚糖的含量为0.01~1wt%,优选为0.05~0.5wt%。
在本发明的另一些实施方式中,所述受体试剂中的受体颗粒包括第二载体,所述第二载体的内部填充有发光组合物,所述第二载体的表面包被有至少一层多糖层,所述多糖层的表面连接有报告分子,所述报告分子能够与待测目标分子特异性结合。
在本发明的一些实施方式中,所述发光组合物包含化学发光化合物和金属螯合物。
在本发明的另一些实施方式中,所述化学发光化合物选自烯烃化合物,优选选自二甲基噻吩、双丁二酮化合物、二氧杂环己烯、烯醇醚、烯胺、9-亚烷基苍耳烷、9-亚烷基-N-9,10二氢化吖啶、芳基乙醚烯、芳基咪唑和光泽精以及它们的衍生物,更优选选自二甲基噻吩及其衍生物。
在本发明的一些实施方式中,所述金属螯合物的金属是稀土金属或VIII族金属,优选选自铕、铽、镝、钐、锇和钌,更优选为铕。
在本发明的另一些实施方式中,所述金属螯合物包含选自下列的螯合剂:NHA、BHHT、BHHCT、DPP、TTA、NPPTA、NTA、TOPO、TPPO、BFTA、2,2-二甲基-4-全氟丁酰-3-丁酮、2,2’-联吡啶、联吡啶基羧酸、氮杂冠醚、氮杂穴状配体和三辛基氧化膦以及它们的衍生物。
在本发明的一些具体实施方式中,来自主体的体液利用稀释液稀释后再与受体试剂和供体试剂相接触。
在本发明的一些实施方式中,所述化学发光的检测波长为520~620nm。
在本发明的另一些实施方式中,采用600~700nm的红色激发光进行激光照射。
在本发明的一些实施方式中,所述受体颗粒在受体试剂中的浓度为1ug/mL-1000ug/mL;优选为10ug/mL-500ug/mL;更优选为20ug/mL-200ug/mL。
在本发明的另一些实施方式中,所述活性氧为单线态氧。
在本发明的另一些实施方式中,所述来自主体的体液包括但不限于:血液、血清、血浆、痰液、淋巴液、精液、阴道粘液、粪便、尿液或脊髓液。
本发明的有益效果为:本发明提供一种供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途,所述供体试剂中的供体颗粒产生活性氧的效率高,活性氧在均相体系中更容易传递给受体颗粒,不易受其他物质的干扰,且所述供体颗粒本身的稳定性较高,在供体试剂中能够稳定存在,不容易失活。利用所述供体试剂进行检测时,既有超高的灵敏度,又具有很宽的检测量程。另外,所述供体试剂中的供体颗粒的生产成本较低,使用便捷,可以通用在各种检测项目中。
附图说明
下面将结合附图对本发明作进一步说明。
图1为实施例1中制备的醛基聚苯乙烯乳胶微球的Gaussian分布图。
图2为实施例1中制备的醛基聚苯乙烯乳胶微球的Nicomp分布图。
图3为实施例1中制备的供体颗粒的Gaussian分布图。
图4为实施例2制备的包被葡聚糖的微球的Gaussian分布图
图5为实施例2制备的供体颗粒的Gaussian分布图。
图6为实施例3制备的醛基聚苯乙烯乳胶微球的Gaussian分布曲线图。
图7为实施例3制备的填埋有发光组合物的醛基聚苯乙烯乳胶微球的Gaussian分布曲线图。
图8为实施例3制备的包被葡聚糖的填埋有发光组合物的醛基聚苯乙烯乳胶微球的Gaussian分布图。
图9为实施例3制备的平均粒径在250nm左右的受体颗粒的Gaussian分布图。
具体实施方式
为使本发明容易理解,下面将详细说明本发明。但在详细描述本发明前,应当理解本发明不限于描述的具体实施方式。还应当理解,本文中使用的术语仅为了描述具体实施方式,而并不表示限制性的。本发明的实施并不局限于下面的实施例,对本发明所做的任何形式上的变通和/或改变都将落入本发明保护范围。
在提供了数值范围的情况下,应当理解所述范围的上限和下限和所述规定范围中的任何其他规定或居间数值之间的每个居间数值均涵盖在本发明内。这些较小范围的上限和下限可以独立包括在较小的范围中,并且也涵盖在本发明内,服从规定范围中任何明确排除的限度。在规定的范围包含一个或两个限度的情况下,排除那些包括的限度之任一或两者的范围也包含在本发明中。
除非另有定义,本文使用的所有术语与本发明所属领域的普通技术人员的通常理解具有相同的意义。虽然与本文中描述的方法和材料类似或等同的任何方法和材料也可在本发明的实施或测试中使用,但是现在描述了优选的方法和材料。
Ⅰ.术语
本发明所述用语“活性氧”是指机体内或者自然环境中由氧组成,含氧并且性质活泼的物质的总称,主要为一种激发态的氧分子,包括氧的一电子还原产物超氧阴离子(O2·-)、二电子还原产物过氧化氢(H2O2)、三电子还原产物羟基自由基(·OH)以及一氧化氮和单线态氧(1O2)等。
本发明所述用语“供体颗粒”是指含有通过能量或者活性化合物的激活后能够产生与受体颗粒反应的诸如活性氧的活性中间体的敏化剂的颗粒。供体颗粒可以是光活化的(如染料和芳香化合物)或者化学活化的(如酶、金属盐等)。在本发明一些具体实施例中,所述供体颗粒为填充有光敏剂的高分子微球,所述光敏剂可以是本领域已知的光敏剂,优选相对光稳定且不与单线态氧有效反应的化合物,其非限定性的例子包括例如美国专利US5709994(该专利文献在此全文引为参考)公开的亚甲基蓝、玫瑰红、卟啉、酞菁和叶绿素等化合物,以及这些化合物的具有1-50个原子取代基的衍生物,所述取代基用于使得这些化合物更具有亲脂性或更具有亲水性、和/或作为连接至特异性结合配对成员的连接基团。本领域技术人员已知的其他光敏剂的例子也可以在本发明中使用,例如美国专利US6406913中记载的内容,该专利文献并入本文以供参考。
本发明所述用语“受体颗粒”是指含有能够与活性氧反应可以产生可检测信号的化合物的颗粒。供体颗粒被能量或者活性化合物诱导激活并释放高能态的活性氧,该高能态的活性氧被近距离的受体颗粒俘获,从而传递能量以激活所述受体颗粒。在本发明的一些具体实施方式中,所述受体颗粒包含发光组合物和载体,所述发光组合物填充于载体中和/或包被于载体表面。
本发明所述“载体”选自带、片、棒、管、孔、微滴定板、珠子、粒子和微球,其可以是本领域技术人员所公知的微球或微粒,其可以是任何尺寸的,其可以是有机的或是无机的,其可以是可膨胀或不可膨胀的,其可以是多孔的或非多孔的,其可以是磁性或非磁性的,其具有任何密度,但优选具有和水接近的密度,优选能漂浮于水中,且由透明、部分透明或不透明的材料构成。
本发明中,所述“化学发光化合物”即一种被称作为标记物的化合物,可进行化学反应以便引起发光,比如通过被转化为在电子激发态下形成的另一种化合物。激发态可以是单线态或是三重激发态。激发态可弛豫到基态直接发光,或者是通过将激发能量传递到发射能量受体,从而自身恢复到基态。在此过程中,能量受体颗粒将被跃迁为激发态而发光。
本发明所述“特异性结合配对成员”是指一对能够相互特异性结合的物质。
本发明所述“粒径分布变异系数C.V值”是指在纳米粒度仪的检测结果中,粒径在Gaussian分布中的变异系数。变异系数的计算公式为:C.V值=(标准偏差SD/平均值Mean)×100%。
本发明所述用语“Nicomp分布”是指美国PSS纳米粒度仪NICOMP中的一种算法分布。相对于Gaussian单峰算法,Nicomp多峰算法对于多组分、粒径分布不均匀液态分散体系的分析以及胶体体系的稳定性分析具有独特优势。
本发明所述用语“来自主体的体液”是指待测的含有或疑似含有心肌标志物的一种混合物。所述体液来自主体的全血、血清、血浆、痰液、淋巴液、精液、阴道粘液、粪便、尿液、泪液或脊髓液。来自主体的体液可以在使用前根据需要利用稀释液进行稀释。例如,为了避免HOOK效应,可以在上机检测前使用稀释液对来自主体的体液进行稀释后再在检测仪器上进行检测。
本发明所述用语“抗体”以最广含义使用,包括任何同种型的抗体,保留对抗原的特异性结合的抗体片段,包括但不限于Fab、Fv、scFv、和Fd片段、嵌合抗体、人源化抗体、单链抗体、双特异性抗体、和包含抗体的抗原结合部分和非抗体蛋白的融合蛋白。在任何需要的情况下,抗体可以进一步与其它部分,诸如特异性结合配对成员中的一员,例如生物素或亲和素(生物素-亲和素特异性结合配对成员中的一员)等缀合。
本发明所述用语“抗原”是指能够刺激机体产生免疫应答,并能与免疫应答产物抗体和致敏淋巴细胞在体内外结合,发生免疫效应的物质。
本发明所述用语“结合”指由于例如共价、静电、疏水、离子和/或氢键等相互作用,包括但不限于如盐桥和水桥等相互作用引起的两个分子间的直接联合。
本发明所述用语“特异性结合”,是指两种物质之间的相互辨别和选择性结合反应,从立体结构角度上说就是相应的反应物之间构象的对应性。在本发明公开的技术思想下,特异性结合反应的检测方法包括但不限于:双抗体夹心法、竞争法、中和竞争法、间接法或捕获法。
Ⅱ.具体实施方案
下面将结合实施例更详细地说明本发明。
本领域技术人员通常认为,微球的粒径尺寸越均一,利用该微球进行的均相化学发光检测的性能就越好。因此目前针对均相化学发光中采用的微球的研究趋于获得更均一粒径的微球。本申请的发明人通过研究后发现,采用粒径尺寸均一的微球进行均相化学发光检测时,检测结果的灵敏度和检测量程难以同时保障。但是通过采用粒径尺寸均一性合适的微球(如微球粒径分布的变异系数>5%),反而既能保障光激化学发光检测的灵敏度,又能拓宽检测量程。
因此,本发明所涉及的供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途,其中所述方法包括:将来自主体的体液与受体试剂和供体试剂相接触,反应后生成待测混合物;用激发光至少一次激发所述待测混合物,检测由此产生的化学发光的信号强度;根据所述化学发光的信号强度定量计算所述体液中至少一种心肌标志物的浓度,从而判断主体是否患有心肌损伤;
其中,所述供体试剂包含能够在激发状态下生成活性氧的供体颗粒,所述供体颗粒包括第一载体,所述第一载体的内部填充有敏化剂,所述第一载体的表面化学键合特异性结合配对成员中的一员;
所述心肌标志物选自肌钙蛋白T、肌钙蛋白I、肌钙蛋白激酶同工酶、肌红蛋白、白介素6和乳酸脱氢中的一种或多种。
在本发明的一些实施方式中,所述第一载体的表面没有包被或连接有多糖物质,其直接化学键合特异性结合配对成员中的一员。
在本发明的另一些实施方式中,所述第一载体的表面带有键合官能团,所述键合官能团用于将特异性结合配对成员中的一员化学键合在所述第一载体的表面。
在本发明的一些实施方式中,所述键合官能团选自胺基、酰胺基、羟基、醛基、羧基、马来酰亚胺基和巯基;优选选自醛基和/或羧基。
在本发明的一些实施方式中,所述第一载体表面的键合官能团的含量为100~500nmol/mg,优选为200~400nmol/mg。
在本发明的一些实施方式中,所述第一载体的表面包被至少两个连续多糖层的涂层,其中第一多糖层与第二多糖层自发关联。
在本发明的另一些实施方式中,所述连续多糖层中的每一层自发地与前一多糖层中的每一层相关联。
在本发明的一些实施方式中,所述多糖具有侧基官能团,所述连续多糖层的所述官能团与所述前一多糖层的所述官能团所带电荷相反。
在本发明的另一些实施方式中,所述多糖具有侧基官能团,并且所述连续多糖层通过所述官能团与所述前一多糖层的所述官能团之间的反应与所述前一多糖层共价连接。
在本发明的一些实施方式中,所述连续多糖层的所述官能团在胺官能团和胺反应性官能团之间交替。
在本发明的另一些实施方式中,所述胺反应性官能团是醛基或羧基。
在本发明的一些实施方式中,所述第一多糖层自发地与所述第一载体相关联。
在本发明的另一些实施方式中,所述涂层的最外一层多糖层具有至少一个侧基官能团。
在本发明的一些实施方式中,所述涂层的最外一层多糖层的侧基官能团选自醛基、羧基、巯基、氨基、羟基和马来胺基中的至少一种;优选选自醛基和/或羧基。
在本发明的另一些实施方式中,所述涂层的最外一层多糖层的侧基官能团直接地或间接地化学键合特异性结合配对成员中的一员结合。
在本发明的一些实施方式中,所述多糖选自含有三个或更多个未修饰或修饰的单糖单元的碳水化合物;优选选自葡聚糖、淀粉、糖原、菊粉、果聚糖、甘露聚糖、琼脂糖、半乳聚糖、羧基葡聚糖和氨基葡聚糖;更优选选自葡聚糖、淀粉、糖原和聚核糖。
在本发明的一些实施方式中,所述第一载体的粒径选自100~400nm,优选为150~350nm,更优选为180~220nm。
在本发明的另一些实施方式中,所述第一载体为磁性或非磁性的,优选为非磁性的。
在本发明的一些实施方式中,所述第一载体的形状选自带、片、棒、管、孔、微滴定板、珠子、粒子和微球;优选为微球。
在本发明的另一些实施方式中,所述第一载体的材质选自天然的、人工合成的或改性天然存在的聚合物;优选为人工合成的聚合物。
在本发明的一些具体实施方式中,所述第一载体的材质选自琼脂糖、纤维素、硝化纤维素、醋酸纤维素、聚氯乙烯、聚苯乙烯、聚乙烯、聚丙烯、聚(4-甲基丁烯)、聚丙烯酰胺、聚甲基丙烯酸酯、聚对苯二甲酸乙二醇酯、尼龙、聚丁酸乙烯或聚丙烯酸酯;优选选自聚苯乙烯、聚丙烯、聚(4-甲基丁烯)、聚丙烯酰胺、聚甲基丙烯酸酯、聚对苯二甲酸乙二醇酯或聚丙烯酸酯。
在本发明的一些实施方式中,所述第一载体为聚苯乙烯乳胶微球。
在本发明的另一些实施方式中,所述敏化剂是光活化的光敏剂和/或化学活化的引发剂,优选为光活化的光敏剂。
在本发明的一些实施方式中,所述敏化剂选自亚甲基蓝、玫瑰红、卟啉、酞菁和叶绿素。
在本发明的另一些实施方式中,所述特异性结合配对成员选自抗体、抗体片段、配体、寡核苷酸、寡核苷酸结合蛋白、凝集素、半抗原、抗原、免疫球蛋白结合蛋白、抗生物素蛋白、亲和素或生物素所组成的一对能够相互特异性结合的物质。
在本发明的一些实施方式中,所述特异性结合配对成员为亲和素-生物素。
在本发明的另一些实施方式中,所述亲和素选自卵白亲和素、链霉亲和素、卵黄亲和素、中性亲和素和类亲和素,优选为中性亲和素和/或链霉亲和素。
在本发明的一些实施方式中,所述亲和素通过氨基与所述第一载体表面的醛基反应形成席夫碱的方式化学键合在所述第一载体的表面。
在本发明的一些实施方式中,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥5%。
在本发明的另一些实施方式中,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥8%;优选地,控制所述供体颗粒在所述供试剂中的粒径分布变异系数C.V值≥10%。
在本发明的一些实施方式中,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≤40%;更进一步优选地,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≤20%。
值得注意的是,本发明所述的供体颗粒粒径分布变异系数C.V值指的是供体颗粒包被上所需的物质后的粒径分布变异系数C.V值。
在本发明的一些具体实施方式中,所述供体颗粒在受体试剂中的粒径分布变异系数C.V值可以为5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、25%、30%、35%或40%等。
在本发明的另一些实施方式中,所述供体颗粒在所述供体试剂中的粒径分布呈现多分散性。
在本发明的一些实施方式中,所述供体颗粒在所述供体试剂中的浓度为10μg/ml~1mg/ml,优选为20μg/ml~500μg/ml,更优选为50μg/ml~200μg/ml。
在本发明的另一些实施方式中,所述供体试剂中还包括PH值为7.0~9.0的缓冲溶液,所述供体颗粒悬浮于所述缓冲溶液中。
在本发明的一些实施方式中,所述缓冲溶液中含有多糖,所述多糖选自含有三个或更多个未修饰或修饰的单糖单元的碳水化合物,优选选自葡聚糖、淀粉、糖原、菊粉、果聚糖、甘露聚糖、琼脂糖、半乳聚糖、羧基葡聚糖和氨基葡聚糖;更优选选自葡聚糖、淀粉、糖原和聚核糖。
在本发明的另一些实施方式中,所述葡聚糖的分子量分布Mw选自10000~1000000KDa,优选选自100000~800000KDa,更优选选自300000~700000KDa。
在本发明的一些实施方式中,所述缓冲溶液中葡聚糖的含量为0.01~1wt%,优选为0.05~0.5wt%。
在本发明的一些实施方式中,所述受体颗粒在受体试剂中的粒径分布变异系数C.V值≥5%。
在本发明的一些实施方式中,所述受体颗粒在受体试剂中的粒径分布变异系数C.V值≥8%;优选地,所述受体颗粒在受体试剂中的粒径分布变异系数C.V值≥10%。
在本发明的另一些实施方式中,所述受体颗粒在受体试剂中的粒径分布变异系数C.V值≤40%;更进一步优选地,所述受体颗粒在受体试剂中的粒径分布变异系数C.V值≤20%。
值得注意的是,本发明所述的受体颗粒粒径分布变异系数C.V值指的是受体颗粒包被上所需的物质后的粒径分布变异系数C.V值。
在本发明的一些具体实施方式中,所述受体颗粒在受体试剂中的粒径分布变异系数C.V值可以为5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、25%、30%、35%或40%等。
在本发明的一些实施方式中,所述受体颗粒在受体试剂中的粒径分布呈现多分散性。
在本发明的一些具体实施方式中,所述粒径分布变异系数C.V值是通过Gaussian分布计算得到。
在本发明的另一些具体实施方式中,利用Gaussian分布分析法,所述受体颗粒在受体试剂中Gaussian分布曲线呈现两个或两个以上的峰。
在本发明的一些实施方式中,所述受体试剂中包含至少两种平均粒径分布的受体颗粒。
在本发明的另一些实施方式中,所述受体试剂中的受体颗粒包括第二载体,所述第二载体的内部填充有发光组合物,所述第二载体的表面包被有至少一层多糖层,所述多糖层的表面连接有报告分子,所述报告分子能够与待测目标分子特异性结合。
在本发明的一些实施方式中,所述载体的表面包被至少两个连续多糖层的涂层,其中第一多糖层与第二多糖层自发关联。
在本发明的另一些实施方式中,所述连续多糖层中的每一层自发地与前一多糖层中的每一层相关联。
在本发明的一些具体实施方式中,所述多糖具有侧基官能团,所述连续多糖层的所述官能团与所述前一多糖层的所述官能团所带电荷相反。
在本发明的另一些具体实施方式中,所述多糖具有侧基官能团,并且所述连续多糖层通过所述官能团与所述前一多糖层的所述官能团之间的反应与所述前一多糖层共价连接。
在本发明的一些实施方式中,所述连续多糖层的所述官能团在胺官能团和胺反应性官能团之间交替。
在本发明的另一些实施方式中,所述胺反应性官能团是醛基或羧基。
在本发明的一些实施方式中,所述第一多糖层自发地与所述载体相关联。
在本发明的另一些实施方式中,所述涂层的最外一层多糖层具有至少一个侧基官能团。
在本发明的一些实施方式中,所述涂层的最外一层多糖层的侧基官能团选自醛基、羧基、巯基、氨基、羟基和马来胺基中的至少一种;优选选自醛基和/或羧基。
在本发明的另一些实施方式中,所述涂层的最外一层多糖层的侧基官能团直接地或间接地与报告分子连接,所述报告分子能够与待测目标分子特异性结合。
在本发明的一些实施方式中,所述涂层的最外一层多糖层的侧基官能团直接地或间接地与特异性结合配对成员中的一员结合。
在本发明的一些实施方式中,所述发光组合物包含化学发光化合物和金属螯合物。
在本发明的另一些实施方式中,所述化学发光化合物选自烯烃化合物,优选选自二甲基噻吩、双丁二酮化合物、二氧杂环己烯、烯醇醚、烯胺、9-亚烷基苍耳烷、9-亚烷基-N-9,10二氢化吖啶、芳基乙醚烯、芳基咪唑和光泽精以及它们的衍生物,更优选选自二甲基噻吩及其衍生物。
在本发明的一些实施方式中,所述金属螯合物的金属是稀土金属或VIII族金属,优选选自铕、铽、镝、钐、锇和钌,更优选为铕。
在本发明的另一些实施方式中,所述金属螯合物包含选自下列的螯合剂:4’-(10-甲基-9-蒽基)-2,2’:6’2”-联三吡啶-6,6”-二甲胺]四乙酸(MTTA)、2-(1’,1’,2’,2’,3’,3’-七氟-4’,6’-己二酮-6’-基)-萘(NHA)、4,4’-二(2”,3”,3”-七氟-4”,6”-己二酮-6”-基)-邻-三联苯(BHHT)、4,4’-二(1”,1”,1”,2”,2”,3”,3”-七氟-4”,6”-己二酮-6”-基)-氯代磺基-邻-三联苯(BHHCT)、4,7-联苯-1,10-菲咯啉(DPP)、1,1,1-三氟丙酮(TTA)、3-萘酰-1,1,1-三氟丙酮(NPPTA)、萘基三氟丁二酮(NTA)、三辛基氧化膦(TOPO)、三苯基氧化膦(TPPO)、3-苯甲酰-1,1,1-三氟丙酮(BFTA)、2,2-二甲基-4-全氟丁酰-3-丁酮(fod)、2,2’-联吡啶(bpy)、联吡啶基羧酸、氮杂冠醚、氮杂穴状配体和三辛基氧化膦以及它们的衍生物。
为进一步提高最终检测结果的准确性和待测样品的稳定性,在本发明的一些具体实施方式中,来自主体的体液利用稀释液稀释后再与受体试剂和供体试剂相接触。
在本发明的一些实施方式中,所述化学发光的检测波长为520~620nm;优选为610~620nm,更优选为615nm。
在本发明的另一些实施方式中,采用600~700nm的红色激发光进行激光照射;优选采用640-680nm的红色激发光进行激光照射;更优选采用660nm的红色激发光进行激光照射。
在本发明的一些实施方式中,所述受体颗粒在受体试剂中的浓度为1ug/mL-1000ug/mL;优选为10ug/mL-500ug/mL;更优选为20ug/mL-200ug/mL。
在本发明的另一些实施方式中,所述活性氧为单线态氧。
在本发明的另一些实施方式中,所述来自主体的体液包括但不限于:血液、血清、血浆、痰液、淋巴液、精液、阴道粘液、粪便、尿液或脊髓液。
Ⅲ.实施例
实施例1:表面不包被或连接有多糖的供体颗粒及供体试剂的制备(一)醛基聚苯乙烯乳胶微球的制备
a)准备100ml的三口烧瓶,加入40mmol苯乙烯、5mmol丙烯醛、10ml水,搅拌10min后通N2 30min。
b)称取0.11g过硫酸铵和0.2g氯化钠,溶于40ml水中配置成水溶液。将该水溶液加入到步骤a)的反应体系中,继续通N2 30min。
c)将反应体系升温至70℃,反应15小时。
d)将反应完成后的乳液冷却至室温,用合适的滤布过滤。得到的乳液用去离子水过次离心沉降清洗,直至离心初的上清液的电导率接近去离子水,然后用水稀释,以乳液形式保存。
e)由纳米粒度仪测得该乳胶微球粒径的高斯分布平均粒径为201.3nm,变异系数(C.V.)=8.0%,Gaussian分布图如图1所示,Nicomp分布为多峰(如图2所示)。由电导滴定法测得该乳胶微球醛基含量为260nmol/mg。
(二)敏化剂的填充
a)准备25ml的圆底烧瓶,加入0.11g酞菁铜,10ml N,N-二甲基甲酰胺,磁力搅拌,水浴升温至75℃,获得光敏剂溶液。
b)准备100ml的三口烧瓶,加入10ml 95%乙醇、10ml水和10ml浓度为10%、(一)中获得的醛基聚苯乙烯乳胶微球,磁力搅拌,水浴升温至70℃。
c)将步骤a)中的溶液缓慢滴加至步骤b)中的三口烧瓶中,70℃反应2小时后停止搅拌,自然冷却,获得乳液。
d)将上述乳液离心1小时,30000G,离心后弃去上清液,用50%乙醇重新悬浮。重复离心清洗三次后用pH值=10的50mM CB缓冲液重新悬浮,使其终浓度为20mg/ml。
(三)微球表面修饰亲和素,制备供体试剂
a)微球混悬液处理:吸取一定量步骤(二)制备的微球于高速冷冻离心机中离心,弃去上清,加入一定量MES缓冲液,超声细胞破碎仪上超声至颗粒重新悬浮,加入MES缓冲液调节微球浓度至100mg/ml。
b)亲和素溶液配制:称量一定量链霉亲和素,加MES缓冲液溶解至8mg/ml。
c)混合:将处理好的微球混悬液、8mg/ml的亲和素以及MES缓冲液,以2:5:1的体积比进行混合,迅速混匀,得到反应液。
d)反应:MES缓冲液配制25mg/ml的NaBH3CN溶液,按照与反应液1:25的体积比加入,迅速混匀。37℃旋转反应48小时。
e)封闭:MES缓冲液配制75mg/ml的Gly溶液以及25mg/ml的NaBH3CN溶液,按照与反应液2:1:10的体积比加入上述溶液中,混匀,37℃旋转反应2小时。再加入200mg/ml的BSA溶液(MES缓冲液),其与反应液体积比为5:8,迅速混匀,37℃旋转反应16小时。
f)清洗:向反应好的溶液中加入MES缓冲液,高速冷冻离心机离心,弃上清,加入新鲜MES缓冲液超声法重新悬浮,再次离心,如此清洗3次,最后用少量的供体颗粒缓冲液进行悬浮,测定固含量,并用供体颗粒缓冲液调节浓度至150μg/ml,获得包含供体颗粒的供体试剂。
g)由纳米粒度仪测得供体颗粒的高斯分布平均粒径为227.7nm,变异系数(C.V.)=6.5%,具体如图3所示。
实施例2:包被有多糖的供体颗粒及供体试剂的制备
醛基聚苯乙烯乳胶微球的制备以及敏化剂的填充过程同实施例1中(一)和(二)的制备步骤。
(一)氨基葡聚糖的制备
a)将500mL四口烧瓶置于油浴锅中,装好冷凝管,通氮气。
b)依次加入10g平均分子量分布为500000KDa的葡聚糖、100ml去离子水、2g NaOH、10g N-(2,3-环氧丙基)邻苯二甲酰亚胺,机械搅拌。
c)90℃油浴2小时后关闭加热,维持搅拌自然冷却。
d)反应混合液在2L甲醇中析出主要混合物,收集固体,烘干。
e)将200mL四口烧瓶置于油浴锅中,装好冷凝管,通氮气。
f)依次加入烘干后的固体、100mL去离子水,1.8g乙酸钠、5mL 50%水合肼后调pH至4,机械搅拌。
g)85℃油浴1小时后关闭加热,维持搅拌自然冷却。
h)反应液pH调至中性后过滤,收集滤液。
i)滤液置于透析袋中,去离子水4℃透析2天,每天换水3-4次。
j)透析完成后冷冻干燥,得氨基葡聚糖固体9.0g。
k)用TNBSA法测得氨基含量为0.83mmol/g。
(二)醛基葡聚糖的制备
a)称取10g平均分子量分布为500000KDa的葡聚糖置于250烧杯中,加入100mL0.1M/pH=6.0的磷酸盐缓冲液,室温搅拌溶解。
b)称取1.8g偏高碘酸钠置于50mL烧杯中,加入10毫升0.1M/pH=6.0的磷酸盐缓冲液,室温搅拌溶解。
c)将偏高碘酸钠溶液缓慢滴加至葡聚糖溶液中,反应至无气泡产生后继续搅拌1小时。
d)将反应混合液置于透析袋中,去离子水4℃透析2天,每天换水3-4次。
e)透析完成后冷冻干燥,得醛基葡聚糖固体9.6g。
f)用BCA Kit测得醛基含量为0.94mmol/g。
(三)微球包被葡聚糖
a)取50mg氨基葡聚糖固体于20mL圆底烧瓶中,加入5mL 50mM/pH=10碳酸盐缓冲液,30℃避光搅拌溶解。
b)取100mg供体颗粒,加入到氨基葡聚糖溶液中搅拌2小时。
c)将10mg硼氢化钠溶于0.5mL 50mM/pH=10碳酸盐缓冲液后滴加到上述反应液中,30℃避光反应过夜。
d)将反应后的混合液30000G离心后弃去上清液,加入50mM/pH=10碳酸盐缓冲液超声分散。重复离心清洗三次后用50mM/pH=10碳酸盐缓冲液定容,使其终浓度为20mg/ml。
e)取100mg醛基葡聚糖固体于20mL圆底烧瓶中,加入5mL 50mM/pH=10碳酸盐缓冲液,30℃避光搅拌溶解。
f)将上述颗粒加入到醛基葡聚糖溶液中搅拌2小时。
g)将15mg硼氢化钠溶于0.5mL 50mM/pH=10碳酸盐缓冲液后滴加到上述反应液中,30℃避光反应过夜。
h)将反应后的混合液30000G离心后弃去上清液,加入50mM/pH=10碳酸盐缓冲液超声分散。重复离心清洗三次后用50mM/pH=10碳酸盐缓冲液定容,使其终浓度为20mg/ml。
i)由纳米粒度仪测得该微球的高斯分布平均粒径为235.6nm,变异系数(C.V.)=8.1%,具体如图4所示。
(四)微球表面修饰亲和素,制备供体试剂
h)微球混悬液处理:吸取一定量步骤(三)制备的微球高速冷冻离心机中离心,弃去上清,加入一定量MES缓冲液,超声细胞破碎仪上超声至微球重新悬浮,加入MES缓冲液调节供体颗粒浓度至100mg/ml。
i)亲和素溶液配制:称量一定量中性亲和素,加MES缓冲液溶解至8mg/ml。
j)混合:将处理好的微球混悬液、8mg/ml的亲和素以及MES缓冲液,以2:5:1的体积比进行混合,迅速混匀,得到反应液。
k)反应:MES缓冲液配制25mg/ml的NaBH3CN溶液,按照与反应液1:25的体积比加入,迅速混匀。37℃旋转反应48小时。
l)封闭:MES缓冲液配制75mg/ml的Gly溶液以及25mg/ml的NaBH3CN溶液,按照与反应液2:1:10的体积比加入上述溶液中,混匀,37℃旋转反应2小时。再加入200mg/ml的BSA溶液(MES缓冲液),其与反应液体积比为5:8,迅速混匀,37℃旋转反应16小时。
m)清洗:向反应好的溶液中加入MES缓冲液,高速冷冻离心机离心,弃上清,加入新鲜MES缓冲液超声法重新悬浮,再次离心,如此清洗3次,最后用少量的供体颗粒缓冲液进行悬浮,测定固含量,并用供体颗粒缓冲液调节浓度至150μg/ml,获得包含供体颗粒的供体试剂。
n)由纳米粒度仪测得供体颗粒的高斯分布平均粒径为249.9nm,变异系数(C.V.)=11.6%,具体如图5所示。
实施例3:受体颗粒的制备
1.醛基聚苯乙烯乳胶微球的制备及表征过程
1)准备100ml的三口烧瓶,加入40mmol苯乙烯、5mmol丙烯醛、10ml水,搅拌10min后通N2 30min;
2)称取0.11g过硫酸铵和0.2g氯化钠,溶于40ml水中配置成水溶液。将该水溶液加入到步骤1的反应体系中,继续通N2 30min;
3)将反应体系升温至70℃,反应15小时;
4)将反应完成后的乳液冷却至室温,用合适的滤布过滤。得到的乳液用去离子水过次离心沉降清洗,直至离心初的上清液的电导率接近去离子水,然后用水稀释,以乳液形式保存;
5)由纳米粒度仪测得此时乳胶微球粒径的Gaussian分布平均粒径为202.2nm,变异系数(C.V.)=4.60%,Gaussian分布曲线如图6所示。由电导滴定法测得该乳胶微球醛基含量为280nmol/mg。
2.在微球内部填埋发光组合物的过程及表征
1)准备25ml的圆底烧瓶,加入0.1g二甲基噻吩衍生物和0.1g铕(Ⅲ)配合物(MTTA-EU3+),10ml 95%乙醇,磁力搅拌,水浴升温至70℃,获得配合物溶液;
2)准备100ml的三口烧瓶,加入10ml 95%乙醇、10ml水和10ml浓度为10%、步骤1中获得的醛基聚苯乙烯乳胶微球,磁力搅拌,水浴升温至70℃;
3)将步骤1)中的配合物溶液缓慢滴加至步骤2)中的三口烧瓶中,70℃反应2小时后停止搅拌,自然冷却;
4)将上述乳液离心1小时,30000G,离心后弃去上清液,得到填埋有发光组合物的醛基聚苯乙烯微球。
5)由纳米粒度仪测得此时微球粒径的Gaussian分布平均粒径为204.9nm,变异系数(C.V.)=5.00%(如图7所示)
3.在微球表面包被多糖涂层的过程及表征
1)取50mg氨基葡聚糖固体于20mL圆底烧瓶中,加入5mL 50mM/pH=10碳酸盐缓冲液,30℃避光搅拌溶解;
2)取100mg步骤2中已制备好的填埋有发光组合物的醛基聚苯乙烯微球,加入到氨基葡聚糖溶液中搅拌2小时;
3)将10mg硼氢化钠溶于0.5mL 50mM/pH=10碳酸盐缓冲液后滴加到上述反应液中,30℃避光反应过夜;
4)将反应后的混合液30000G离心后弃去上清液,加入50mM/pH=10碳酸盐缓冲液超声分散。重复离心清洗三次后用50mM/pH=10碳酸盐缓冲液定容,使其终浓度为20mg/ml;
5)取100mg醛基葡聚糖固体于20mL圆底烧瓶中,加入5mL 50mM/pH=10碳酸盐缓冲液,30℃避光搅拌溶解;
6)将上述微球加入到醛基葡聚糖溶液中搅拌2小时;
7)将15mg硼氢化钠溶于0.5mL 50mM/pH=10碳酸盐缓冲液后滴加到上述反应液中,30℃避光反应过夜;
8)将反应后的混合液30000G离心后弃去上清液,加入50mM/pH=10碳酸盐缓冲液超声分散。重复离心清洗三次后用50mM/pH=10碳酸盐缓冲液定容,使其终浓度为20mg/ml。
9)由纳米粒度仪测得此时微球粒径的Gaussian分布平均粒径为241.6nm,变异系数(C.V.)=12.90%(如图8所示)。
4.肌钙蛋白I抗体的偶联过程
1)将配对肌钙蛋白I抗体透析至PH值=10的50mM CB缓冲液,测得浓度为1mg/ml。
2)在2ml离心管中加入0.5ml步骤3中获得的微球以及0.5ml步骤1)获得的配对抗体Ⅰ,混匀后加入100μl 10mg/ml NaBH4溶液(50mM CB缓冲液),2-8℃反应4小时。
3)反应完毕后加入0.5ml 100mg/ml BSA溶液(50mM CB缓冲液),2-8℃反应2小时。
4)反应完毕后将离心45min,30000G,离心后弃去上清液,用50mM MES缓冲液重新悬浮。重复离心清洗四次,并用缓冲液稀释至终浓度为50μg/ml,获得偶联抗体Ⅰ的受体颗粒溶液。
5)由纳米粒度仪测得此时受体粒径的Gaussian分布平均粒径值为253.1nm,变异系数(C.V值)=9.54%(如图9所示)。
实施例4:利用实施例1中的方法制备包含如下一系列供体颗粒的供体试剂
供体试剂1:Gaussian分布曲线中供体颗粒的平均粒径为226.5nm,粒径分布变异系数C.V值=3.8;Nicomp分布为单峰。
供体试剂2:Gaussian分布曲线中供体颗粒的平均粒径为225.3nm,粒径分布变异系数C.V值=4.6;Nicomp分布为单峰。
供体试剂3:Gaussian分布曲线中供体颗粒的平均粒径为225.2nm,粒径分布变异系数C.V值=5.0;Nicomp分布为单峰。
供体试剂4:Gaussian分布曲线中供体颗粒的平均粒径为226.7nm,粒径分布变异系数C.V值=8.1;Nicomp分布为单峰。
供体试剂5:Gaussian分布曲线中供体颗粒的平均粒径为227.8nm,粒径分布变异系数C.V值=15.6;Nicomp分布为单峰。
供体试剂6:Gaussian分布曲线中供体颗粒的平均粒径为225.9nm,粒径分布变异系数C.V值=26.1;Nicomp分布为单峰。
供体试剂7:Gaussian分布曲线中供体颗粒的平均粒径为225.1nm,粒径分布变异系数C.V值=32.4;Nicomp分布为单峰。
实施例5:一种光激化学发光免疫分析仪
本实施例所述光激化学发光免疫分析仪的原理为:疑似包含cTnI标志物的待测样品中的待测目标分子与供体颗粒和受体颗粒反应形成免疫复合物,这种相互作用会将供体颗粒和受体颗粒拉近,在激光(波长为680nm)的照射下,供体颗粒中的敏化剂将周围环境中的氧气转化为更为活跃的单体氧。单体氧扩散至受体颗粒,与受体颗粒中的化学发光剂反应,进一步激活了同样在受体颗粒上的发光基团,使之发出光,波长为520-620nm。单体氧的半衰期为4μSec,在溶液中的扩散距离为200nm左右。如果生物分子不存在相互作用,单线态氧无法扩散到受体颗粒,则不会有光信号产生。故通过测量混合物发出的光强度,能够计算出待测样品中的待测目标分子的浓度。其中,所述供体颗粒包括第一载体,所述第一载体的内部填充有敏化剂,所述第一载体的表面化学键合特异性结合配对成员中的一员。
本实施例所述光激化学发光免疫分析仪的一个优选结构包括如下组件:
试剂加样模块,其用于向反应容器中添加待测样品和/或受体试剂、供体试剂;其中所述供体试剂包括供体颗粒,所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥5%;
孵育模块,其用于为反应容器中均相化学发光反应提供合适的温度环境;所述孵育模块可以采用金属浴、水浴或油浴等方式;
检测模块,其包括激光激发器以及用于光信号检测的光子检测器(PMT),用于检测均相化学发光反应产生的化学发光信号。
其中,所述试剂加样模块、孵育模块、检测模块均与所述电路控制模块电连接。在电路控制模块的控制下,所述孵育模块用于调整免疫反应物质的温度,所述试剂加样模块用于转移所述反应容器内的物质,所述检测模块用于发射激光,并用于测量待测样品发出的光强度。
实施例6:上机检测结果及分析(检测物质:肌钙蛋白I)
(1)利用实施例5中的分析仪将实施例1和实施例2中的供体试剂分别同时与实施例3中的受体试剂上机,检测肌钙蛋白I,检测结果如表1所示。本实例所用的cTnI定量测定检测试剂盒(光激化学发光法)由包含第一抗肌钙蛋白I抗体包被的受体颗粒的试剂1(R1’)、包含生物素标记的第二抗肌钙蛋白I抗体的试剂2(R2’)组成,另外包括含有供体颗粒的通用液(R3’)。其中,R1’是利用实施例3中受体颗粒制备得到的受体试剂;R3’是利用实施例1和实施例2中供体颗粒制备得到的供体试剂。
表1
从表1的结果可知,本申请所提供的分析方法的灵敏度和检测上限均较为优异。且利用实施例1中的供体试剂进行检测的分析方法的灵敏度和检测上限均优于利用实施例2中的供体试剂进行检测的分析方法的灵敏度和检测上限。可见,采用表面不包被多糖的供体颗粒的性能更加优异。
(2)实施例4中的供体试剂分别同时与实施例3中的受体试剂上机检测结果
本实例所用的肌钙蛋白I定量测定检测试剂盒(光激化学发光法)由包含第一抗cTnI抗体包被的受体颗粒的试剂1(R1’)、包含生物素标记的第二抗cTnI抗体的试剂2(R2’)组成,另外包括含有供体颗粒的通用液(R3’)。其中,R1’是利用实施例3中受体颗粒制备得到的受体试剂;R3’是利用实施例4中制备得到的一系列供体试剂。
检测过程是在博阳生物科技(上海)有限公司开发的全自动光激化学发光分析系统(LiCA HT)上完成并输出检测结果,具体实验步骤如下:
1.在8×12的白板中分别加入混匀的样本、已配制的R1’和R2’;
2.将加好样的白板放入LiCA HT仪器中反应,采用的反应模式如下;
(1)将40ul样本、15ul R1’和15ul R2’混匀;
(2)37℃温育8min;
(3)加入160ul的R3’;
(4)37℃温育2min;
(5)激发读数,具体检测结果如下表2所示。
表2
从表2可知,当采用的供体颗粒粒径分布的变异系数大于等于5%时,利用含该供体颗粒的供体试剂上机检测时,既有较合适的灵敏度,又有很宽的检测量程。
实施例7:正常人与疑似患有心肌损伤患者的cTnI的临床检测
本实施例检测40份的临床样本(13个阴性样本和27个阳性样本),所用的cTnI定量测定检测试剂盒(光激化学发光法)包括:包含第一抗cTnI单克隆抗体包被的受体颗粒的试剂1(R1)、包含生物素标记的第二抗cTnI单克隆抗体的试剂2(R2)以及含有供体颗粒的光激化学发光分析系统通用液(R3)。其中,试剂R3中供体颗粒的浓度为100ug/ml,供体颗粒在试剂R3中的粒径分布变异系数C.V值=11%。
检测过程是在博阳生物科技(上海)有限公司开发的全自动光激化学发光分析系统(LiCA HT)上完成并输出检测结果,具体检测步骤包括:
a.在反应孔中加入临床样本;
b.在反应孔中依次加入R1和R2;
c.温育;
d.在反应孔中加入R3;
e.温育;
f.两次激光照射反应孔并计算每孔发光光子量;
g.计算待测样本中的cTnI浓度。
当临床样本中存在cTnI标志物时,cTnI同时与包被第一抗cTnI单克隆抗体的受体颗粒以及生物素标记的第二抗cTnI单克隆抗体特异性结合,并于受体颗粒表面形成双抗体夹心复合物;此时,如加入链霉亲和素修饰的供体颗粒,生物素与链霉亲和素结合而使得两种颗粒相互靠近,在激发光源的激发下,供体颗粒释放单线态氧,在溶液中碰到受体颗粒后产生化学发光,从而更进一步激发同一个颗粒上的荧光基团产生级联放大反应产生荧光。此时,存在的cTnI标志物含量越多,则荧光强度越强,根据发光的强弱定量检测患者血清中cTnI的量,具体检测结果如下表3所示:
表3
/>
经数据比对,Abbott测值与本实施例7上述测值相关性为0.9973,斜率为1.0495。样本1-13号为正常体检病人,分布范围1.77pg/ml~25.3pg/ml,中值为6.77pg/ml;样本14-40号为鉴定有心肌损伤病人,分布范围30.94pg/ml~29896.88pg/ml,中值为450.54pg/ml。
心肌肌钙蛋白I(cTnI)在健康人的血清或血浆中浓度较低,患者胸痛发作后4-8小时,坏死的心肌细胞大量释放cTNI进入血液循环系统,12-48小时达峰值,严重心梗病人数天后cTnI仍然维持在较高水平,是诊断心肌损伤和心肌梗死的最优标志物。根据本发明的实施7的数据可以表明,将本发明所述的供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途具有可行性,利用发明所述的供体试剂以及相应的方法测定主体体液中cTnI标志物的定量结果可用于诊断心肌损伤和心肌梗死。
实施例8:正常人与疑似患有心肌损伤患者的CKMB的临床检测
本实施例检测40份的临床样本,所用的CKMB定量测定检测试剂盒(光激化学发光法)包括:包含第一抗CKMB抗体包被的受体微粒的试剂1(R1’)、包含生物素标记的第二抗CKMB抗体的试剂2(R2’)以及含有供体颗粒的通用液(R3’)。其中,试剂R3中供体颗粒的浓度为100ug/ml,供体颗粒在试剂R3中的粒径分布变异系数C.V值=6.5%。
具体实验步骤如下:
1.挑选40份的临床样本,平衡至室温,混匀;
2.在8×12的白板中分别加入混匀的样本、已配制的R1’和R2’;
3.将加好样的白板放入LiCA HT仪器中反应,采用的反应模式如下;
(1)将40ul样本、15ul R1’和15ul R2’混匀;
(2)37℃温育8min;
(3)加入160ul通用液(R3’);
(4)37℃温育2min;
(5)多次激发读数,具体检测结果如下表4所示。
表4
/>
经比对,Roche测值与博阳测值相关性为0.9877,斜率为0.9192。样本1-13号为正常体检病人,分布范围0.23ng/ml~3.88ng/ml,中值为1.27ng/ml;样本14-40号为鉴定有心肌损伤病人,分布范围6.53ng/ml~150.90ng/ml,中值为41.88ng/ml。
肌酸激酶同工酶(CK-MB)是WHO推荐的判断心肌梗死三个标准之一。CK-MB是肌酸激酶的三个二聚体同工酶之一,在心肌中比例较高,心肌细胞坏死时进入血液循环,心梗患者发病后3-4小时后浓度升高,18-24小时达峰,72小时内可恢复正常。根据本发明的实施8的数据可以表明,将本发明所述的供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途具有可行性,利用发明所述的供体试剂以及相应的方法测定主体体液中CK-MB标志物的定量结果可用于诊断心肌损伤和心肌梗死。
实施例9:正常人与疑似患有心肌损伤患者的MYO的临床检测
本实施例检测40份的临床样本,所用的MYO定量测定检测试剂盒(光激化学发光法)包括:包含第一抗MYO抗体包被的受体微粒的试剂1(R1’)、包含生物素标记的第二抗MYO抗体的试剂2(R2’)以及含有供体颗粒的通用液(R3’)。其中,试剂R3中供体颗粒的浓度为120ug/ml,供体颗粒在试剂R3中的粒径分布变异系数C.V值=13.5%。
具体实验步骤如下:
1.挑选40份的临床样本,平衡至室温,混匀;
2.在8×12的白板中分别加入混匀的样本、已配制的R1’和R2’;
3.将加好样的白板放入LiCA HT仪器中反应,采用的反应模式如下;
(1)将40ul样本、15ul R1’和15ul R2’混匀;
(2)37℃温育8min;
(3)加入160ul通用液(R3’);
(4)37℃温育2min;
(5)激发读数,具体检测结果如下表5所示。
表5
/>
经比对,Roche测值与博阳测值相关性为0.994,斜率为0.954。样本1-13号为正常体检病人,分布范围23.36ng/ml~84.08ng/ml,中值为38.93ng/ml;样本14-40号为鉴定有心肌损伤病人,分布范围81.3ng/ml~1495.59ng/ml,中值为382.48ng/ml。
肌红蛋白(MYO)存在于心肌和骨骼肌中,体积小,心肌细胞坏死时能迅速扩散入血,1-2小时浓度就可升高,是急性心肌梗死的早期指标。心梗病人发病后24小时,MYO浓度可恢复正常,因此MYO可以用于诊断再发心肌梗死。根据本发明的实施9的数据可以表明,将本发明所述的供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途具有可行性,利用发明所述的供体试剂以及相应的方法测定主体体液中MYO标志物的定量结果可用于诊断心肌损伤和心肌梗死。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。

Claims (10)

1.一种供体试剂在制备用于体外诊断主体是否患有心肌损伤的方法所使用的试剂盒中的用途,其中所述方法包括:将来自主体的体液与受体试剂和供体试剂相接触,反应后生成待测混合物;用激发光至少一次激发所述待测混合物,检测由此产生的化学发光的信号强度;根据所述化学发光的信号强度定量计算所述体液中至少一种心肌标志物的浓度,从而判断主体是否患有心肌损伤;
其中,所述供体试剂包含能够在激发状态下生成活性氧的供体颗粒,所述供体颗粒包括第一载体,所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥5%,所述第一载体的内部填充有敏化剂,所述第一载体的表面化学键合特异性结合配对成员中的一员;
来自主体的体液利用稀释液稀释后再与受体试剂和供体试剂相接触;
所述心肌标志物选自肌钙蛋白T、肌钙蛋白I、肌钙蛋白激酶同工酶、肌红蛋白、白介素6和乳酸脱氢中的一种或多种。
2.根据权利要求1所述的用途,其特征在于,所述第一载体的表面没有包被或连接有多糖物质,其直接化学键合特异性结合配对成员中的一员。
3.根据权利要求1所述的用途,其特征在于,所述第一载体的表面带有键合官能团,所述键合官能团用于将特异性结合配对成员中的一员化学键合在所述第一载体的表面。
4.根据权利要求3所述的用途,其特征在于,所述键合官能团选自胺基、酰胺基、羟基、醛基、羧基、马来酰亚胺基和巯基;优选选自醛基和/或羧基。
5.根据权利要求3所述的用途,其特征在于,所述第一载体表面的键合官能团的含量为100~500nmol/mg,优选为200~400nmol/mg。
6.根据权利要求1所述的用途,其特征在于,所述第一载体的表面包被至少两个连续多糖层的涂层,其中第一多糖层与第二多糖层自发关联。
7.根据权利要求1~6中任意一项所述的用途,其特征在于,所述第一载体的粒径选自100~400nm,优选为150~350nm,更优选为180~220nm。
8.根据权利要求1~6中任意一项所述的用途,其特征在于,所述第一载体的材质选自琼脂糖、纤维素、硝化纤维素、醋酸纤维素、聚氯乙烯、聚苯乙烯、聚乙烯、聚丙烯、聚(4-甲基丁烯)、聚丙烯酰胺、聚甲基丙烯酸酯、聚对苯二甲酸乙二醇酯、尼龙、聚丁酸乙烯或聚丙烯酸酯;优选选自聚苯乙烯、聚丙烯、聚(4-甲基丁烯)、聚丙烯酰胺、聚甲基丙烯酸酯、聚对苯二甲酸乙二醇酯或聚丙烯酸酯。
9.根据权利要求1~6中任意一项所述的用途,其特征在于,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥8%;优选地,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≥10%;和/或,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≤40%;优选地,控制所述供体颗粒在所述供体试剂中的粒径分布变异系数C.V值≤20%。
10.根据权利要求1~6中任意一项所述的用途,其特征在于,所述受体试剂中的受体颗粒包括第二载体,所述第二载体的内部填充有发光组合物,所述第二载体的表面包被有至少一层多糖层,所述多糖层的表面连接有报告分子,所述报告分子能够与待测目标分子特异性结合。
CN202310589939.5A 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途 Pending CN116593712A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310589939.5A CN116593712A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910655736.5A CN112240936B (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310589939.5A CN116593712A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201910655736.5A Division CN112240936B (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途

Publications (1)

Publication Number Publication Date
CN116593712A true CN116593712A (zh) 2023-08-15

Family

ID=74167937

Family Applications (6)

Application Number Title Priority Date Filing Date
CN202310589939.5A Pending CN116593712A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN201910655736.5A Active CN112240936B (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310560453.9A Pending CN116593710A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310591804.2A Pending CN117074686A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310591086.9A Pending CN116577512A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310591073.1A Pending CN116593713A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途

Family Applications After (5)

Application Number Title Priority Date Filing Date
CN201910655736.5A Active CN112240936B (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310560453.9A Pending CN116593710A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310591804.2A Pending CN117074686A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310591086.9A Pending CN116577512A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途
CN202310591073.1A Pending CN116593713A (zh) 2019-07-19 2019-07-19 一种供体试剂在诊断主体心肌损伤中的用途

Country Status (1)

Country Link
CN (6) CN116593712A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092789A (zh) * 2021-04-15 2021-07-09 江苏优尼泰克生物科技有限公司 用于肌红蛋白检测的组合物及应用和磁微球电化学发光免疫检测试剂盒与检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL101945A (en) * 1991-05-22 1998-02-08 Behringwerke Ag Methods for determining an analyte using induced luminescence, and kits therefor
US7179660B1 (en) * 2000-03-06 2007-02-20 Dade Behring Marburg Gmbh Carriers coated with polysaccharides, their preparation and use
CN101251540B (zh) * 2008-03-26 2012-12-05 博阳生物科技(上海)有限公司 乙型肝炎病毒e抗原检测微粒、其制备及应用
CN109387499B (zh) * 2017-08-08 2021-03-26 华东师范大学 一种pd-l1探针及其制备方法和应用

Also Published As

Publication number Publication date
CN116593713A (zh) 2023-08-15
CN117074686A (zh) 2023-11-17
CN112240936B (zh) 2023-06-20
CN116593710A (zh) 2023-08-15
CN112240936A (zh) 2021-01-19
CN116577512A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CN116429757A (zh) 一种均相化学发光检测试剂盒及其应用
CN116754757A (zh) 一种用于均相化学发光分析的供体颗粒及其应用
CN116500020A (zh) 一种化学发光分析方法及其应用
CN116626021A (zh) 一种用于化学发光分析的微球组合物及其应用
CN112240936B (zh) 一种供体试剂在诊断主体心肌损伤中的用途
CN112240928B (zh) 一种均相化学发光分析的方法及其应用
CN112240930B (zh) 一种均相化学发光分析的方法及其应用
CN112240937B (zh) 一种供体试剂在诊断主体感染细菌炎性疾病中的用途
CN112114149A (zh) 一种受体试剂在诊断主体心肌损伤中的用途
WO2020252870A1 (zh) 一种均相化学发光检测方法及其应用
WO2020252871A1 (zh) 一种用于均相化学发光检测的受体试剂及其应用
CN113125701B (zh) 一种均相化学发光检测试剂盒及其应用
CN113125700B (zh) 一种肌酸激酶同工酶的均相检测试剂盒及其应用
CN113125721B (zh) 一种肌酸激酶同工酶的均相检测试剂盒及其应用
CN113125703B (zh) 一种肌红蛋白的均相检测试剂盒及其应用
CN113125730B (zh) 一种白介素6的均相检测试剂盒及其应用
CN113125705B (zh) 一种肌红蛋白的均相检测试剂盒及其应用
CN113125732B (zh) 一种白介素6的均相检测试剂盒及其应用
CN113125419B (zh) 一种供体试剂及其应用
CN113125702A (zh) 一种均相化学发光检测试剂盒及其应用
CN112114148A (zh) 一种受体试剂在诊断主体感染细菌炎性疾病中的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination