CN116555740A - 一种耐磨增强的自润滑硫基膜的制备工艺 - Google Patents

一种耐磨增强的自润滑硫基膜的制备工艺 Download PDF

Info

Publication number
CN116555740A
CN116555740A CN202310374282.0A CN202310374282A CN116555740A CN 116555740 A CN116555740 A CN 116555740A CN 202310374282 A CN202310374282 A CN 202310374282A CN 116555740 A CN116555740 A CN 116555740A
Authority
CN
China
Prior art keywords
sulfur
lubricating
titanium dioxide
based film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310374282.0A
Other languages
English (en)
Inventor
张国涛
鲁正
马镇
童宝宏
江挺
陈帅峰
张赞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202310374282.0A priority Critical patent/CN116555740A/zh
Publication of CN116555740A publication Critical patent/CN116555740A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • C23C18/1696Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1834Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers

Abstract

本发明涉及一种耐磨增强的自润滑硫基膜的制备工艺,首先使用二氧化钛(TiO2)粉末制备了二氧化钛(TiO2)溶胶,将活化处理过的铁碳合金放入含有二氧化钛(TiO2)溶胶的复合镀液中并水浴加热处理,经过后处理过程,在铁碳合金表面制备了耐磨增强的硫基润滑膜。本发明旨在解决传统镀层力学性能差、容易发生较大裂纹的现象,弥补重载工况下镀层摩擦学性能不足的问题,所制备硫基润滑膜的力学强度和耐摩性能得到显著提升。

Description

一种耐磨增强的自润滑硫基膜的制备工艺
技术领域
本发明属于机械基础摩擦表面处理技术领域,具体涉及一种耐磨增强的自润滑硫基膜的制备工艺。
背景技术
据科学统计,各种机器在运转过程中,有70%~80%的能量因摩擦而消耗掉,这不仅造成了资源的浪费,也加剧了机构的疲劳磨损,大大降低了机器的安全保障和使用寿命。随着科技水平的不断发展和生产领域的不断拓展,人们逐渐意识到减摩润滑的重要性。表面工程技术是一个非常重要的减摩手段。近些年兴起的FeS润滑薄膜、Ni-P耐磨薄膜可以有效提高摩擦学性能,但是在一些重载环境下,由薄膜力学强度不够造成薄膜较早脱落,摩擦学效果并不是很理想。如研究发现FeS膜可以提高润滑能力,防止摩擦表面在工作中发生咬死或擦伤。但是在一些高负载条件下,会使其内部相体结构发生改变,摩擦表面的摩擦系数就会升高,FeS膜快速剥落或黏附在其他工件表面上,其减磨效果大大降低。为提高薄膜的力学性能,常用的方法是在薄膜中加入硬质纳米粒子。如一种用于铜合金表面的Ni-P-TiO2复合镀液配方及施镀工艺,另一种Ni-P-PTFE-TiO2复合纳米镀层;这些发明为高性能Ni-P-TiO2复合镀膜制备奠定了研究基础。由于二氧化钛(TiO2)纳米颗粒具有较高的表面能,非常容易发生团聚,这就使得二氧化钛(TiO2)纳米颗粒在镀层中分布不均匀,容易诱发表面形成较多的裂纹,当裂纹达到一定数量后,基体被暴露出来,薄膜的力学性能和润滑效果受到影响。如何解决纳米粒子分散性,研发硬质增强的自润滑薄膜有待开展。
发明内容
为了提高软质硫基膜的力学强度和耐摩性能,解决传统镀层力学性能差、容易发生较大裂纹的现象,弥补重载工况下镀层摩擦学性能不足的问题,本发明提供一种耐磨增强的自润滑硫基膜的制备工艺。
一种耐磨增强的自润滑硫基膜的制备操作步骤如下:
(1)制备二氧化钛溶胶
将10g 二氧化钛(TiO2)粉末加入到150mL无水乙醇中,加入硝酸调节pH值为3,水浴加热至70℃,并以4500r/min的速度搅拌40 min,静置陈化72 h,得到淡黄色的二氧化钛(TiO2)溶胶;
(2)制备活化铁碳合金材料
使用180目、400目、2000目的砂纸分别依次对铁碳合金材料表面进行打磨,得到表面呈现明亮的金属光泽的铁碳合金材料;
在浓度2%的盐酸溶液中浸泡酸洗,酸洗时间为20~30s;
在浓度3%~5%的盐酸溶液中活化,活化时间为10~15s,去离子水冲洗;真空干燥,烘干,得到活化铁碳合金材料;
(3)制备镀件
将2~5g硫代乙酰胺、3~5g硫代硫酸钠、5~8g氯化亚铁、0.5~1 g酸、1~2g石墨粉、0.2~0.6g氢氧化钠、0.01~0.02 mg十二烷基硫酸钠、20~50 mL二氧化钛溶胶和100mL去离子水混合均匀,得到复合镀液;
所述酸为马来酸、柠檬酸或甘氨酸中的一种;
将活化铁碳合金材料放入复合镀液中,水浴加热至50℃,并开启磁力搅拌,施镀时间为120 min,得到镀件;
(4)后处理
将镀件放入电阻炉中,在氮气的保护气氛下,温度300℃,保温热处理1h;放入润滑油中,冷却至室温,得到的镀件表面具有耐磨增强的自润滑硫基膜。
所述耐磨增强的自润滑硫基膜的形状呈现片状硫化铁(FeS)堆叠状,二氧化钛(TiO2)纳米颗粒致密均匀填充在硫化铁(FeS)堆叠的间隙中,自润滑硫基膜的厚度为15~20μm,硬度为350~500HV;
所述自润滑硫基膜中含有质量40%~60%铁、质量15%~30%硫、质量5%~15%钛、质量10%~18%氧和质量3%~8%碳。
步骤(1)中,二氧化钛(TiO2)粉末颗粒的粒径为400~450nm。
与已有技术相比较,本发明的有益技术效果体现在以下方面:
1.本发明的工艺使用纳米硬质相起增强作用,在化学镀液中添加该纳米颗粒与镀液共沉积得到硬质增强自润滑薄膜,所述硬质纳米粒子均匀分散嵌入软质硫基自润滑膜中,所得复合镀层有较好力学强度、润滑稳定性,适用于重载摩擦工况。
2.本发明基于薄膜材料软硬复合设计思想,以溶胶形式加入二氧化钛(TiO2)纳米硬质粒子,二氧化钛硬质纳米粒子在片状硫化亚铁(FeS)间隙中的弥散分布、填充,同时软质硫基自润滑膜容易包裹硬质二氧化钛硬质纳米粒子,有效避免镀层裂纹,且使得镀层与基体之间结合更紧密,不易发生摩擦脱落;同时辅助高温后处理释放硬质粒子周围应力,解决二氧化钛(TiO2)纳米颗粒团聚和应力集中的问题,综合镀层中硬质离子与软质润滑相发挥良好的减摩耐磨协同作用,改善镀层力学强度,提高硫基润滑膜薄层的工作性能和寿命。
3.本发明使用溶胶技术制备二氧化钛溶胶,将二氧化钛溶胶添加到镀液中,使得二氧化钛纳米粒子在镀液中均匀分散,不易发生团聚,镀层中硬质离子与软质润滑相发挥较好减摩耐磨协同作用,增强后的硫基膜相比传统硫基膜硬度提高了23.1%~23.9%,磨痕深度降低了12.5%~50%,摩擦系数降低了6.67%~16.67%。
具体实施方式
通过以下实施例对本发明进一步阐述。
实施例1
一种耐磨增强的自润滑硫基膜的制备操作步骤如下:
(1)制备二氧化钛溶胶
将10g二氧化钛(TiO2)粉末加入到150mL无水乙醇中,加入硝酸调节pH值为3,水浴加热至70℃,并以4500r/min的速度搅拌40min,静置陈化72 h,得到淡黄色的二氧化钛溶胶;
(2)制备活化铁碳合金材料
使用180目、400目、2000目的砂纸分别依次对铁碳合金材料表面进行打磨,得到表面呈现明亮的金属光泽的铁碳合金材料;
在浓度2%的盐酸溶液中浸泡酸洗,酸洗25s;
在浓度3%~5%的盐酸溶液中活化,活化12s,去离子水冲洗;真空干燥,烘干,得到活化铁碳合金材料;
(3)制备镀件
将3g硫代乙酰胺、4g硫代硫酸钠、7g氯化亚铁、0.6g柠檬酸、1.5g石墨粉、0.5g氢氧化钠、0.015 mg十二烷基硫酸钠、20 mL二氧化钛溶胶和100mL去离子水混合均匀,得到复合镀液;
将活化铁碳合金材料放入复合镀液中,水浴加热至50℃,并开启磁力搅拌,施镀时间为120min,得到镀件;
(4)后处理
将镀件放入电阻炉中,在氮气的保护气氛下,温度300℃,保温热处理1h;放入润滑油中,冷却至室温,得到的镀件表面具有耐磨增强的自润滑硫基膜。
自润滑硫基膜的厚度为15μm,其中含有质量分数56%铁、质量分数24%硫、质量分数7%钛、质量分数6%氧和质量分数7%碳。
采用端面摩擦磨损试验机测定所得试件摩擦性能。设定初始载荷为1000N,运行10min后增加500N,整个过程为30min,实验转速为720r/min。采用维氏硬度计直接测量表面硬度。
本实施例1得到的自润滑硫基膜的硬度为350HV,摩擦系数为0.025,磨痕深度为0.012mm。
实施例2
步骤(1)中,与实施例1的不同在于:二氧化钛(TiO2)粉末质量为12g;
步骤(2)与实施例1中的步骤(2)相同;
步骤(3)中,将3g硫代乙酰胺、4g硫代硫酸钠、7g氯化亚铁、0.6g马来酸、1.5g石墨粉、0.5g氢氧化钠、0.015mg十二烷基硫酸钠、25mL二氧化钛溶胶和100mL去离子水混合均匀,得到复合镀液;
将活化铁碳合金材料放入复合镀液中,水浴加热至50℃,施镀时间60min,取出,用乙醇冲洗表面残液,并烘干;
步骤(4)与实施例1中的步骤(4)相同;
本实施例2制得的自润滑硫基膜厚度为15.6μm,其中含有质量分数59.3%铁、质量分数21.7%硫、质量分数5.6%钛、质量分数7.4%氧和质量分数7%碳,硬度为369HV,摩擦系数为0.023,磨痕深度为0.011mm。
实施例3
步骤(1)中,与实施例1的不同在于:二氧化钛(TiO2)粉末质量为14g;
步骤(2)与实施例1中的步骤(2)相同;
步骤(3)中,将5g硫代乙酰胺、5g硫代硫酸钠、8g氯化亚铁、1g甘氨酸、2g石墨粉、0.6g氢氧化钠、0.02 mg十二烷基硫酸钠、50 mL二氧化钛溶胶和100mL去离子水混合均匀,得到复合镀液;
将活化铁碳合金材料放入复合镀液中,水浴加热至50℃,施镀时间60min,取出,用乙醇冲洗表面残液,并烘干。
步骤(4)与实施例1中的步骤(4)相同;
本实施例3得到的自润滑硫基膜厚度为16μm,其中含有质量分数61%铁、质量分数25%硫、质量分数5.6%钛、质量分数6%氧和质量分数2.4%碳,硬度为376HV,摩擦系数为0.021,磨痕深度为0.009mm。
实施例4
步骤(1)中,与实施例1的不同在于:二氧化钛(TiO2)粉末质量为16g;
步骤(2)与实施例3中的步骤(2)-步骤(4)相同;
本实施例4得到的自润滑硫基膜厚度为17.5μm,其中含有质量分数62.3%铁、质量分数23.9%硫、质量分数5.4%钛、质量分数5.2%氧和质量分数3.2%碳,硬度为379HV,摩擦系数为0.020,磨痕深度为0.0087mm。
表1为四个实施例自润滑硫基膜的硬度、摩擦学性能与普通硫基膜的对照表。
实施例1、实施例2、实施例3、实施例4的自润滑硫基膜与普通硫基膜相比硬度分别提高了30.1%、37.1%、39.7%、40.8%。摩擦系数改善了7.41%、14.81%、22.2%、25.9%。
磨痕深度减少了25%、31.25%、43.75%、45.6%。
表2为四个实施例自润滑硫基膜的厚度、元素含量与普通硫基膜的对照表。
实施例1、实施例2、实施例3、实施例4的自润滑硫基膜与普通硫基膜相比厚度分别提高了4.89%、9.09%、11.8%、22.3%。其中铁元素也有不同程度的提高。
本领域的技术人员容易理解,以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种耐磨增强的自润滑硫基膜的制备工艺,其特征在于操作步骤如下:
(1)制备二氧化钛溶胶
将10g 二氧化钛粉末加入到150mL无水乙醇中,加入硝酸调节pH值为3,水浴加热至70℃,并以4500r/min的速度搅拌40 min,静置陈化72 h,得到淡黄色的二氧化钛溶胶;
(2)制备活化铁碳合金材料
使用180目、400目、2000目的砂纸分别依次对铁碳合金材料表面进行打磨,得到表面呈现明亮的金属光泽的铁碳合金材料,即为待处理件;
在浓度2%的盐酸溶液中浸泡酸洗,酸洗时间为20~30s;
在浓度3%~5%的盐酸溶液中活化,活化时间为10~15s,去离子水冲洗;真空干燥,烘干,得到活化铁碳合金材料;
(3)制备镀件
将2~5g硫代乙酰胺、3~5g硫代硫酸钠、5~8g氯化亚铁、0.5~1 g酸、1~2g石墨粉、0.2~0.6g氢氧化钠、0.01~0.02 mg十二烷基硫酸钠、20~50 mL二氧化钛溶胶和100mL去离子水混合均匀,得到复合镀液;
所述酸为马来酸、柠檬酸或甘氨酸中的一种;
将活化铁碳合金材料放入复合镀液中,水浴加热至50℃,并开启磁力搅拌,施镀时间为120 min,得到镀件;
(4)后处理
将镀件放入电阻炉中,在氮气的保护气氛下,温度300℃,保温热处理1h;放入润滑油中,冷却至室温,得到的镀件表面具有耐磨增强的自润滑硫基膜;
自润滑硫基膜的厚度为15~20μm,硬度为350~500HV;
所述耐磨增强的自润滑硫基膜中含有质量40%~60%铁、质量15%~30%硫、质量5%~15%钛、质量10%~18%氧和质量3%~8%碳。
2.根据权利要求1一种耐磨增强的自润滑硫基膜的制备工艺,其特征在于:步骤(1)中,二氧化钛粉末颗粒的粒径为400~450nm。
CN202310374282.0A 2023-04-10 2023-04-10 一种耐磨增强的自润滑硫基膜的制备工艺 Pending CN116555740A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310374282.0A CN116555740A (zh) 2023-04-10 2023-04-10 一种耐磨增强的自润滑硫基膜的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310374282.0A CN116555740A (zh) 2023-04-10 2023-04-10 一种耐磨增强的自润滑硫基膜的制备工艺

Publications (1)

Publication Number Publication Date
CN116555740A true CN116555740A (zh) 2023-08-08

Family

ID=87490677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310374282.0A Pending CN116555740A (zh) 2023-04-10 2023-04-10 一种耐磨增强的自润滑硫基膜的制备工艺

Country Status (1)

Country Link
CN (1) CN116555740A (zh)

Similar Documents

Publication Publication Date Title
CN101545104B (zh) 一种纳米化学复合镀方法
Wang et al. Effect of the content of ball-milled expanded graphite on the bending and tribological properties of copper–graphite composites
Fazel et al. Effect of solid lubricant particles on room and elevated temperature tribological properties of Ni–SiC composite coating
Sajjadnejad et al. Wear and tribological characterization of nickel matrix electrodeposited composites: A review
CN101412943B (zh) 修复金属摩擦副表面的组合物及其制备方法
WO2015066952A1 (zh) 一种高性能粉末冶金不锈钢及其制备方法
CN109465461A (zh) 一种碳化钨硬面耐磨轴承及其制备方法
Zhang et al. Preparation of Ni-P-Ti3C2Tx-Ce composite coating with enhanced wear resistance and electrochemical corrosion behavior on the surface of low manganese steel
Li et al. Effect of heat treatment on the microstructure, mechanical property and tribological property of plasma-sprayed high temperature lubricating composite coating from nanostructured powder
CN112981500B (zh) 一种高光亮复合镀镍层
CN116555740A (zh) 一种耐磨增强的自润滑硫基膜的制备工艺
Zhao et al. Sliding wear behaviors of electrodeposited Ni composite coatings containing micrometer and nanometer Cr particles
Hu et al. Electroless Ni–P–(nano-MoS2) composite coatings and their corrosion properties
Lixia et al. Effect of TiO2 sol on the microstructure and tribological properties of Cu-Sn coating
Zhou et al. Fabrication and wear properties of co-deposited Ni-Cr nanocomposite coatings
CN104313667A (zh) TC4钛合金表面制备ZrO2/Cu复合镀层的方法
Shinohara et al. An effective strategy for improving the performance of electrodeposited Fe-W alloy plating: Tailoring microstructure by graphene incorporation
CN116251722B (zh) 一种齿轮钢表面硫基自润滑涂层的制备方法
Shan et al. Tribological behavior of NiCrW-based self-lubricating composites against IC10 alloy under high temperature and extremely slow sliding speed
CN112919542B (zh) 一种复合电镀用改性颗粒的制备方法
CN105038417A (zh) 高耐磨活塞环
CN109797387B (zh) 金属表面纳米铜\微合金层自润滑耐磨蚀复合改性方法
Ying et al. Effect of PTFE content on microstructure and tribological properties of Cu-Sn coating
CN112981501B (zh) 一种复合镀光亮镍镀液
JPS58117896A (ja) 摺動部材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination