CN116590687A - AlN薄膜外延片和AlN薄膜的制备方法及应用 - Google Patents

AlN薄膜外延片和AlN薄膜的制备方法及应用 Download PDF

Info

Publication number
CN116590687A
CN116590687A CN202310881419.1A CN202310881419A CN116590687A CN 116590687 A CN116590687 A CN 116590687A CN 202310881419 A CN202310881419 A CN 202310881419A CN 116590687 A CN116590687 A CN 116590687A
Authority
CN
China
Prior art keywords
aln
layer
epitaxial wafer
thin film
film epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310881419.1A
Other languages
English (en)
Inventor
李国强
衣新燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Everbright Technology Co ltd
Original Assignee
Guangzhou Everbright Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Everbright Technology Co ltd filed Critical Guangzhou Everbright Technology Co ltd
Priority to CN202310881419.1A priority Critical patent/CN116590687A/zh
Publication of CN116590687A publication Critical patent/CN116590687A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • C30B25/205Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本申请属于半导体材料制备技术领域,公开了一种AlN薄膜外延片和AlN薄膜的制备方法及应用,先在硅衬底上沉积AlN缓冲层,可提高后续生长的AlN层的质量;在AlN层上生长抵抗层,由于抵抗层的晶格常数小于AlN层的晶格常数,在抵抗层生长后会对AlN层施加一个压应力,以缓解硅衬底对AlN层的张应力,同时,由于抵抗层的热膨胀系数大于AlN层的热膨胀系数,在降温过程中,抵抗层会对AlN层施加一个压应力,该压应力与硅衬底施加到AlN层的张应力起相反作用,从而缓解AlN层的张应力;因此,可减少AlN层的裂纹,从而能够在硅衬底上获得大厚度的AlN薄膜。

Description

AlN薄膜外延片和AlN薄膜的制备方法及应用
技术领域
本申请涉及半导体材料制备技术领域,具体而言,涉及一种AlN薄膜外延片和AlN薄膜的制备方法及应用。
背景技术
AlN(氮化铝)因其短波透明性、优越的化学稳定性和热稳定性等优异性能,在紫外和深紫外光学二极管和光学探测器中受到广泛关注,是制备下一代电力电子以及在恶劣环境中工作的能量收集设备的理想选择。
目前,由于缺乏AlN的同质衬底,因此,一般是在蓝宝石、硅C或硅等异质衬底上生长AlN材料。AlN与异质衬底存在晶格失配与热失配等一系列问题,AlN的生长较为困难,通常会面临着生长速率慢、晶体质量差的问题。且Al原子的粘附系数比Ga大得多,表面迁移较弱,相对于GaN(氮化镓)材料,AlN材料的生长相对要难很多。众所周知,硅衬底的晶格常数大于AlN,在生长过程中会对AlN施加张应力;且硅衬底的热力学膨胀系数小于AlN,在降温过程中AlN收缩速率大于硅衬底,硅衬底依然对AlN施加张应力,从而导致硅衬底上一般情况下只能生长200nm~300nm厚的AlN。
发明内容
本申请的目的在于提供一种AlN薄膜外延片和AlN薄膜的制备方法及应用,有利于在硅衬底上获得大厚度的AlN薄膜。
第一方面,本申请提供了一种AlN薄膜外延片的制备方法,包括步骤:
A1.通过物理气相沉积法,在硅衬底上沉积AlN缓冲层;
A2.通过有机金属化合物化学气相沉积法,在第一温度和第一压力下,在所述AlN缓冲层上生长AlN层;
A3.通过有机金属化合物化学气相沉积法,在第二温度和第二压力下,在所述AlN层上生长抵抗层;所述抵抗层的晶格常数小于所述AlN层的晶格常数且所述抵抗层的热膨胀系数大于所述AlN层的热膨胀系数;
A4.在室温下,对所述抵抗层进行剥离处理,得到AlN薄膜外延片。
先在硅衬底上沉积AlN缓冲层,可提高后续生长的AlN层的质量;在AlN层上生长抵抗层,由于抵抗层的晶格常数小于AlN层的晶格常数,在抵抗层生长后会对AlN层施加一个压应力,以缓解硅衬底对AlN层的张应力,同时,由于抵抗层的热膨胀系数大于AlN层的热膨胀系数,在降温过程中,抵抗层会对AlN层施加一个压应力,该压应力与硅衬底施加到AlN层的张应力起相反作用,从而缓解AlN层的张应力;因此,可减少AlN层的裂纹,从而能够在硅衬底上获得大厚度(相对于现有技术能够得到的厚度)的AlN薄膜。
优选地,步骤A4包括:
在室温下,在所述抵抗层上键合辅助衬底,得到键合外延片;所述辅助衬底的热膨胀系数大于所述抵抗层的热膨胀系数,且所述辅助衬底能够透射激光;
对所述键合外延片进行激光剥离处理,以去除所述抵抗层,并取出所述辅助衬底。
由于辅助衬底的热膨胀系数大于抵抗层的热膨胀系数,能够在激光剥离处理的过程中对AlN层和抵抗层提供压应力,有效防止AlN层和抵抗层出现裂纹。
优选地,步骤A1包括:
通过物理气相沉积法,在硅衬底上沉积厚度为60nm~150nm的AlN缓冲层。
优选地,步骤A1之后和步骤A2之前,还包括步骤:
对沉积有AlN缓冲层的硅衬底进行热处理和氮化处理。
优选地,步骤A2包括:
通过有机金属化合物化学气相沉积法,在第一温度和第一压力下,在所述AlN缓冲层上生长厚度为800nm~1000 nm的AlN层。
与现有技术相比,该AlN层的厚度更大,更有利于在恶劣环境中工作的能量收集设备中进行应用。
优选地,所述抵抗层为GaN层。
优选地,步骤A3包括:
通过有机金属化合物化学气相沉积法,在第二温度和第二压力下,在所述AlN层上生长厚度大于5000nm的抵抗层。
优选地,所述辅助衬底为蓝宝石衬底。
第二方面,本申请提供了一种AlN薄膜的制备方法,包括步骤:
利用前文所述的AlN薄膜外延片的制备方法制备得到AlN薄膜外延片;
通过刻蚀方法去除所述AlN薄膜外延片的硅衬底和AlN缓冲层,得到AlN薄膜。
第三方面,本申请提供了通过前文所述的AlN薄膜外延片的制备方法制备的AlN薄膜外延片在LED、滤波器或激光探测器中的应用。
有益效果:本申请提供的AlN薄膜外延片和AlN薄膜的制备方法及应用,先在硅衬底上沉积AlN缓冲层,可提高后续生长的AlN层的质量;在AlN层上生长抵抗层,由于抵抗层的晶格常数小于AlN层的晶格常数,在抵抗层生长后会对AlN层施加一个压应力,以缓解硅衬底对AlN层的张应力,同时,由于抵抗层的热膨胀系数大于AlN层的热膨胀系数,在降温过程中,抵抗层会对AlN层施加一个压应力,该压应力与硅衬底施加到AlN层的张应力起相反作用,从而缓解AlN层的张应力;因此,可减少AlN层的裂纹,从而能够在硅衬底上获得大厚度的AlN薄膜。
附图说明
图1为本申请实施例提供的AlN薄膜外延片的制备方法的流程图。
图2为键合外延片的结构示意图。
图3为实施例一得到的AlN薄膜外延片中的AlN层的AFM图。
图4为实施例一的对比例得到的AlN薄膜外延片中的AlN层的AFM图。
图5为实施例一得到的AlN薄膜外延片中的AlN层在光学显微镜下的实拍图。
图6为实施例一的对比例得到的AlN薄膜外延片中的AlN层在光学显微镜下的实拍图。
图7为实施例二得到的AlN薄膜外延片中的AlN层的AFM图。
图8为实施例二的对比例得到的AlN薄膜外延片中的AlN层的AFM图。
图9为实施例二得到的AlN薄膜外延片中的AlN层在光学显微镜下的实拍图。
图10为实施例二的对比例得到的AlN薄膜外延片中的AlN层在光学显微镜下的实拍图。
标号说明:10、硅衬底;20、AlN缓冲层;30、AlN层;40、抵抗层;50、辅助衬底。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
请参照图1,图1是本申请一些实施例中的一种AlN薄膜外延片的制备方法,包括步骤:
A1.通过物理气相沉积法,在硅衬底上沉积AlN缓冲层;
A2.通过有机金属化合物化学气相沉积(MOCVD)法,在第一温度和第一压力下,在AlN缓冲层上生长AlN层;
A3.通过有机金属化合物化学气相沉积法,在第二温度和第二压力下,在AlN层上生长抵抗层;抵抗层的晶格常数小于AlN层的晶格常数且抵抗层的热膨胀系数大于AlN层的热膨胀系数;
A4.在室温下,对抵抗层进行剥离处理,得到AlN薄膜外延片。
先在硅衬底上沉积AlN缓冲层,可提高后续生长的AlN层的质量;在AlN层上生长抵抗层,由于抵抗层的晶格常数小于AlN层的晶格常数,在抵抗层生长后会对AlN层施加一个压应力,以缓解硅衬底对AlN层的张应力,同时,由于抵抗层的热膨胀系数大于AlN层的热膨胀系数,在降温过程中,抵抗层会对AlN层施加一个压应力,该压应力与硅衬底施加到AlN层的张应力起相反作用,从而缓解AlN层的张应力;因此,可减少AlN层的裂纹,从而能够在硅衬底上获得大厚度(相对于现有技术能够得到的厚度)的AlN薄膜。
其中,在对抵抗层进行剥离处理时,可通过激光剥离处理方法剥离抵抗层;具体地,直接用激光照射抵抗层以进行剥离。但更优选地,步骤A4包括:
在室温下,在抵抗层上键合辅助衬底,得到键合外延片;辅助衬底的热膨胀系数大于抵抗层的热膨胀系数,且辅助衬底能够透射激光;
对键合外延片进行激光剥离处理,以去除抵抗层,并取出辅助衬底。
其中,在抵抗层上键合辅助衬底的得到的键合外延片如图2所示,图中,从下到上各层结构依次为硅衬底10、AlN缓冲层20、AlN层30、抵抗层40和辅助衬底50。
具体地,在对键合外延片进行激光剥离处理时,令激光透过辅助衬底照射抵抗层。其中,由于辅助衬底的热膨胀系数大于抵抗层的热膨胀系数,能够在激光剥离处理的过程中对AlN层和抵抗层提供压应力,有效防止AlN层和抵抗层出现裂纹。
在一些优选实施方式中,步骤A1包括:
通过物理气相沉积法,在硅衬底上沉积厚度为60nm~150nm的AlN缓冲层。
在该厚度范围内,能够提供三维岛状的AlN结构,缓解后续外延层的应力。
优选地,AlN缓冲层在2×10-7Torr~5×10-7Torr的压力下进行沉积。
在一些优选实施方式中,步骤A1之后和步骤A2之前,还包括步骤:
对沉积有AlN缓冲层的硅衬底进行热处理和氮化处理。
优选地,在H2和N2氛围以及950℃~1200℃的温度下,对沉积有AlN缓冲层的硅衬底进行热处理和氮化处理,处理时间为3min~7min。具体地,把沉积有AlN缓冲层的硅衬底转移至MOCVD反应室,往MOCVD反应室通入H2和N2,令MOCVD反应室的温度升高至950℃~1200℃,对沉积有AlN缓冲层的硅衬底进行热处理和氮化处理3min~7min。
通过热处理和氮化处理,能够使AlN缓冲层展现N极性,促进后续AlN层沿c轴生长。
在一些优选实施方式中,步骤A2包括:
通过有机金属化合物化学气相沉积法,在第一温度和第一压力下,在AlN缓冲层上生长厚度为800nm~1000 nm的AlN层。
优选地,第一温度为1100℃~1200℃,第一压力为30Torr~50Torr。
通过本申请的方法,能够可靠保证在800nm~1000 nm厚度的AlN层不产生裂纹,与现有技术相比,该AlN层的厚度更大,更有利于在恶劣环境中工作的能量收集设备中进行应用。
其中,可利用NH3源与Al源进行AlN层的生长。具体地,调节MOCVD反应室的温度和压力至第一温度和第一压力,打开NH3源与Al源,在AlN缓冲层上生长AlN层。
其中,抵抗层可以但不限于是GaN层、InN层、InGaN层等。
优选地,抵抗层为GaN层。GaN层不但满足晶格常数小于AlN层的晶格常数且热膨胀系数大于AlN层的热膨胀系数的条件,而且GaN的禁带宽度较小,较易剥离。
需要说明的是,当抵抗层为GaN层的时候,AlN缓冲层在高温条件下,能够有效隔绝GaN与硅衬底在高温下发生回炉刻蚀反应,从而保证AlN层的质量。
在一些优选实施方式中,步骤A3包括:
通过有机金属化合物化学气相沉积法,在第二温度和第二压力下,在AlN层上生长厚度大于5000nm的抵抗层。
优选地,第二温度为1000℃~1100℃,第二压力为200Torr~400Torr。
设置厚度大于5000nm的抵抗层,能够向AlN层提供足够大的压应力,以提高对硅衬底施加在AlN层上的张应力的缓解能力,保证800nm~1000 nm厚度的AlN层不产生裂纹。
其中,可利用NH3源与Ga源进行GaN层(即抵抗层)的生长。具体地,调节MOCVD反应室的温度和压力至第二温度和第二压力,关闭Al源,打开Ga源,并调节NH3比例,在AlN层上生长GaN层。
其中,当抵抗层为GaN层的时候,辅助衬底可以但不限于是蓝宝石衬底、玻璃衬底、ITO衬底等。
优选地,辅助衬底为蓝宝石衬底。蓝宝石不但满足热膨胀系数大于抵抗层的热膨胀系数且能够透射激光的条件,且价格相对较低,能够降低制备成本。
需要说明的是,步骤A4中,待MOCVD反应室温度降至室温后,取出外延片进行辅助衬底的键合。
实施例一
在实施例一中,通过以下步骤制备AlN薄膜外延片:
S101.通过物理气相沉积法,在4×10-7 Torr的压力下,在硅衬底上沉积70nm的AlN缓冲层;
S102.在H2和N2氛围以及1100℃的温度下,对沉积有AlN缓冲层的硅衬底进行热处理和氮化处理,处理时间为3min;
S103.通过有机金属化合物化学气相沉积法,在1150℃的温度和40Torr压力下,利用NH3源与Al源,在AlN缓冲层上生长900nm厚的AlN层;
S104.通过有机金属化合物化学气相沉积法,在1050℃的温度和200Torr压力下,在AlN层上生长5500nm厚的GaN层;
S105.把温度降至室温后,在GaN层上键合蓝宝石衬底,得到键合外延片;
S106.对该键合外延片进行激光剥离处理,得到AlN薄膜外延片。
通过该步骤得到的AlN薄膜外延片,其AlN层的AFM图如图3所示,其AlN层的在光学显微镜下的实拍图如图5所示。
作为该实施例一的对比例,通过以下步骤制备AlN薄膜外延片:
S201.通过物理气相沉积法,在6×10-7Torr的压力下,在蓝宝石衬底上沉积43nm的AlN缓冲层;
S202.H2和N2氛围以及1220℃的温度下,对沉积有AlN缓冲层的蓝宝石衬底进行热处理和氮化处理,处理时间为9min;
S203.通过有机金属化合物化学气相沉积法,在1150℃的温度和70Torr压力下,利用NH3源与Al源,在AlN缓冲层上生长800nm厚的AlN层。
通过该步骤得到的AlN薄膜外延片,其AlN层的AFM图如图4所示,其AlN层的在光学显微镜下的实拍图如图6所示。
通过图3和图4可知,利用实施例一的方法得到的AlN薄膜外延片的AlN层的RMS粗糙度为0.31nm,而实施例一的对比例中的AlN层的RMS粗糙度为3.53nm,且图3中没有明显的裂纹,图4中出现明显的裂纹,可知,实施例一的方法对应的AlN层更加光滑平整。通过图5可知,利用实施例一的方法得到的AlN薄膜外延片的AlN层没有产生裂纹,通过图6可知,实施例一的对比例中的AlN层出现了明显的裂纹。
实施例二
在实施例二中,通过以下步骤制备AlN薄膜外延片:
S301.通过物理气相沉积法,在3×10-7 Torr的压力下,在硅衬底上沉积80nm的AlN缓冲层;
S302.在H2和N2氛围以及1050℃的温度下,对沉积有AlN缓冲层的硅衬底进行热处理和氮化处理,处理时间为3min;
S303.通过有机金属化合物化学气相沉积法,在1130℃的温度和40Torr压力下,利用NH3源与Al源,在AlN缓冲层上生长950nm厚的AlN层;
S304.通过有机金属化合物化学气相沉积法,在1020℃的温度和200Torr压力下,在AlN层上生长5200nm厚的GaN层;
S305.把温度降至室温后,在GaN层上键合蓝宝石衬底,得到键合外延片;
S306.对该键合外延片进行激光剥离处理,得到AlN薄膜外延片。
通过该步骤得到的AlN薄膜外延片,其AlN层的AFM图如图7所示,其AlN层的在光学显微镜下的实拍图如图9所示。
作为该实施例二的对比例,通过以下步骤制备AlN薄膜外延片:
S401.通过物理气相沉积法,在5×10-7Torr的压力下,在硅衬底上沉积45nm的AlN缓冲层;
S402.H2和N2氛围以及1070℃的温度下,对沉积有AlN缓冲层的蓝宝石衬底进行热处理和氮化处理,处理时间为4min;
S403.通过有机金属化合物化学气相沉积法,在1190℃的温度和50Torr压力下,利用NH3源与Al源,在AlN缓冲层上生长975nm厚的AlN层。
通过该步骤得到的AlN薄膜外延片,其AlN层的AFM图如图8所示,其AlN层的在光学显微镜下的实拍图如图10所示。
通过图7和图8可知,利用实施例二的方法得到的AlN薄膜外延片的AlN层的RMS粗糙度为0.36nm,而实施例二的对比例中的AlN层的RMS粗糙度为4.12nm,且图7中没有明显裂纹,图8中有明显裂纹,可知,实施例二的方法对应的AlN层更加光滑平整。通过图9可知,利用实施例二的方法得到的AlN薄膜外延片的AlN层没有产生裂纹,通过图10可知,实施例二的对比例中的AlN层出现了明显的裂纹。
通过上述实施例一和实施例二可知,通过本申请的AlN薄膜外延片的制备方法,可在硅衬底上制备得到表面光滑平整且无裂纹的大厚度AlN薄膜。
本申请还提供了一种AlN薄膜的制备方法,包括步骤:
利用前文的AlN薄膜外延片的制备方法制备得到AlN薄膜外延片;
通过刻蚀方法去除AlN薄膜外延片的硅衬底和AlN缓冲层,得到AlN薄膜。
其中,可通过现有的刻蚀方法去除硅衬底和AlN缓冲层,例如ICP刻蚀,但不限于此。
通过该方式,可得到单纯的AlN薄膜,且该AlN薄膜的厚度大、无裂纹且表面光滑平整。
此外,本申请还提供了通过前文的AlN薄膜外延片的制备方法制备的AlN薄膜外延片在LED、滤波器或激光探测器中的应用。
其中,AlN薄膜外延片可用作LED的应力缓冲层,用作滤波器的压电材料,也可用作激光探测器的信号响应层。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种AlN薄膜外延片的制备方法,其特征在于,包括步骤:
A1.通过物理气相沉积法,在硅衬底上沉积AlN缓冲层;
A2.通过有机金属化合物化学气相沉积法,在第一温度和第一压力下,在所述AlN缓冲层上生长AlN层;
A3.通过有机金属化合物化学气相沉积法,在第二温度和第二压力下,在所述AlN层上生长抵抗层;所述抵抗层的晶格常数小于所述AlN层的晶格常数且所述抵抗层的热膨胀系数大于所述AlN层的热膨胀系数;
A4.在室温下,对所述抵抗层进行剥离处理,得到AlN薄膜外延片。
2.根据权利要求1所述的AlN薄膜外延片的制备方法,其特征在于,步骤A4包括:
在室温下,在所述抵抗层上键合辅助衬底,得到键合外延片;所述辅助衬底的热膨胀系数大于所述抵抗层的热膨胀系数,且所述辅助衬底能够透射激光;
对所述键合外延片进行激光剥离处理,以去除所述抵抗层,并取出所述辅助衬底。
3.根据权利要求1所述的AlN薄膜外延片的制备方法,其特征在于,步骤A1包括:
通过物理气相沉积法,在硅衬底上沉积厚度为60nm~150nm的AlN缓冲层。
4.根据权利要求1所述的AlN薄膜外延片的制备方法,其特征在于,步骤A1之后和步骤A2之前,还包括步骤:
对沉积有AlN缓冲层的硅衬底进行热处理和氮化处理。
5.根据权利要求1所述的AlN薄膜外延片的制备方法,其特征在于,步骤A2包括:
通过有机金属化合物化学气相沉积法,在第一温度和第一压力下,在所述AlN缓冲层上生长厚度为800nm~1000 nm的AlN层。
6.根据权利要求2所述的AlN薄膜外延片的制备方法,其特征在于,所述抵抗层为GaN层。
7.根据权利要求6所述的AlN薄膜外延片的制备方法,其特征在于,步骤A3包括:
通过有机金属化合物化学气相沉积法,在第二温度和第二压力下,在所述AlN层上生长厚度大于5000nm的抵抗层。
8.根据权利要求6所述的AlN薄膜外延片的制备方法,其特征在于,所述辅助衬底为蓝宝石衬底。
9.一种AlN薄膜的制备方法,其特征在于,包括步骤:
利用权利要求1-8任一项所述的AlN薄膜外延片的制备方法制备得到AlN薄膜外延片;
通过刻蚀方法去除所述AlN薄膜外延片的硅衬底和AlN缓冲层,得到AlN薄膜。
10.权利要求1-8任一项所述的AlN薄膜外延片的制备方法制备的AlN薄膜外延片在LED、滤波器或激光探测器中的应用。
CN202310881419.1A 2023-07-18 2023-07-18 AlN薄膜外延片和AlN薄膜的制备方法及应用 Pending CN116590687A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310881419.1A CN116590687A (zh) 2023-07-18 2023-07-18 AlN薄膜外延片和AlN薄膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310881419.1A CN116590687A (zh) 2023-07-18 2023-07-18 AlN薄膜外延片和AlN薄膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN116590687A true CN116590687A (zh) 2023-08-15

Family

ID=87599570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310881419.1A Pending CN116590687A (zh) 2023-07-18 2023-07-18 AlN薄膜外延片和AlN薄膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN116590687A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117660879A (zh) * 2023-12-08 2024-03-08 广州市艾佛光通科技有限公司 一种AlN薄膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305909A (zh) * 2012-03-14 2013-09-18 东莞市中镓半导体科技有限公司 一种用于GaN生长的复合衬底的制备方法
CN109599324A (zh) * 2018-11-22 2019-04-09 合肥彩虹蓝光科技有限公司 一种氮化铝外延层生长方法
CN114855280A (zh) * 2022-05-05 2022-08-05 北京中博芯半导体科技有限公司 一种在硅上制备高质量无裂纹氮化铝薄膜的方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305909A (zh) * 2012-03-14 2013-09-18 东莞市中镓半导体科技有限公司 一种用于GaN生长的复合衬底的制备方法
CN109599324A (zh) * 2018-11-22 2019-04-09 合肥彩虹蓝光科技有限公司 一种氮化铝外延层生长方法
CN114855280A (zh) * 2022-05-05 2022-08-05 北京中博芯半导体科技有限公司 一种在硅上制备高质量无裂纹氮化铝薄膜的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭睿倩 主编: "《半导体光源(LED,OLED)及照明设计丛书 光源原理与设计》", vol. 1, 浙江科学技术出版社, pages: 185 - 188 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117660879A (zh) * 2023-12-08 2024-03-08 广州市艾佛光通科技有限公司 一种AlN薄膜及其制备方法和应用
CN117660879B (zh) * 2023-12-08 2024-05-14 广州市艾佛光通科技有限公司 一种AlN薄膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP5317398B2 (ja) 格子パラメータを変化させる元素を含有する窒化ガリウムデバイス基板
JP4335187B2 (ja) 窒化物系半導体装置の製造方法
US20090087937A1 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
CN100505164C (zh) 氮化物半导体衬底的制造方法及复合材料衬底
CN100505165C (zh) 一种制备氮化镓单晶衬底的方法
EP2151856A1 (en) Relaxation of strained layers
JP2009505938A (ja) 半導体基板並びにハイドライド気相成長法により自立半導体基板を製造するための方法及びそれに使用されるマスク層
WO2017016527A2 (zh) 一种生长在Si衬底上的GaAs薄膜及其制备方法
CN102208338B (zh) 蓝宝石基复合衬底及其制造方法
CN116590687A (zh) AlN薄膜外延片和AlN薄膜的制备方法及应用
JP5931737B2 (ja) 光学素子の製造方法
CN102208339B (zh) 碳化硅基复合衬底及其制造方法
CN111477534B (zh) 氮化铝模板及其制备方法
CN112687526B (zh) 氮化物半导体材料的制备方法及其退火处理方法
WO2024056041A1 (zh) 一种外延芯片结构
US7696533B2 (en) Indium nitride layer production
JP2006062931A (ja) サファイア基板とその熱処理方法、及び結晶成長方法
JP2002075871A (ja) 半導体基板の製造方法
CN213150800U (zh) 一种具有纳米夹层的氮化铝成核层结构
CN103255389A (zh) 一种在硅衬底上外延生长iii族氮化物半导体材料的方法
CN117660879B (zh) 一种AlN薄膜及其制备方法和应用
US8026517B2 (en) Semiconductor structures
JP4303500B2 (ja) 窒化物半導体素子の製造方法
CN117344384B (zh) 高质量氮化物薄膜的远程外延生长方法、复合衬底及应用
CN201741712U (zh) 碳化硅基复合衬底

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20230815