CN116581960A - 用于吸收电流和源电流的转变器技术 - Google Patents

用于吸收电流和源电流的转变器技术 Download PDF

Info

Publication number
CN116581960A
CN116581960A CN202310627822.1A CN202310627822A CN116581960A CN 116581960 A CN116581960 A CN 116581960A CN 202310627822 A CN202310627822 A CN 202310627822A CN 116581960 A CN116581960 A CN 116581960A
Authority
CN
China
Prior art keywords
switch
mode
body diode
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310627822.1A
Other languages
English (en)
Inventor
赵汉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices International ULC
Original Assignee
Analog Devices International ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices International ULC filed Critical Analog Devices International ULC
Publication of CN116581960A publication Critical patent/CN116581960A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M3/135Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M3/137Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本公开涉及用于吸收电流和源电流的转变器技术。提供用于下沉和拉出功率级的技术。例如,功率级电路可包括:配置为耦合至第一输入电源轨的第一功率晶体管,配置为耦合至第二输入电源轨的第二功率晶体管,配置为耦合至负载并在第一和第二输入电源轨之间将第一功率晶体管与第二功率晶体管串联耦合的输出节点,和配置为在第一模式下操作第一和第二功率晶体管以向负载提供电流的控制器,且所述控制器在第二模式下操作第一和第二功率晶体管模式以从负载吸收电流。

Description

用于吸收电流和源电流的转变器技术
本申请是申请日为2020年01月07日、申请号为202010011844.1、发明名称为“用于吸收电流和源电流的转变器技术”的发明专利申请的分案申请。
技术领域
本发明讨论电压转变器,更具体地,讨论用于在电压转变器的工作模式之间改变的技术。
背景技术
降压转变器已被公认为可有效降低来自输入电源的电压,以供连接到降压转变器输出的负载使用。同步降压转变器可以从输出吸收电流或向输出提供电流。但是,各种情况(例如,当违反电流极限时)会导致降压转变器与开关之一的正向偏置体二极管一起工作。这样的操作会极限降压转变器的效率。
发明内容
提供用于下沉和拉出功率级的技术。在例子中,功率级电路可包括:配置为耦合至第一输入电源轨的第一功率晶体管、配置为耦合至第二输入电源轨的第二功率晶体管、配置为耦合至负载并在第一和第二输入电源轨之间将第一功率晶体管与第二功率晶体管串联耦合的输出节点、和控制器,所述控制器被配置为在第一模式下操作第一和第二功率晶体管以向负载提供电流,并在第二模式下操作第一和第二功率晶体管模式以从负载吸收电流。
该概述旨在提供本专利申请的主题的概述。并不旨在提供本发明的排他性或详尽的解释。包括详细描述以提供关于本专利申请的更多信息。
附图说明
在不一定按比例绘制的附图中,相似的数字可以在不同的视图中描述相似的组件。具有不同字母后缀的相似数字可以表示相似组件的不同实例。附图通过示例而非限制的方式大体上示出了本文档中讨论的各种实施例。
图1A和1B总体上示出了根据本发明的具有示例功率级的降压转变器。
图2总体上示出了示例功率级的更详细的视图。
图3总体上示出了根据本主题的示例控制器。
图4A和4B大体上示出了用于第一和第二操作模式的示例性开关逻辑。
图5示出了示例系统,该示例系统包括根据预设主题使用两个示例功率转变器差分驱动的负载。
图6总体上示出了根据本主题的操作功率级的示例方法的流程图。
具体实施方式
本发明人已经认识到用于操作同步降压转变器的改进技术。在某些示例中,该技术可以包括当检测到电流极限阈值时切换降压转变器的操作模式。模式改变可以帮助更有效地操作降压转变器。在一些示例中,该技术包括检测降压转变器的开关的体二极管的正向偏置并命令该开关切换到低阻抗模式以更有效地传导电流。在某些示例中,本文讨论的技术可以允许单片降压转变器的更有效和可靠的性能。单片降压转变器可以提供可以接收脉宽调制(PWM)信号的功率级,根据PWM信号交替地切换降压转变器的第一和第二功率开关以提供期望的输出电压或电流。另外,单片降压转变器可以是单个半导体芯片,包括电源开关、传感器和控制器,以提供上述突出显示的技术。在某些示例中,根据本主题的单块降压转变器可以用于对负载进行差分供电,该负载例如但不限于诸如步进电动机之类的电动机或热电装置。
图1A和1B总体上示出了根据本主题的具有示例功率级102的降压转变器100、101。电压转变器100、101可包括振荡器103、功率级102、电感器104、反馈电路105、107、输出电容器106。图1A的电压转变器100在反馈电路105中包括单个回路。环路将转变器的输出电压(VOUT)的表示提供给误差放大器108。误差放大器108可以将输出电压(VOUT)的表示与表示期望的输出电压(VOUT)的输入基准(VREF)进行比较,并可以提供电压误差信息。第二放大器109可以将电压误差信息与振荡器103的斜坡信号进行比较,以向示例功率级102提供PWM信号(PWM)。
图1B的电压转变器101在反馈电路107中包括第二回路。第一回路将转变器101的输出电压(VOUT)的表示提供给误差放大器108。误差放大器108可以将输出电压(VOUT)的表示与表示所需输出电压(VOUT)的输入参考(VREF)进行比较,并且可以提供电压误差信息。第二回路可以提供电压转变器101的电感器电流的表示,并且第二放大器110可以将电压误差与电感器电流的表示相比较,以为触发器111或锁存器(例如置位复位(SR)锁存器)提供复位输出。触发器111可以为功率级102生成PWM信号,并且振荡器103可以为触发器111提供置位信号。
如上所述,示例性功率级102可以提供功率开关和逻辑以响应PWM信号,并且还可以有效地处理体二极管的传导的检测和改善以及功率开关的过电流限制。在某些示例中,功率级102的第一操作模式可以包括:在PWM信号的转变上触发功率级的第一开关,并且使用第二开关作为整流器。功率级的第二模式可以在PWM信号的转变上触发功率级102的第二开关,并且可以将第一开关用作整流器。功率级的控制器可以控制操作模式之间的转变。在某些示例中,如下所述,工作模式之间的转变可以基于去往或来自电压转变器的输出的电流。
图2总体上示出了示例功率级102的更详细视图。在某些示例中,功率级102可以包括控制器220、第一功率开关221、第二功率开关222、第一和第二体二极管导通传感器223、224,以及电流比较器225。第一开关221可以耦合在第一电源轨(VIN)和输出节点(SW)之间。第二电源开关222可以耦合在输出节点(SW)和第二电源轨(GND)之间。输出节点(SW)可以耦合到转变器的电感器104。第一体二极管导通传感器223可以安装在第一功率开关221的传导节点两端,并且当输出节点(SW)的电压比第一电源轨(VIN)的电压高第一偏移量(例如刚好小于第一电源开关221的体二极管的正向偏置电压)时,提供指示。第二体二极管导通传感器224可以安装在第二电源开关222的导电节点上,并且当输出节点(SW)上的电压比第二电源轨(GND)上的电压低第二偏移量(例如刚好小于第二电源开关222的体二极管的正向偏置电压)时,提供指示。在某些示例中,第一和第二体二极管导通传感器223、224的检测电路可以包括差分放大器、比较器,或其组合。
在某些应用中,当非重叠时间非常小时,第一体二极管导通传感器223或第二体二极管导通传感器224的延迟可能无法触发输出信号(I_POS,I_NEG)。例如,如果第一体二极管导通传感器223无法触发第一输出信号(I_NEG),则功率级102可以继续以例如降压模式操作,而负载电流从输出电压(VOUT)到输出节点(SW)的极性为负。在这种情况下,当低压侧或第二电源开关222导通并且发生反向过电流事件时,低压侧功率晶体管222可以截止,并且输出节点(SW)节点上的电压可以上升到第一电源轨(VIN)上的电压以上。第一体二极管导通传感器223可以检测输出节点(SW)的电压升高,并且可以触发输出(I_NEG)以将操作模式从降压改变为升压。以类似的方式,当第二输出信号(I_POS)在非重叠时间非常短时未能触发时,第二体二极管导通传感器224可以将功率级102的模式从升压变为降压。
图3总体上示出了示例控制器220,其利用体二极管导通传感器(图2;223、224)和电流比较器(图2;225)的过电流信号(OC、ROC)在上述模式之间转变并且更有效地操作电压转变器,这反过来,尤其是对于单片功率级,可以提供更好的可靠性。控制器220可以包括用于第一操作模式的开关逻辑331、用于第二操作模式的开关逻辑332以及在第一操作模式和第二操作模式之间转变的逻辑333。在某些示例中,用于在第一和第二操作模式之间转变的逻辑333可以包括触发器334以及第一和第二多路复用器335、336。触发器334可以接收第一和第二体二极管导通传感器中的每一个的输出(I_NEG、I_POS)。可以在每个多路复用器335、336的控制输入处接收触发器334的输出,以允许相应的开关逻辑331、332的输出通过控制器的相应信号(hg,lg)控制第一和第二电源开关。
在一个示例中,假设触发器的输出为逻辑“低”(例如,Q=0),并且第一和第二电源开关由开关逻辑331控制以用于第一操作模式。在这种情况下,由于在第一操作模式期间通常需要正电流,因此通常可以忽略第二体二极管导通传感器的输出信号(I_POS)。当转变器的输出电压高于第一电源轨的电压时,第一体二极管导通传感器可以提供有效的输出信号(I_NEG)。在某些示例中,直到转变器的输出电压为高于第一电源轨的电压的第一阈值时,输出信号(I_NEG)才变为活动状态。例如,由于负载所产生的电压高于第一电源轨的电压,因此这种情况可能表示转变器的输出端的电流为负,或者从负载流向转变器。这样的条件也可以指示第一功率开关的体二极管正向偏置或将要正向偏置。响应于第一体二极管导通传感器的有效输出信号(I_NEG),触发器334可以改变状态或被设置(例如,Q=1)。触发器输出(Q)的逻辑“高”可以允许多路复用器335、336将电源开关的控制节点(hg,lg)与第一操作模式的开关逻辑331隔离,并且将控制耦合电源的节点(hg,1g)切换到用于第二操作模式的开关逻辑332。
由于功率开关耦合到用于第二操作模式的开关逻辑332并根据其进行操作,因此通常可以忽略来自第一体二极管导通传感器的输出信号(I_NEG),因为在第二操作模式下通常假定为负电流。当转变器的输出电压低于第二电源轨的电压时,第二体二极管导通传感器可以提供有效的输出信号(I_POS)。在某些示例中,直到转变器的输出电压为低于电源轨电压的第二阈值时,输出信号(I_POS)才变为活动状态。例如,由于负载以比第一电源轨的电压低的电压消耗电流,因此这种情况可以表示转变器的输出端的电流为正,或从转变器流向负载的电流。这种情况也可以指示第二电源开关的体二极管正向偏置或将要正向偏置。响应于第二主体二极管导通传感器的有效输出信号(I_POS),触发器334可以通过第二体二极管导通传感器的有效输出信号(I_POS)来改变状态或被重置(例如,Q=0)。触发器输出(Q)的逻辑“低”可以允许多路复用器335、336将功率开关的控制节点(hg,lg)与第二操作模式的开关逻辑332隔离并且将功率开关的控制节点(hg,1g)耦合到第一操作模式的开关逻辑331。
在某些示例中,第一操作模式可以类似于将转变器操作为降压转变器,使得第一开关由PWM信号触发,第一开关的占空比受PWM信号限制,第二开关响应第一开关并用作整流器。在第二种操作模式下,该转变器的操作类似于升压转变器,使得第二开关由PWM信号触发,第二开关的占空比受PWM信号限制,并且第一开关响应第二开关并用作整流器。
图4A和图4B分别大体示出了分别用于第一和第二操作模式的示例开关逻辑331、332。每个开关逻辑电路331、332可以从电流比较器(图2;225)接收PWM信号和过电流信号(OC,ROC)。每个开关逻辑电路331、332可以包括第一和第二触发器440、441、442、443,可选的延迟电路444、445以及各种其他逻辑门446、447,以调节逻辑信号以正确设置相应的电源开关输出(hg,lg)。开关逻辑331、332假设当第一和第二功率开关各自的控制节点或开关逻辑的输出处于逻辑“高”时,第一和第二功率开关呈现低阻抗状态,而当它们各自的控制节点处于逻辑“低”时,则假设其处于高阻抗状态。应当理解,在不脱离本主题的范围的情况下,第一和第二电源开关的阻抗状态可以不同。假设正过电流信号(OC)和负过电流信号(ROC)处于逻辑“低”并且已经存在很长时间,则用于第一操作模式的开关电路331直接响应PWM信号通过第一反相器446和第一或非门447从“低”逻辑电平转变为“高”逻辑电平,将第一电源开关的输出(hg)置于低阻抗状态。相反,用于第二操作模式的开关电路332直接响应PWM信号通过第二或门449从“高”逻辑电平转变为“低”逻辑电平,将第二功率开关的输出(lg)置于低阻抗状态。
每个开关电路331、332可以可选地包括延迟电路444、445,以在退出低阻抗状态的PWM触发开关与进入低阻抗状态的另一开关之间产生延迟。当各个开关退出低阻抗状态时,包括电阻器(R)和电容器(C)的延迟网络可以开始经由将延迟网络耦合至电压源(VIN)的p型晶体管450来对电容器充电。当电容器(C)两端的电压达到“高”逻辑电平时,控制另一个开关的输出可转变为逻辑“高”,从而将另一个开关置于低阻抗状态。当用于PWM触发的开关的输出被设置为“高”逻辑电平时,n型晶体管451可以用于使电容器(C)放电。
图4A包括第一触发器440,其被配置为接收PWM信号和正过电流限制信号(OC),并且向NOR门447提供输出,该NOR门447控制向第一电源开关的输出(hg)。电流比较器提供正过电流信号(OC),它指示电感器电流的方向,并且电感器电流大于预定义的电流极限。结合第一触发器447,当控制器以第一操作模式操作并且第一电源开关处于低阻抗状态时,正过电流限制信号(OC)可以中断第一电源开关的低阻抗状态。这样的功能可以保护第一功率开关免受与比开关设计通过的更多的电流通过相关的压力。
图4A包括第二触发器441,其被配置为接收PWM信号和负过电流信号(ROC),并且向第一或非门452提供输出,以控制向第二功率开关的输出(Ig)。负过电流限制信号(ROC)由电流比较器提供,并指示电感器电流的方向,并且该电感器电流大于预定义的电流限制。结合第二触发器441,当控制器以第一操作模式操作并且第二电源开关处于低阻抗状态时,负过电流限制信号(ROC)可以中断第二电源开关的低阻抗状态。这样的功能可以保护第二功率开关免受与比开关设计通过的更多的电流通过相关的压力。
图4B包括第一触发器442,其被配置为接收PWM信号和负过电流限制信号(ROC),并向第一或非门449提供输出,以控制第二功率开关的输出(Ig)。结合第一触发器442,当控制器以第二操作模式操作并且第二电源开关处于低阻抗状态时,负过电流限制信号(ROC)可以中断第二电源开关的低阻抗状态。这样的功能可以保护第二功率开关免受与比开关设计通过的更多的电流通过相关的压力。
图4B包括第二触发器443,其被配置为接收PWM信号和正过电流限制信号(OC),并向第二或非门453提供输出,该第二或非门453控制第一功率开关的输出(hg)。结合第二触发器443,当控制器以第二操作模式操作并且第一电源开关处于低阻抗状态时,正过电流限制信号(OC)可以中断第一电源开关的低阻抗状态。这样的功能可以保护第一功率开关免受与比开关设计通过的更多的电流通过相关的压力。
图5示出了示例系统560,该示例系统560包括根据预设主题使用两个功率转变器561、562差分驱动的负载563。系统560可以包括系统控制器564、第一电压转变器561、第二电压转变器562和负载563。在某些示例中,负载563可以包括但不限于马达、步进马达、热电装置,或其组合。功率转变器561、562特别适合于差分驱动负载563,因为以上讨论的控制方案可以允许每个功率转变器561、562根据控制器564的请求或根据应用需求有效地提供或吸收电流。除了提供和吸收电流之外,该控制方案还使每个转变器561、562进入一种开关操作模式,该模式可以保护每个转变器561、562的电源开关免受过电流应力的影响,并且当检测到这种情况时,可通过电源开关通道而不是体二极管有效地传导电流。当系统控制器564的设定值快速变化时,或者遇到负载环境的干扰时,可能会出现这种情况。
图6总体上示出了根据本主题的操作功率级的示例方法的流程图。在601处,可以响应于PWM信号的第一转变而将功率级的第一开关触发为“接通”。功率级可以包括与第二开关串联耦合的第一开关,第二开关在输入电压源的干线之间。在603处,可以响应于PWM信号的第二转变而将第一开关触发为“断开”。在605处,可以响应于第一开关的“断开”状态来启动第一非重叠间隔。在某些示例中,直接响应于PWM信号的转变的开关的“接通”时间是功率级占空比的基础,而该开关是主动控制的开关。主动控制的开关在每个开关周期内仅导通一次,并且导通时间不超过规定的占空比。如果检测到最大电流限制,则可以在占空比定义的间隔期满之前将“主动控制”开关“断开”。非主动控制的开关可以响应于主动控制的开关“断开”或非重叠间隔到期而“接通”。如本文所使用的,“最大电流极限”可以包括最大正电流极限或最大负电流极限,并且可以参考主动控制开关的额定值。
在607处,体二极管导通传感器可以监视第一开关或主动控制的开关,并且在某些情况下,在第一非重叠间隔期间检测第一开关的体二极管导通事件。在某些示例中,体二极管导通事件的检测可以包括将主动控制的开关两端的电压与参考电压进行比较。取决于主动控制第一开关和第二开关中的哪个开关,基准电压可以接近输入电压电源轨之一,或者与输入电压电源轨之一的电位有很小的偏移。在609处,响应于体二极管导通事件,第二开关可以被置于“导通”或处于低阻抗状态。与允许电流通过第一开关的体二极管分流相比,第二开关的低阻抗状态可以更有效地将系统的电流转移,并将第一和第二开关之间的公共节点的电压拉至更理想的水平。另外,第二开关可以变成主动控制的开关,并且在611处,可以直接响应于PWM信号的第三转变而被触发到“接通”状态。因此,功率级可以改变功率级的操作模式以更有效地控制电流。
在某些例子中,功率级改变操作模式的能力(例如,通过更改主动控制的开关),功率级更好地能够通过开关之一的通道而不是开关之一的体二极管转移过量或意外电流。与使用其中一个开关的体二极管相比,使用其中一个开关的通道可以散发更少的热量。较少的热量可以减少应力,并具有更可靠的功率级,尤其是单片功率级集成电路(IC)或单片降压转变器IC。
各种注释和示例
上面的详细描述包括对附图的引用,这些附图形成了详细描述的一部分。附图通过说明的方式示出了可以实践本发明的特定实施例。这些实施例在本文中也被称为“示例”。这些示例可以包括除了示出或描述的那些元件之外的元件。然而,本发明人还考虑了仅提供示出或描述的那些元件的示例。此外,本发明人还设想了使用示出或描述的那些元素(或其一个或多个方面)的任何组合或置换的示例,关于此处显示或描述的特定示例(或其一个或多个方面),或其他示例(或其一个或多个方面)。
如果本文档与通过引用方式并入的任何文档之间的用法不一致,则以本文档中的用法为准。
在本文件中,术语“一个”或“一种”用于专利文件中,包括一个或多个、独立于“至少一个”或“一个或多个”的任何其他情况或用法。在本文中,“或”一词是指非排他性的,例如“A或B”包括“A但不包括B”、“B但不包括A”以及“A和B”,除非另有说明指示。在本文档中,术语“包括”和“其中”用作相应术语“包含”和“其中”的等效词。此外,术语“包括”和“包含”是开放式的,即,除了在该术语之后列出的那些元素外,还包括其他元素的系统、设备、物品、组合物、制剂或方法仍被认为属于所讨论的主题的范围。此外,诸如在权利要求书中可能出现的那样,术语“第一”、“第二”和“第三”等仅用作标签,并不旨在对其对象施加数字要求。
本文描述的方法示例可以至少部分地是机器或计算机实现的。一些示例可以包括编码有指令的计算机可读介质或机器可读介质,所述指令可操作以配置电子设备以执行如以上示例中所述的方法。这种方法的实现可以包括代码,例如微代码、汇编语言代码、高级语言代码等。这样的代码可以包括用于执行各种方法的计算机可读指令。该代码可以构成计算机程序产品的一部分。此外,在示例中,代码可以有形地存储在一个或多个易失性、非暂时性或非易失性有形计算机可读介质上,例如在执行期间或其他时间。这些有形的计算机可读介质的示例可以包括但不限于硬盘、可移动磁盘、可移动光盘(例如光盘和数字视频磁盘)、盒式磁带、存储卡或存储棒、随机存取存储器(RAM)、只读存储器(ROM)等。
上面的描述旨在是说明性的,而不是限制性的。例如,上述示例(或其一个或多个方面)可以彼此组合使用。在回顾以上描述之后,例如可以由本领域的普通技术人员使用其他实施例。提供摘要以允许读者快速地确定技术公开的性质。提交本文档时应理解为不会用于解释或限制权利要求的范围或含义。另外,在以上详细描述中,可以将各种特征组合在一起以简化本公开。这不应该被解释为意在意味未声明的公开特征对于任何权利要求是必不可少的。而是,发明主题可以在于少于特定公开实施例的所有特征。在此,将以下方面作为示例或实施例并入详细说明中,每个方面作为独立的实施例而独立,并且可以想到,这些实施例可以以各种组合或排列彼此组合。

Claims (11)

1.一种用于操作开关电路的方法,该开关电路具有耦合至第一电源轨的第一开关、耦合至第二电源轨的第二开关、将所述第一开关与所述第二开关串联耦合的开关节点以及耦合在所述开关节点与输出节点之间的电感器,所述方法包括:
当所述开关电路处于降压模式或升压模式中的一种并且当所述第一开关和所述第二开关处于高阻抗状态时,在第一开关间隔期间,检测所述第一开关或所述第二开关的体二极管导通事件,其中所述体二极管导通事件指示所述开关节点处的电压与电源轨处的电压之间的关系;以及
响应于所述体二极管导通事件,将所述开关电路的操作模式改变为所述降压模式和所述升压模式中的另一种。
2.根据权利要求1所述的方法,还包括:
检测处于降压模式的所述第一开关的体二极管导通事件,所述第一开关的体二极管导通事件指示所述开关节点处的电压大于所述第一电源轨处的电压;以及
将所述开关电路的操作模式从所述降压模式改变为升压模式。
3.根据权利要求1所述的方法,还包括:
检测处于升压模式的所述第二开关的体二极管导通事件,所述第二开关的体二极管导通事件指示所述开关节点处的电压小于所述第二电源轨处的电压;以及
将所述开关电路的操作模式从所述升压模式改变为降压模式。
4.根据权利要求1所述的方法,其中,所述体二极管导通事件指示所述电感器中的电流流动的方向。
5.根据权利要求1所述的方法,还包括其中改变所述开关电路的操作模式包括当流过所述电感器的电流处于最小电流流动水平时切换所述操作模式。
6.根据权利要求1所述的方法,还包括使用所述电感器处的电流比较器检测过电流状况,其中改变所述操作模式包括响应于所述过电流状况。
7.一种开关模式功率系统,包括:
第一功率开关,耦合在第一电源轨与开关节点之间;
第二功率开关,耦合在第二电源轨与所述开关节点之间;
电感器,耦合在所述开关节点与输出节点之间;
电流镜电路,被配置为提供关于所述电感器中的电流流动的方向的信息;
第一体二极管导通传感器,被配置为感测所述第一功率开关中的第一体二极管导通事件;以及
控制电路,被配置为基于来自所述第一体二极管导通传感器的关于所述第一体二极管导通事件的信息和关于所述电感器中的电流流动的方向的信息,在降压转换器操作模式与升压转换器操作模式之间改变系统的操作模式。
8.根据权利要求7所述的功率系统,还包括被配置为感测所述第二功率开关中的第二体二极管导通事件的第二体二极管导通传感器;
其中,所述控制电路被配置为基于来自所述第一体二极管导通传感器的关于所述第一体二极管导通事件的信息将系统的操作模式从降压模式改变为升压模式;以及
其中,所述控制电路被配置为基于来自所述第二体二极管导通传感器的关于所述第二体二极管导通事件的信息将系统的操作模式从升压模式改变为降压模式。
9.根据权利要求7所述的功率系统,其中,所述电流镜电路被配置为提供关于所述电感器中的电流流动的量值的信息;
其中,所述控制电路被配置为基于关于所述电感器中的电流流动的量值的信息来改变系统的操作模式。
10.根据权利要求7所述的功率系统,其中,所述第一体二极管导通传感器被配置为当所述第一功率开关和所述第二功率开关处于高阻抗状态时在第一开关间隔期间感测所述第一功率开关中的所述第一体二极管导通事件。
11.根据权利要求7所述的功率系统,其中,所述控制电路包括用于系统的降压操作模式和升压操作模式的开关逻辑以及用于在降压操作模式与升压操作模式之间转变的开关逻辑。
CN202310627822.1A 2019-01-11 2020-01-07 用于吸收电流和源电流的转变器技术 Pending CN116581960A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/245,818 2019-01-11
US16/245,818 US10848063B2 (en) 2019-01-11 2019-01-11 Converter techniques for sinking and sourcing current
CN202010011844.1A CN111435818B (zh) 2019-01-11 2020-01-07 用于吸收电流和源电流的转变器技术

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202010011844.1A Division CN111435818B (zh) 2019-01-11 2020-01-07 用于吸收电流和源电流的转变器技术

Publications (1)

Publication Number Publication Date
CN116581960A true CN116581960A (zh) 2023-08-11

Family

ID=71132029

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310627822.1A Pending CN116581960A (zh) 2019-01-11 2020-01-07 用于吸收电流和源电流的转变器技术
CN202010011844.1A Active CN111435818B (zh) 2019-01-11 2020-01-07 用于吸收电流和源电流的转变器技术

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010011844.1A Active CN111435818B (zh) 2019-01-11 2020-01-07 用于吸收电流和源电流的转变器技术

Country Status (3)

Country Link
US (2) US10848063B2 (zh)
CN (2) CN116581960A (zh)
DE (1) DE102020000062A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10848063B2 (en) 2019-01-11 2020-11-24 Analog Devices International Unlimited Company Converter techniques for sinking and sourcing current
US11362590B1 (en) * 2019-02-08 2022-06-14 Renesas Electronics America Inc. Current limit mode detection and control in a switch mode power supply

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037755A (en) * 1998-07-07 2000-03-14 Lucent Technologies Inc. Switching controller for a buck+boost converter and method of operation thereof
US6396250B1 (en) 2000-08-31 2002-05-28 Texas Instruments Incorporated Control method to reduce body diode conduction and reverse recovery losses
DE10243885A1 (de) * 2002-09-21 2004-04-01 Philips Intellectual Property & Standards Gmbh Konverterschaltung und Ansteuerverfahren hierfür
US6861826B2 (en) 2003-03-31 2005-03-01 Texas Instruments Incorporated Timing circuit for synchronous DC/DC control to reduce synchronous rectifier body diode conduction
US7031175B2 (en) * 2003-12-16 2006-04-18 Intersil Americas Inc. System and method of detecting phase body diode using a comparator in a synchronous rectified FET driver
DE112005000388T5 (de) * 2004-02-17 2007-02-08 Agere Systems, Inc. Vielseitiger und intelligenter Leistungssteller
US7151406B2 (en) * 2005-03-15 2006-12-19 Texas Instruments Incorporated Compensation of nonlinearity introduced by dead time in switching output stage
JP2007295769A (ja) 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd 双方向dc−dcコンバータ
US7906948B2 (en) * 2007-07-23 2011-03-15 Intersil Americas Inc. Threshold voltage monitoring and control in synchronous power converters
US7888925B2 (en) 2007-07-23 2011-02-15 Intersil Americas Inc. Load current compensation in synchronous power converters
WO2011014595A2 (en) 2009-07-31 2011-02-03 Thermo King Corporation Bi-directional battery voltage converter
CN202340195U (zh) * 2010-10-29 2012-07-18 松下电器产业株式会社 转换器
DE102010060380B3 (de) * 2010-11-05 2012-02-02 Lti Drives Gmbh Notbetriebsfähige Pitchmotor-Antriebsschaltung
US8350543B2 (en) * 2010-11-16 2013-01-08 National Semiconductor Corporation Control circuitry in a DC/DC converter for zero inductor current detection
US8994349B2 (en) * 2010-12-03 2015-03-31 The Boeing Company Synchronous rectifier bi-directional converter
US8553376B2 (en) * 2010-12-11 2013-10-08 The Boeing Company Synchronous rectified PWM regulator with auto fault clearing
CN106160423B9 (zh) * 2015-04-07 2019-08-06 意法半导体(中国)投资有限公司 用于低发射开关调节器的驱动器
US9900942B1 (en) * 2016-10-21 2018-02-20 Semiconductor Components Industries, Llc Apparatus, systems and methods for average current and frequency control in a synchronous buck DC/DC LED driver
KR20180049644A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 스위칭 레귤레이터 및 그것의 컨트롤러
US10468974B2 (en) * 2017-03-15 2019-11-05 Hong Kong Applied Science and Technology Research Institute Company Limited Method and apparatus of dead time tuning in an inverter
JP6674938B2 (ja) * 2017-10-24 2020-04-01 矢崎総業株式会社 電源スイッチ制御装置
US10848063B2 (en) 2019-01-11 2020-11-24 Analog Devices International Unlimited Company Converter techniques for sinking and sourcing current

Also Published As

Publication number Publication date
CN111435818A (zh) 2020-07-21
US20200228013A1 (en) 2020-07-16
US11646664B2 (en) 2023-05-09
US10848063B2 (en) 2020-11-24
DE102020000062A1 (de) 2020-07-16
US20200395851A1 (en) 2020-12-17
CN111435818B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US6169675B1 (en) DC/DC converter with improved operation of plural parallel synchronous rectifiers
TWI327407B (en) Voltage converter that converts input voltage into output voltage, method of operating voltage converter system that provides output voltage
KR100927654B1 (ko) 동기 정류형 스위칭 레귤레이터, 동기 정류형 스위칭레귤레이터의 제어 회로 및 동기 정류형 스위칭레귤레이터의 동작 제어 방법
KR101014738B1 (ko) 승압/강압형 스위칭 조절기 및 역전류 방지 방법
JP5046791B2 (ja) Led駆動回路
KR101185410B1 (ko) 전류 제한 보호를 구비한 dc/dc 컨버터
US7705483B2 (en) DC-DC converter control circuit, DC-DC converter, power supply unit, and DC-DC converter control method
EP0993103A2 (en) Controller for DC-DC converter
CN107852159B (zh) 驱动装置
US20100026256A1 (en) Switching regulator and control method thereof
TW201530954A (zh) 短路保護電路及其開關電源和保護方法
US8558583B2 (en) Slew detection for high voltage isolation region
US11652400B2 (en) Protection circuit with a cut-off switch for power systems
CN111435818B (zh) 用于吸收电流和源电流的转变器技术
JP5228886B2 (ja) スナバ回路
CN106602879A (zh) 具有半桥节点的dc‑dc转换器、用于其的控制器以及控制其的方法
US6738270B2 (en) Parallel power source system
US6728084B2 (en) System and method for overvoltage protection of an integrated circuit
US10365679B2 (en) Regenerative current detection circuit, charge current detection circuit, and motor current detection system
JP5831527B2 (ja) 半導体装置
JP2018164394A (ja) スイッチング電源及びその地絡検出方法
US11128120B2 (en) Inductive load control device
JP2017131033A (ja) スイッチング電源装置
US10840798B1 (en) Bidirectional signaling method for high-voltage floating circuits
US5010282A (en) Method and apparatus for driving a DC motor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination