CN116555138B - 乙酰辅酶a合成酶acs突变体及其在2-吡咯烷酮生产中的应用 - Google Patents

乙酰辅酶a合成酶acs突变体及其在2-吡咯烷酮生产中的应用 Download PDF

Info

Publication number
CN116555138B
CN116555138B CN202310122106.8A CN202310122106A CN116555138B CN 116555138 B CN116555138 B CN 116555138B CN 202310122106 A CN202310122106 A CN 202310122106A CN 116555138 B CN116555138 B CN 116555138B
Authority
CN
China
Prior art keywords
acetyl
genbank accession
amino acid
acid sequence
pyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310122106.8A
Other languages
English (en)
Other versions
CN116555138A (zh
Inventor
陈升宝
宋亚楠
彭莺祺
曹利红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senris Biotechnology Shenzhen Co ltd
Original Assignee
Senris Biotechnology Shenzhen Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senris Biotechnology Shenzhen Co ltd filed Critical Senris Biotechnology Shenzhen Co ltd
Priority to CN202310122106.8A priority Critical patent/CN116555138B/zh
Publication of CN116555138A publication Critical patent/CN116555138A/zh
Application granted granted Critical
Publication of CN116555138B publication Critical patent/CN116555138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01008Phosphate acetyltransferase (2.3.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/010116-Phosphofructokinase (2.7.1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • C12Y208/03008Acetate CoA-transferase (2.8.3.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01015Glutamate decarboxylase (4.1.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01003Aconitate hydratase (4.2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01001Acetate-CoA ligase (6.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了乙酰辅酶A合成酶ACS突变体及其在2‑吡咯烷酮生产中的应用,属于基因工程技术领域。本发明通过在底盘菌中过表达大肠杆菌来源的乙酰辅酶A合成酶,实现高效的乙酰辅酶A循环,减少了发酵过程中乙酸积累。进一步对乙酰辅酶A合成酶进行酶工程改造,通过突变提高了乙酰辅酶A合成酶的催化活性,进而进一步提高了2‑吡咯烷酮的产量,使构建的重组菌发酵96h的2‑吡咯烷酮产量达14.47~18.34g/L。

Description

乙酰辅酶A合成酶ACS突变体及其在2-吡咯烷酮生产中的应用
技术领域
本发明涉及乙酰辅酶A合成酶ACS突变体及其在2-吡咯烷酮生产中的应用,属于基因工程技术领域。
背景技术
2-吡咯烷酮(2-Pyrrolidone,2P),又称2-氧代吡咯烷、γ-丁内酰胺,是一类具有一个五元内酰胺环的吡咯烷类化合物,广泛存在于天然产物和各类人工合成的化合物当中。2-吡咯烷酮是生产聚乙烯吡咯烷酮、锦纶-4和脑复康(酰胺吡咯烷酮)的原料,在医药领域和工业领域具有广泛且重要的用途。
2-吡咯烷酮可由化学法或生物法合成。其中化学法合成通常由γ-丁内酯经氨化而得。以丁二醇为原料,在200℃下,在铜催化剂存在下,生成γ-丁内酯,再与氨(或胺)反应,可制得2-吡咯烷酮。另一种化学合成方法为以4-羟基丁酰胺为原料,在高压和高温下脱水进行制备。
近年来已经有一些国内外的文献报道了关于使用微生物生产2-吡咯烷酮。目前产量最高的是,Tong Un Chae通过对大肠杆菌的改造,产量可达54g/L。通过过表达乙酰辅酶A转移酶基因act,可将γ-氨基丁酸转化为γ-氨基丁酸辅酶A(γ-GABA-CoA),γ-氨基丁酸辅酶A可自反环化生成2-吡咯烷酮。
目前生物法的不足:产量比较低、发酵工艺复杂、成本高等缺陷,难以商业应用。在合成2-吡咯烷酮时,乙酰辅酶A转移酶是其关键性酶。使用乙酰辅酶A转移酶将γ-氨基丁酸转化为γ-氨基丁酸辅酶A时,需要乙酰辅酶A作为辅酶A供体,因此若乙酰辅酶A不足会严重影响2-吡咯烷酮的合成。同时在2-吡咯烷酮合成过程中,乙酰辅酶A在乙酰辅酶A转移酶催化下将产生大量的乙酸,乙酸积累可显著影响细菌生长并降低目标产物产量。
发明内容
本发明提供一株产2-吡咯烷酮的谷氨酸棒杆菌底盘菌株,在谷氨酸棒杆菌FF10的基础上,表达了来源于Butyricicoccus faecihominis菌株的辅酶A转移酶,并进行了如下改进:
(1)敲除丙酮酸脱氢酶poxB,并增加乌头酸水合酶的表达;
(2)敲除磷酸乙酰转移酶,并增强6-磷酸果糖激酶的表达;
(3)敲除转录调节因子iolR和/或sugR,并过表达谷氨酸脱羧酶。
在一种实施方式中,所述谷氨酸棒杆菌FF10公开于公开号为CN114752544B的专利中。
在一种实施方式中,以pCES为载体,表达所述辅酶A转移酶;所述辅酶A转移酶具有Genbank登录号MCQ5130945.1所示的氨基酸序列。
在一种实施方式中,所述丙酮酸脱氢酶poxB具有Genbank登录号CAF21272.1所示的氨基酸序列;所述乌头酸水合酶具有Genbank登录号BAB98933.1所示的氨基酸序列。
在一种实施方式中,所述磷酸乙酰转移酶具有Genbank登录号:CAF20775.1所示的氨基酸序列;所述6-磷酸果糖激酶具有Genbank登录号:BAB98643.1所示的氨基酸序列。
在一种实施方式中,所述转录调节因子iolR具有Genbank登录号ASW12947.1所示的氨基酸序列;所述转录调节因子sugR具有Genbank登录号ASW14321.1所示的氨基酸序列。
在一种实施方式中,所述谷氨酸脱羧酶为谷氨酸脱羧酶GAD MUT128,是具有D38N/I89V/D92N//E93Q/S153T/D202N/P268T/E294R/D301N/F355Y/D432N/H435Q/L451*突变的谷氨酸脱羧酶,氨基酸序列如SEQ ID NO.9所示,已公开于公开号为CN114752589B的专利中。
在一种实施方式中,所述底盘菌株还敲除了乙酸辅酶A转移酶actA,并表达了乙酰辅酶A合成酶。
在一种实施方式中,所述乙酸辅酶A转移酶actA的Genbank登录号为CAF21230.1。
在一种实施方式中,所述乙酰辅酶A合成酶来源于大肠杆菌MG1655。
在一种实施方式中,所述乙酰辅酶A合成酶acs的Genbank登录号为NP_418493.1。
在一种实施方式中,用SEQ ID NO.10所示的启动子Ptuf强化乙酰辅酶A合成酶的表达。
在一种实施方式中,所述乙酰辅酶A合成酶是以SEQ ID NO.2所示序列为出发序列,进行了如下至少一处突变:
(1)将第72位天冬氨酸变为酪氨酸;
(2)将第155位异亮氨酸变为苏氨酸;
(3)将第167位丝氨酸变为苏氨酸。
本发明还要求保护乙酰辅酶A合成酶突变体,所述突变体含有SEQ ID NO.4、SEQIDNO.6、SEQ ID NO.8所示的氨基酸序列。
本发明还要求保护所述底盘菌株在发酵生产2-吡咯烷酮中的应用。
在一种实施方式中,所述应用是将所述谷氨酸棒杆菌在CGXII培养基中发酵。
有益效果:本发明通过在底盘菌中过表达大肠杆菌来源的乙酰辅酶A合成酶,实现高效的乙酰辅酶A循环,减少了发酵过程中乙酸积累。进一步对乙酰辅酶A合成酶进行酶工程改造,通过突变提高了乙酰辅酶A合成酶的催化活性,进而进一步提高了2-吡咯烷酮的产量。
附图说明
图1为2-吡咯烷酮的合成途径以及参与的基因。
图2为2-吡咯烷酮的摇瓶发酵。
图3为乙酰辅酶A合成酶ACS及突变体酶活。
图4为携带乙酰辅酶A合成酶ACS突变体的2-吡咯烷酮摇瓶发酵结果。
具体实施方式
培养基:
CGXII培养基:葡萄糖50g/L,(NH4)2SO4 20g/L,尿素5g/L,KH2PO4 1g/L,K2HPO4 1g/L,MgSO4·7H2O 0.25g/L,CaCl2·2H2O 13.3mg/L,MOPS 42g/L,生物素0.2mg/L,微量元素溶液1ml/L,运用KOH将pH调节到7.0;其中,微量元素溶液:FeSO4·7H2O 10g/L,MnSO4·1H2O10g/L,ZnSO4·7H2O 1g/L,CuSO4·5H2O 313mg/L,NiCl·6H2O 20mg/L。
检测方法:
利用液相色谱检测2-吡咯烷酮产量:安捷伦液相色谱仪1290,配备光电二极管阵列检测器,色谱柱:InfinityLab Poroshell 120EC C18(2.7μm,4.6×100mm,安捷伦);流动相采用95%水-乙腈(含0.1%甲酸)混合溶液:甲醇(90:10)等度洗脱5min;流速0.3mL/min;检测波长210nm;柱温30℃;进样量1uL。
乙酸的液相色谱检测条件为:使用Bio-Rad HPX-87H有机酸醇分析柱,柱温为60℃,流速0.5mL/min,使用波长为210nm紫外检测器进行测量。
乙酰辅酶A合成酶酶活检测方法:酶活检测反应体系体积为3mL,组成成分为:150μmol Tris–HCl(pH 8.5)、300μmol盐酸羟胺;15μmol MgCl2;15μmol醋酸钠;1μmol辅酶A;10μmol ATP二钠盐;酶溶液。反应后加入乙酰异羟肟酸,在波长520nm条件下测定所得溶液的吸光度。酶活单位(U)定义为每分钟产生1μmol乙酰辅酶A所需的酶量。
实施例1高产2-吡咯烷酮的谷氨酸棒杆菌工程菌株底盘细胞的构建
图1为2-吡咯烷酮的合成途径,敲除了前体GABA的代谢途径和一些支路途径,增强合成途径中一些关键基因表达,构建能够合成2-吡咯烷酮的谷氨酸棒杆菌。具体如下:
(1)构建谷氨酸棒杆菌FF14:
1)构建重组质粒pK18-ΔpoxB::acn,敲除丙酮酸脱氢酶poxB,同时增加乌头酸水合酶(acn)的表达:以谷氨酸棒杆菌FF10(菌株公开于公开号为CN114752544B的专利中)基因组为模板分别克隆poxB基因(Genbank登录号CAF21272.1)上下游1000bp的同源臂,克隆含启动子的乌头酸水合酶(Genbank登录号BAB98933.1)的编码基因,构建在poxB基因上下游同源臂之间,与Pk18mobsacB骨架通过Gibson方法相连,构建重组质粒pK18-ΔpoxB::acn,将获得的重组质粒pK18-ΔpoxB::acn转化至谷氨酸棒杆菌FF10感受态细胞中,重组得到菌株FF10/ΔpoxB::acn,命名为FF11。
2)按照步骤1)相同策略构建敲除磷酸乙酰转移酶(Genbank登录号:CAF20775.1),并增强6-磷酸果糖激酶pfka(Genbank登录号:BAB98643.1)表达的重组质粒pK18-Δpta::pfka,将构建的重组质粒pK18-Δpta::pfka转化至步骤1)构建的FF11感受态细胞中,重组得到菌株FF11/Δpta::pfka,命名为FF12。
3)按照上述相同策略构建敲除转录调节因子iolR(Genbank登录号为ASW12947.1),并过表达GAD MUT 128突变体(序列公开于公开号CN114752589B的专利中)基因的重组质粒pK18-ΔiolR::GADmut,增强γ-氨基丁酸的合成,将构建的重组质粒pK18-ΔiolR::GADmut转化至步骤2)构建的FF12感受态细胞中,得到重组菌株FF12/ΔiolR::GADmut,命名为FF13。
4)按照上述相同策略构建敲除转录调节因子sugR(Genbank登录号为ASW14321.1),并过表达GAD MUT 128突变体基因的重组质粒pK18-ΔsugR::GADmut,增强γ-氨基丁酸的合成,将构建的重组质粒pK18-ΔiolR::GADmut转化至FF13感受态细胞中,得到重组菌株FF13/ΔsugR::GADmut,命名为FF14。
(2)构建重组质粒pK18-△actA::acs,敲除乙酸辅酶A转移酶actA(Genbank登录号为CAF21230.1),并过表达大肠杆菌MG1655来源的乙酰辅酶A合成酶acs(Genbank登录号为NP_418493.1):
以步骤(1)构建的谷氨酸棒杆菌FF14基因组为模板分别克隆乙酸辅酶A转移酶actA(Genbank登录号为CAF21230.1)上下游1000bp的同源臂;以大肠杆菌MG1655基因组为模板克隆乙酰辅酶A合成酶acs(Genbank登录号为NP_418493.1),乙酰辅酶A合成酶acs扩增引物为:
acsEc-Ptuf-F:
GTAGCCACCACGAAGTCCAGGAGGACATACAatgagccaaattcacaaacacaccattc;
acsEc-actADn-R:gttgccgtaaatgtcagcctcgatgagaccgttttacgatggcatcgcgatagcctgc;
使用SEQ ID NO.10所示的启动子Ptuf增强乙酰辅酶A合成酶acs的表达,启动子Ptuf的扩增引物为:
Ptuf-actAUp-F:
gaaaaagtccgattacctgaggaggtattcaCAGATGTTATTGCTGAGCGCAACGGCAC;
Ptuf-BBR:TGTATGTCCTCCTGGACTTCGTGGTGGCTAC;
将启动子Ptuf和乙酰辅酶A合成酶acs片段构建在actA基因上下游同源臂之间,与Pk18mobsacB骨架通过Gibson方法相连,构建重组质粒pK18-△actA::acs。
(3)将获得的重组质粒pK18-△actA::acs转化至步骤(1)构建的谷氨酸棒杆菌FF14感受态细胞中,重组得到菌株FF14/△actA::acs,命名为P1。
按照步骤(2)相同策略构建敲除乙酸辅酶A转移酶actA(Genbank登录号为CAF21230.1),并过表达枯草芽孢杆菌168来源的乙酰辅酶A合成酶acsA(Genbank登录号为CAB14946.1)的重组质粒pK18-△actA::acsA,乙酰辅酶A合成酶acsA扩增引物为:
acsA-Ptuf-F:GTAGCCACCACGAAGTCCAGGAGGACATACAatgaacttgaaagcgttaccagcaatag;acsA-actADn-R:gttgccgtaaatgtcagcctcgatgagaccgttttaatcctccattgttgacagatctc;
将构建的重组质粒pK18-△actA::acsA转化至步骤(1)构建的谷氨酸棒杆菌FF14感受态细胞中,重组得到菌株FF14/△actA::acsA,命名为P2。
实施例2辅酶A转移酶重组质粒和重组菌的构建
辅酶A转移酶(ACT)催化GABA生成2-吡咯烷酮,是2-吡咯烷酮生产菌中的关键性酶。选择来自Butyricicoccus faecihominis菌株的act基因(Genbank登录号为MCQ5130945.1)设计扩增引物:
ACTF:CATGTGTCAATTGAAAGGACATCAACGATGCGTTCTCTGGAGGGAGTCCG,ACTR:CTACTGCCGCCAGGCAGCGGCCGCTTTAAATCGCACCGCAGGCTGCCAG,
以合成的基因作为模板,通过PCR进行扩增得到目的片段,经DNA纯化试剂盒纯化后,通过Gibson将PCR扩增产物和质粒pCES(质粒公开于论文《Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacteriumglutamicum》)的主干片段相连,转化至E.coli DH5α中,测序验证其构建成功。将携带ACT编码序列的表达载体pCES-ACT分别转化到实施例1构建的谷氨酸棒杆菌工程菌株P1和P2中,得到2-吡咯烷酮生产重组菌P1pCES-ACT和P2 pCES-ACT。
实施例3利用谷氨酸棒杆菌工程菌株发酵生产2-吡咯烷酮
将实施例2中构建的2-吡咯烷酮生产重组菌,用于一步法从葡萄糖发酵生产2-吡咯烷酮。以FF14 pCES-ACT菌株为对照。将菌株FF14 pCES-ACT、P1 pCES-ACT和P2 pCES-ACT分别接种在BHIS培养基中,用试管于30℃培养12小时,获得菌浓为OD600为5.0的种子液;将种子液以10%的接种量接种至装液量50mL CGXII培养基的500mL摇瓶中,于30℃,200rpm发酵96小时。
图2显示了摇瓶发酵96小时2-吡咯烷酮产量和乙酸含量。发酵96小时后,与FF14pCES-ACT相比,过表达不同来源乙酰辅酶A合成酶的P1 pCES-ACT和P2 pCES-ACT乙酸积累量发生显著下降,从1.56g/L分别降低为0.136g/L和0.232g/L。
同时,P1 pCES-ACT和P2 pCES-ACT的2-吡咯烷酮产量均得到提高,从10.31g/L分别提高到13.86g/L和12.17g/L,由此可见大肠杆菌MG1655来源的乙酰辅酶A合成酶效果更好。
实施例4乙酰辅酶A合成酶acs的突变体的构建
对大肠杆菌MG1655来源的乙酰辅酶A合成酶(SEQ ID NO.2所示)进行酶工程改造,其中MUT1是在SEQ ID NO.2的基础上将第72位天冬氨酸变为酪氨酸,获得SEQ ID NO.4所示的突变体。MUT2是在SEQ ID NO.2的基础上将第72位天冬氨酸变为酪氨酸,并将第155位异亮氨酸变为苏氨酸,获得SEQ ID NO.6所示的突变体。MUT3是在SEQ ID NO.2的基础上将第72位天冬氨酸变为酪氨酸,将第155位异亮氨酸变为苏氨酸,并将第167位丝氨酸变为苏氨酸,获得SEQ ID NO.8所示的突变体。
将乙酰辅酶A合成酶ACS突变体通过序列对其基因合成,分别获得SEQ ID NO.3、SEQ IDNO.5、SEQ ID NO.7所示的编码突变体MUT1、MUT2、MUT3的基因片段,以合成的基因序列为模板,设计ACS突变体基因通用克隆引物:
acs-pET-F:CTTTGTTAGCAGCCGGATCTCAttacgatggcatcgcgatagcctgcttc;
acs-pET-R:AGCCATCATCATCATCATCACagccaaattcacaaacacaccattcctgc;
设计pET质粒载体克隆引物:
pET-BBF:GTGATGATGATGATGATGGCTGC;
pET-BBR:TGAGATCCGGCTGCTAACAAAGC;
分别克隆片段和载体,将ACS突变体重新构建到pET质粒中,验证正确获得重组质粒。将重组质粒分别转化进大肠杆菌BL21(DE3)后,在LB培养基中于37℃振荡培养。当OD600达到0.6~0.8时,加入终浓度0.2mM异丙基-β-D-硫代吡喃半乳糖苷(IPTG)诱导基因表达。在25℃诱导8小时后,通过离心收获细胞。将收获的细胞重新悬浮在结合缓冲液(20mMTris-HCl[pH 7.8]、500mM氯化钠和10mM咪唑)中,接着通过超声破碎。收集破碎后的上清液,通过镍亲和层析来纯化ACS。纯化后的蛋白利用HisTrap HP 5-ml脱盐柱进行脱盐。通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)检测蛋白纯化质量。以牛血清白蛋白为标准,采用Bradford法测定蛋白质浓度。纯化后,测量其酶活,图3显示:野生型乙酰辅酶A合成酶ACS酶活为4.21mU/mg,突变体ACS MUT1酶活为4.6mU/mg,突变体ACS MUT2酶活为6.15mU/mg,突变体ACS MUT3酶活为7.33mU/mg。
实施例5乙酰辅酶A合成酶突变体在2-吡咯烷酮生产中的应用
按实施例1的方法分别构建携带实施例4突变体编码基因的重组质粒
pK18-△actA::acsMut1 pK18-△actA::acsMut2和pK18-△actA::acsMut3,分别转化至谷氨酸棒杆菌FF14感受态细胞中,重组得到菌株FF14/△actA::acsMut1(命名为P3)、FF14/△actA::acsMut2(命名为P4)、FF14/△actA::acsMut3(命名为P5)。
按实施例3的方法将上述重组菌株进行发酵,如图4所示,与携带野生型乙酰辅酶A合成酶ACS的P1 pCES-ACT相比较,菌株P3、P4和P5的2-吡咯烷酮产量均得到提高,从13.86g/L分别提高到14.47g/L、17.29g/L和18.34g/L。产量最高的P5 pCES-ACT相比P1pCES-ACT,2-吡咯烷酮产量提高了32.3%,相比较FF14 pCES-ACT的2-吡咯烷酮产量提高了77.9%。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (5)

1.一株产2-吡咯烷酮的重组谷氨酸棒杆菌,其特征在于,在谷氨酸棒杆菌FF10的基础上,表达了来源于Butyricicoccus faecihominis的辅酶A转移酶,并进行了(1)~(4)所示改进:
(1)敲除丙酮酸脱氢酶poxB,并增加乌头酸水合酶的表达;
(2)敲除磷酸乙酰转移酶,并增强6-磷酸果糖激酶的表达;
(3)敲除转录调节因子iolR和sugR,并过表达谷氨酸脱羧酶;所述谷氨酸脱羧酶的氨基酸序列如SEQ ID NO.9所示;
(4)敲除了乙酸辅酶A转移酶,并表达了乙酰辅酶A合成酶;
所述乙酸辅酶A转移酶的氨基酸序列如Genbank登录号:CAF21230.1所示;所述丙酮酸脱氢酶poxB的氨基酸序列如Genbank登录号:CAF21272.1所示;所述乌头酸水合酶的的氨基酸序列如Genbank登录号:BAB98933.1所示;所述磷酸乙酰转移酶的氨基酸序列如Genbank登录号:CAF20775.1所示;所述6-磷酸果糖激酶的氨基酸序列如Genbank登录号:BAB98643.1所示;所述转录调节因子iolR的氨基酸序列如Genbank登录号:ASW12947.1所示;所述转录调节因子sugR的氨基酸序列如Genbank登录号:ASW14321.1所示;所述辅酶A转移酶的氨基酸序列如Genbank登录号:MCQ5130945.1所示;
所述乙酰辅酶A合成酶为(a)或(b):
(a)氨基酸序列如Genbank登录号NP_418493.1所示;
(b)以SEQ ID NO.2所示序列为出发序列,进行了(i)~(iii)任一突变:
(i)将第72位天冬氨酸变为酪氨酸;
(ii)将第155位异亮氨酸变为苏氨酸;
(iii)将第167位丝氨酸变为苏氨酸。
2.根据权利要求1所述的重组谷氨酸棒杆菌,其特征在于,以pCES为载体,表达所述辅酶A转移酶。
3.根据权利要求1所述的重组谷氨酸棒杆菌,其特征在于,用SEQ ID NO.10所示的启动子Ptuf强化乙酰辅酶A合成酶的表达。
4.一种发酵生产2-吡咯烷酮的方法,其特征在于,以权利要求1~3任一所述的重组谷氨酸棒杆菌为发酵菌株,在CGXII培养基中发酵;
所述CGXII培养基:葡萄糖 50g/L,(NH4)2SO4 20g/L,尿素 5g/L,KH2PO4 1g/L,K2HPO41g/L,MgSO4·7H2O 0.25g/L,CaCl2·2H2O 13.3mg/L,MOPS 42g/L,生物素 0.2mg/L,微量元素溶液 1ml/L;其中,微量元素溶液:FeSO4·7H2O 10g/L,MnSO4·1H2O 10g/L,ZnSO4·7H2O1g/L,CuSO4·5H2O 313mg/L,NiCl·6H2O 20mg/L。
5.权利要求1~3任一所述的重组谷氨酸棒杆菌,或权利要求4所述的方法在生产含2-吡咯烷酮的产品中的应用。
CN202310122106.8A 2023-02-06 2023-02-06 乙酰辅酶a合成酶acs突变体及其在2-吡咯烷酮生产中的应用 Active CN116555138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310122106.8A CN116555138B (zh) 2023-02-06 2023-02-06 乙酰辅酶a合成酶acs突变体及其在2-吡咯烷酮生产中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310122106.8A CN116555138B (zh) 2023-02-06 2023-02-06 乙酰辅酶a合成酶acs突变体及其在2-吡咯烷酮生产中的应用

Publications (2)

Publication Number Publication Date
CN116555138A CN116555138A (zh) 2023-08-08
CN116555138B true CN116555138B (zh) 2024-02-13

Family

ID=87486783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310122106.8A Active CN116555138B (zh) 2023-02-06 2023-02-06 乙酰辅酶a合成酶acs突变体及其在2-吡咯烷酮生产中的应用

Country Status (1)

Country Link
CN (1) CN116555138B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177246A (zh) * 2008-09-08 2011-09-07 味之素株式会社 生产l-氨基酸的微生物和l-氨基酸的生产方法
CN114752544A (zh) * 2022-06-16 2022-07-15 森瑞斯生物科技(深圳)有限公司 一步法生产γ-氨基丁酸的方法及其菌株构建

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595506B2 (ja) * 2004-11-25 2010-12-08 味の素株式会社 L−アミノ酸生産菌及びl−アミノ酸の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102177246A (zh) * 2008-09-08 2011-09-07 味之素株式会社 生产l-氨基酸的微生物和l-氨基酸的生产方法
CN114752544A (zh) * 2022-06-16 2022-07-15 森瑞斯生物科技(深圳)有限公司 一步法生产γ-氨基丁酸的方法及其菌株构建

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Development of a 2‑pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl‑CoA balance route;Xu等;Amino Acids;第54卷;第1437–1450页 *
以葡萄糖为底物合成2-吡咯烷酮重组谷氨酸棒杆菌的构建及发酵研究;马振锋;徐美娟;杨套伟;张显;邵明龙;中西秀树;饶志明;;食品与发酵工业(第11期);第1-8页 *

Also Published As

Publication number Publication date
CN116555138A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN109777763B (zh) 一株用于l-茶氨酸生产的基因工程菌及其构建与应用
CN114752544B (zh) 一步法生产γ-氨基丁酸的方法及其菌株构建
CN114752589B (zh) 谷氨酸脱羧酶突变体及在生产γ-氨基丁酸中的应用
US10415068B2 (en) Microorganism for production of putrescine and methods for production of putrescine using the same
DK2210946T3 (en) The mutants of the proB gene of coryneform bacteria
CN110079516B (zh) 改良型腈水合酶
CN114525268B (zh) 一种pH耐受性提高的谷氨酸脱羧酶突变体及其在γ-氨基丁酸合成中的应用
CN116555138B (zh) 乙酰辅酶a合成酶acs突变体及其在2-吡咯烷酮生产中的应用
CN112921012B (zh) 谷氨酸棒杆菌meso-2,6-二氨基庚二酸脱氢酶突变体及其应用
CN112522335A (zh) 一种高温生物转化制备l-2-氨基丁酸的方法
CN115851566A (zh) 一步法生产2-吡咯烷酮的菌株及应用
CN110358804A (zh) R-3-氨基正丁醇的酶法生产工艺
CN112538472B (zh) 一种苏氨酸脱氨酶突变体及其在l-2-氨基丁酸制备中的应用
CN118207172B (zh) 双功能谷胱甘肽合酶突变体及其应用
CN112280756B (zh) 异亮氨酸羟化酶突变体及在(2s,3r,4s)-4-羟基异亮氨酸合成中的应用
CN112592913B (zh) 一种热稳定的苏氨酸脱氨酶及其应用
CN116179456A (zh) 一种增加2-吡咯烷酮合成的方法
TWI756604B (zh) 鳥胺酸脫羧酶變異體、使用其製造丁二胺之方法、聚核苷酸、微生物、聚醯胺的製備方法以及聚醯胺製備用組成物
CN115011569B (zh) 一种老黄酶NemR-PS突变体及其在制备(S)-香茅醇中的应用
CN114196659B (zh) 酰胺酶突变体、编码基因、工程菌及其应用
CN116024149A (zh) 一步法生产n-甲基吡咯烷酮的菌株
JP5537818B2 (ja) 有用物質の製造方法
US20210292716A1 (en) D-xylose dehydrogenase from coryneform bacteria and process for preparing d-xylonate
CN117143789A (zh) 一步法生产依克多因的谷氨酸棒杆菌的构建和应用
CN116286701A (zh) 一种不透明红球菌l-氨基酸氧化酶突变体及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230921

Address after: 518067 b402, blocks a and B, Nanshan medical device Industrial Park, No. 1019, Nanhai Avenue, Yanshan community, merchants street, Nanshan District, Shenzhen City, Guangdong Province

Applicant after: Senris Biotechnology (Shenzhen) Co.,Ltd.

Address before: 261000 Binhai (Xiaying) Economic Development Zone, Changyi City, Weifang City, Shandong Province, south of Xinqu 1st Road and east of Xinqu Dongsi Road

Applicant before: Weifang Yasen Biotechnology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant