CN116497149A - SlSPL3基因在诱导番茄抵抗病原菌中的应用 - Google Patents

SlSPL3基因在诱导番茄抵抗病原菌中的应用 Download PDF

Info

Publication number
CN116497149A
CN116497149A CN202310517750.5A CN202310517750A CN116497149A CN 116497149 A CN116497149 A CN 116497149A CN 202310517750 A CN202310517750 A CN 202310517750A CN 116497149 A CN116497149 A CN 116497149A
Authority
CN
China
Prior art keywords
tomato
gene
slspl3
expression
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310517750.5A
Other languages
English (en)
Inventor
苗敏
卢若兮
刘永胜
张琳
唐晓凤
范叶珍
宋武
祝红艳
吴子睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202310517750.5A priority Critical patent/CN116497149A/zh
Publication of CN116497149A publication Critical patent/CN116497149A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Mycology (AREA)

Abstract

本发明属于植物基因工程技术领域,尤其涉及SlSPL3基因在诱导番茄抵抗病原菌中的应用。本发明通过在番茄植株中过表达或抑制SlSPL3基因的表达,发现在遭受Pst DC3000胁迫时,相较于野生型和共抑制株,过表达株系获得了很好的抗病性,没有或有极少量黄褐色病斑,而共抑制株病斑数量显著增多,抗病性大幅减弱。从转录水平分析,过表达植株中的SlPR1a、SlPTI5、SlWRKY28和SlGRAS2等防御基因的表达上调幅度极大,与野生型之间差异极显著。结果表明,SlSPL3基因过表达能够大幅度增强Pst DC3000诱导的番茄防御基因的表达,从而调节番茄植株对该细菌病原体的免疫应答。

Description

SlSPL3基因在诱导番茄抵抗病原菌中的应用
技术领域
本发明属于植物基因工程技术领域,尤其涉及SlSPL3基因在诱导番茄抵抗病原菌中的应用。
背景技术
番茄叶斑病是一种危害番茄的细菌性病害,因此又称为番茄细菌性斑疹病或细菌性斑点病,该病会使番茄的果实与叶片产生斑点与溃疡,导致番茄作物严重减产,对我国的番茄生产构成了严重的威胁。丁香假单胞菌番茄致病变种(Pseudomonas syringaepv.tomato DC3000,Pst DC3000)是引起番茄叶斑病的元凶,它使用III型分泌系统(typeⅢsecretion system,T3SS)将效应蛋白直接注射到宿主细胞的胞浆中,干扰植物的免疫系统,破坏病原物分子模式引发的免疫反应(PAMP-triggered immunity,PTI)通路的信号成分,阻碍免疫相关基因的转录表达和转录产物的翻译,靶向激活效应子引发的免疫反应(effector-triggered immunity,ETI)途径中的关键蛋白。
SPL(SQUAMOSA promoter-binding protein-like)是一类植物特有的转录因子,SPL家族成员均包含一个SBP(SQUAMOSA promoter-binding-protein)结构域,该结构域高度保守,负责与DNA序列的特异性结合。SPL家族成员在促进植物生长发育、抵抗外界胁迫中的多个方面发挥着重要的作用。番茄SlSPL13通过结合SlSFT的启动子诱导该基因的表达,从而调控花序的有序分化;抑制SlSPL13的表达导致营养枝和侧枝上的花序数量增加,造成花与果实减少,影响果实的大小和数量(Cui L,Zheng F,Wang J,et al.miR156a-targetedSBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis bydirectly activating SFT in tomato[J].Plant biotechnology journal,2020,18(8):1670-1682)。番茄SlSPL-CNR是一种多功能蛋白,一种具有独特的核定位信号(NLS)的核定位蛋白,可以与SlSnRK1相互作用,协同影响细胞死亡和番茄果实的成熟(Lai T,Wang X,YeB,et al.Molecular and functional characterization of the SBP-boxtranscription factor SPL-CNR in tomato fruit ripening and cell death[J].Journal of experimental botany,2020,71(10):2995-3011)。苹果MdSPL13过表达增强了耐盐性,MdSPL13通过结合MdWRKY100启动子上的两段GTAC基序激活其转录,增强苹果的抗盐胁迫,阐明了苹果的耐盐机制(Ma Y,Xue H,Zhang F,et al.The miR156/SPL moduleregulates apple salt stress tolerance by activating MdWRKY100 expression[J].Plant biotechnology journal,2021,19(2):311-323)。Osa-miR535靶向水稻OsSPL4,以抑制水稻对稻瘟病菌的免疫,过表达OsSPL4的水稻对稻瘟病的抗性增强,阻碍了稻瘟病原菌的入侵与扩散,基因敲除株则表现出易感性(Zhang L L,Huang Y Y,Zheng Y P,etal.Osa-miR535 targets SQUAMOSA promoter binding protein-like 4to regulateblast disease resistance in rice[J].The Plant journal,2022,110(1):166-178)。SPL家族在植物生长发育和环境胁迫中的作用研究较广泛和深入,而在对抗病原微生物侵害方面的机理研究尚不丰富,特别是在番茄为代表的园艺作物中的研究鲜有报道。
发明内容
针对现有技术存在的问题,本发明提供了SlSPL3基因在诱导番茄抵抗病原菌中的应用。本发明旨在提供一种新型的真核重组质粒及其制备方法,将所述真核重组质粒应用于调节番茄免疫应答中,以阻止病原菌的入侵与繁殖,增强番茄的抗逆性,激活下游防御基因的快速响应。
本发明提供了番茄SlSPL3基因在选育抗叶斑病番茄植株中的应用,所述番茄SlSPL3基因编号为Solyc07g062980.2.1。
进一步地,所述叶斑病的病原菌为丁香假单胞菌。
进一步地,所述叶斑病的病原菌为丁香假单胞菌番茄致病变种Pst DC3000。
进一步地,扩增所述番茄SlSPL3基因的引物序列如SEQ ID NO.3和SEQ ID NO.4所示。
本发明还提供了一种重组质粒,包括如SEQ ID NO.1所示的核苷酸序列。
进一步地,所述重组质粒包含卡那霉素抗性基因。
本发明还提供了一种提高番茄抗病性的方法,所述抗病性包括对丁香假单胞菌的抗性,在番茄植株中过表达番茄SlSPL3基因以提高番茄抗病性。
进一步地,将包含如SEQ ID NO.1所示的核苷酸序列的重组质粒通过农杆菌介导法转化至番茄植株中,获得抗性植株。
本发明还提供了番茄SlSPL3基因在调控Pst DC3000诱导的防御基因的表达中的应用。
进一步地,所述Pst DC3000诱导的防御基因包括SlPR1a、SlPTI5、SlWRKY28和SlGRAS2基因中的至少一种。通过过表达SlSPL3基因,促进防御基因的表达,从而提高番茄抗病性。
具体地,本申请中用软件primer premier 5.0设计引物。根据SPL3的CDS序列(Solyc07g062980.2.1)带有Xba I和Sal I酶切位点的特异性引物SPL3FXbaI、SPL3RSalI,进行PCR扩增,得到目的基因片段(SEQ ID NO.1)。该序列具有完整的ORF,其ORF全长399bp,该基因编码132个氨基酸残基,包含1个保守结构域,即SBP结构域。将目的基因片段插入到植物过表达载体pBI121的T-DNA区域中的CaMV35S启动子下游,构建成SlSPL3组成型过量表达载体pBI121::SlSPL3,载体图谱见图1,序列为SEQ ID NO.2。
本发明所述真核重组质粒的制备方法,其步骤如下:
(1)使用引物SPL3FXbaI、SPL3RSalI,使用高保真酶进行PCR扩增,退火温度为59℃,延伸时间为20s,扩增30个循环,将PCR产物纯化,得到目的基因片段。用限制性核酸内切酶Xba I和Sal I将目的基因和载体质粒pBI121进行双酶切,酶切反应条件为37℃、45min,将酶切产物纯化。
(2)通过T4连接酶将含有双酶切位点的目的基因片段和载体质粒连接,目的基因和载体质粒的摩尔质量比例为3:1,连接条件为4℃、12h,将重组产物转入大肠杆菌DH5α,涂至Kana抗性LB固体培养基上。挑取单菌落,使用特异性引物做PCR,退火温度为59℃,延伸时间为20s,扩增30个循环。将符合预期条带大小的阳性克隆送测序验证,如测序结果完全匹配,则扩大培养并提取得到重组诱饵质粒pBI121::SlSPL3,同时保存甘油菌。将质粒转化农杆菌EHA105,涂于Rif和Kana双抗性LB固体培养基上,挑取单菌落,使用特异性引物做PCR,将鉴定为阳性的克隆扩大培养并保存甘油菌,用于后续番茄遗传转化,pBI121::SlSPL3的PCR产物长度为400bp左右。
将上述真核重组质粒转化番茄,获得过表达与共抑制转基因番茄植株。实验表明:在遭受Pst DC3000胁迫时,相较于野生型和共抑制株,过表达株系获得了很好的抗病性,没有或有极少量黄褐色病斑,而共抑制株病斑数量显著增多,抗病性大幅减弱。从转录水平上分析,在SlSPL3-OE植株中观察到SlPR1a、SlPTI5、SlWRKY28和SlGRAS2等防御基因的表达上调幅度极大,与野生型之间差异极显著,而SlSPL3-CS植株中抗病基因表达量的变化与AC相比没有显著性差异。
这些结果表明,本发明提供的真核重组质粒能够大幅度增强Pst DC3000诱导的番茄防御基因的表达,从而调节番茄植株对该细菌病原体的免疫应答。
本发明为探索番茄SlSPL3在抵抗病原菌入侵中发挥的作用,通过植物基因工程技术使SlSPL3在番茄中过表达,保护番茄免受细菌性叶斑病的侵害,这对番茄抗病品种的改良与番茄作物的增产有着重要的作用和意义。
综上所述,本发明的优点及积极效果为:
1、本发明为诱导番茄抵抗病原菌提供了一种新的真核重组质粒,有利于番茄作物的抗病性与产量增长。
2、本发明所用的基因为番茄本身所自有的基因,所以转基因番茄的安全性能高。
3、本发明所涉及的基因克隆和番茄转基因均为常规方法,所需材料易于获取。
附图说明
图1是载体pBI121的图谱;
图2是SlSPL3基因在番茄各组织中的表达水平;
图3是SlSPL3基因在不同类型番茄植株中的表达水平;
图4是不同类型番茄植株的抗病叶片表型图;
图5是不同类型番茄植株的平板菌落生长状态与菌落计数结果;
图6是不同类型番茄植株叶片的台盼蓝染色实验结果图;
图7是不同类型番茄植株抗病防御基因表达水平。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,各实施例及试验例中所用的设备和试剂如无特殊说明,均可从商业途径得到;凡未注明具体实验条件的,均按照本领域技术人员熟知的常规条件,或按照制造商所建议的条件。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。本发明中,“约”指给定值或范围的10%以内,优选为5%以内。
本发明披露了SlSPL3基因在诱导番茄抵抗病原菌中的应用。SlSPL3的CDS序列如SEQ ID NO.1所示,pBI121载体序列如SEQ ID NO.2所示。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。
实施例1:SlSPL3基因的克隆
1、试剂
高保真Pfu DNA polymerase、T4 DNA Ligase:Vazyme公司;胶回收试剂盒和质粒提取试剂盒:Qiagen公司;植物表达载体pBI121:携带农杆菌转移的T-DNA区域,该区域带有筛选转基因植物的抗卡那霉素基因NPTII,同时带有烟草花叶病毒CaMV35S启动子,质粒菌株由刘永胜教授实验室保存,载体图谱如图1所示;Taq DNA聚合酶、dNTP、DNA marker:成都博瑞克生物技术有限公司;限制性内切酶:赛默飞公司;二甲基亚砜(DMSO)、DEPC:Sigma公司;氨苄青霉素、硫酸卡那霉素、利福平:Sigma公司;TRIZOL:Invitrogen公司;化学试剂:除注明外,均为国产分析纯。
2、质粒载体和菌株
2.1植物表达载体Binary vector pBI121
植物表达载体pBI121结构携带农杆菌转移的T-DNA区域,该区域带有筛选转基因植物的抗卡那霉素基因NPTII,同时带有烟草花叶病毒CaMV35S启动子。
2.2菌株
大肠杆菌(Escheriachia coli)DH5α,根瘤农杆菌(Agrobacterium tumefaciens)EHA105,菌株由刘永胜教授实验室保存。
3、培养基和溶液
LB液体培养基:2g胰蛋白胨、2g NaCl、1g酵母提取物,ddH2O补至200mL,高温高压灭菌。
LB固体培养基:LB液体培养基+琼脂粉15g/L。
SOB液体培养基:4g胰蛋白胨、0.1g NaCl、1g酵母提取物、0.036g KCl、0.048gMgCl2·6H2O,ddH2O补至200mL,高压灭菌。
SOC液体培养基:4g胰蛋白胨、1g酵母提取物、0.1g NaCl、37mg KCl、406mg MgCl2、792mg葡萄糖,ddH2O补至200mL。
YEB液体培养基:1g牛肉膏、1g胰蛋白胨、0.2g酵母提取物、1g蔗糖、0.8g MgSO4·7H2O,dd H2O补至200mL,高温高压灭菌。
YEB固体培养基:YEB液体培养基+琼脂粉15g。
4、实验方法
4.1番茄的培养方法
番茄炼苗基质:1/2营养土+1/2普通土。
生长条件:种子在MS培养基上发芽。幼苗在光照培养室生长,温度24℃,光照条件(16h白光8h黑暗),湿度60%。40天后移入室外自然光下生长。
4.2RNA的提取(本实施例中从番茄叶片中提取RNA进行目的基因的扩增,其他实施例中也可以直接合成目的基因序列再进行后续试验)
4.2.1Trizol法提取RNA
(1)操作时务必戴口罩、手套,使用的枪头、EP管、试剂均为无RNase。用工业酒精灼烧研钵、研磨棒、镊子、剪刀、称量勺,冷却待用。
(2)将研钵、研磨棒、称量勺、EP管放置于液氮预冷后,将番茄叶片样品研磨成粉,为保研磨充分可研磨两次。将粉末装入EP管,加至刻度0.5mL处。
(3)加入1mL Trizol提取液,震荡混匀,室温放置5min。4℃下12000r/min离心10min,取800~900μL上清液于新EP管,加入200μL三氯甲烷,震荡15s后,静置3min,4℃下12000r/min离心10min。
(4)取500μL上清液与等体积异丙醇混合,颠倒震荡混匀,于-20℃放置10min以上。12000r/min离心10min,得到白色沉淀,弃上清液。
(5)先加700μL无水乙醇,摇晃使沉淀漂浮,再加300μL DEPC·ddH2O,摇晃混匀,4℃下12000r/min离心2min,弃上清液。重复一次,瞬离后将上清液吸干净。
(6)置于通风橱内10min晾干,加入70~100μL DEPC·ddH2O,震荡溶解,存于-80℃。
4.2.2RNA质量及浓度检测
(1)提前用1M NaOH浸泡电泳槽、制胶板30min,清水洗净。
(2)向电泳槽内倒入新的TAE缓冲液,制大孔细梳琼脂糖凝胶。
(3)取2μL RNA样品混合3μL 6×Loading Buffer,点样,电泳13min。此步骤需用无RNase枪头。
(4)电泳结果应呈28S、18S、5S三条清晰条带,代表样品完整性好。
4.3引物合成
由生工生物工程(上海)股份有限公司合成,从左至右均为5’-3’:
SPL3RSalI:CCGGTCGACTCCAGAGATGTCAGCAGTG;SEQ ID NO.3
SPL3FXbaI:TGCTCTAGAATGGCAAACAATGATGCTGG;SEQ ID NO.4
NPTIIF:AGACAATCGGCTGCTCTGAT;SEQ ID NO.5
NPTIIR:TCATTTCGAACCCCAGAGTC;SEQ ID NO.6
4.4RT-PCR反应
(1)将RNA溶液在冰上完全解冻,依次加入以下试剂:
(2)混匀,置于PCR仪上65℃变性5min。反应完毕后立即转移至冰浴中,放置2min。
(3)加入反转录酶1μL,混匀,重新置于PCR仪上,42℃反应30~60min。
(4)95℃加热5min,使逆转录酶失活,瞬时离心后-20℃冰保存。
4.5PCR反应
PCR反应体系(50μl)为:
PCR反应程序为:94℃预变性5min;94℃变性30s,55℃退火30s,72℃延伸(根据1kb/min决定延伸时间),30~35轮循环,72℃延伸10min。产物-20℃保存。
4.6通用的基因克隆程序
4.6.1PCR产物或酶切产物的胶回收纯化
用高保真Pfu DNA聚合酶进行目的基因扩增后的PCR产物或双酶切后的载体和片段,用琼脂糖凝胶进行电泳分离、鉴定。用产物纯化试剂盒进行回收、纯化。实验操作按照试剂盒说明进行,最后的回收产物溶于30μL去离子水中,取1μL进行紫外分光光度计检测,计算浓度后,将终浓度调为100ng/μL。
4.6.2酶切
本发明使用的限制性内切酶皆是购自大连宝生物公司(TaKaRa),单酶切和双酶切的步骤完全按照酶的使用说明进行。
4.6.3连接
将经过胶回收纯化后的片段和载体电泳,检测它们的浓度后连接。在EP管中分别加入以下成分(视片段和载体的不同浓度有所调整),最后以ddH2O补足至20μL,4℃连接12h。
4.6.4E.coli感受态细胞的制备
(1)挑取培养过夜的大肠杆菌菌株DH5α单菌落,接种于2mL SOB中,37℃振荡培养过夜;
(2)取0.5mL菌液,接种于50mL SOB中,18℃振荡培养约24h或25℃振荡培养约12h;
(3)将菌液转入50mL的离心管中,冰水浴10min,4000r/min离心10min;
(4)弃上清液,加入16mL 0℃预冷的TB缓冲液(20mmol·L-1KCl,54mmol/L MnCl2,15mmol/L CaCl2,12.5mmol/L K-MES pH 6.2),重新悬浮菌体,4000r/min离心10min;
(5)再加入4mL TB缓冲液悬浮菌体,逐滴加入280μL DMSO,混匀后置于冰上静置10min或更长时间。根据需要分装菌体细胞,立刻置于液氮中保存。
4.6.5大肠杆菌的转化
(1)将感受态细胞置于冰上解冻。
(2)将连接产物与解冻后的感受态细胞小心混匀,冰浴30min。
(3)将混合物置于42℃中,热击45s。
(4)快速将EP管转移至冰浴中,冷却2~3min。
(5)加入800μL SOC,混匀置于37℃摇床中振摇培养1h使细菌复苏。
(6)将培养后的细菌置于室温下4000r/min,离心5min。
(7)弃掉上清液,留约200μL上清液,用枪头吹吸混匀,用玻璃珠将细菌均匀涂布到LB平板上(含相应抗生素)。
(8)倒置平板,于37℃培养箱中培养12~16h。
4.6.6菌落PCR检测
用无菌枪头挑取过夜培养的单克隆,分别置于500uL培养液(含有相应的抗生素)的E P管中,同时用另一支装500μL培养液作阴性对照液,置于37℃摇床中培养6h左右。以空培养基为阴性对照,1μL菌液为模板进行菌落PCR鉴定。PCR反应条件为:94℃ 5mi n,30cycles(94℃ 30s;55℃ 30s;72℃ 30s),72℃ 10min。反应结束后,取3μL产物进行琼脂糖凝胶电泳检测。
4.6.7质粒DNA提取
质粒的提取参照Vazyme公司的质粒提取试剂盒的使用说明。
4.6.8DNA测序及核苷酸序列分析
将经鉴定的阳性克隆送上海生工生物有限公司,使用35SF引物进行测序,测序结果用Snapgene和DNAMAN软件进行比对分析。
实施例2:真核重组质粒的构建及其功能验证
1、材料
1.1植物材料
野生型番茄(Solanum lycopersicum Mill.cv.Ailsa Craig)由美国康莱尔大学教授Jim Gio vannoni提供。
1.2Real-time RT-PCR分析引物
1.1.3主要试剂
植物激素和抗生素均为国产试剂。
吲哚乙酸(Indoleacetic Acid,IAA)、激动素(Kinetin,Kt)、6-苄氨基嘌呤(6-Benzylamino purine,6-BA)、乙酰丁香酮(Acetosyringone,ACE)、2,4-二氯苯氧基乙酸(2,4-Dichlorophenox yacetic Acid,2,4-D)、卡那霉素(Kanamycin,Kana)、特美汀(Timentin,TMT)。
1.1.4菌株和培养基
大肠杆菌(Escherichia coli)菌株DH5α为本实验室保存,用于重组子的筛选和质粒的扩增。
LB培养基:2g胰蛋白胨、2g NaCl、1g酵母提取物,ddH2O补至200mL。
SOB培养基:4g胰蛋白胨、0.1g NaCl、1g酵母提取物、0.036g KCl、0.048g MgCl2·6H2O,ddH2O补至200mL。
SOC培养基:4g胰蛋白胨、1g酵母提取物、0.1g NaCl、37mg KCl、406mg MgC l2、792mg葡萄糖。
1.1.5农杆菌菌株及其培养基
农杆菌EHA105由本实验室保存。所使用培养基为:
YEB液体培养基:1g牛肉膏、1g胰蛋白胨、0.2g酵母提取物、1g蔗糖、0.8g Mg SO4·7H2O,ddH2O补至200mL。
YEB固体培养基:YEB液体培养基+琼脂粉5g。
1.1.6植物组织培养基
番茄转化过程中所用培养基如下:
预培养:800mL MS、800μL 6-BA、32μL IAA。
诱导培养基:400μL 0.5M MES Buffer、1mL 0.5M Phosphate Buffer、200μL10mg/mL ACE、2.5mL 20%Glucose、2.5mL 20×AB salt、ddH2O补至50mL。
共培养基:800mL MS、80μL KT、80μL 2,4-D、1176μL ACE。
筛选培养基:800mL MS、2400μL TMT、1600μL 6-BA、960/1040/1120μL Kana、160μLIAA。
生根培养基:800mL MS、2400μL TMT、1600μL IAA。
2、方法
2.1农杆菌的转化
农杆菌EHA105感受态细胞的制备
(1)取EHA105甘油菌在利福平抗性的LB固体培养基上划线培养,挑克隆于2mL利福平抗性的LB液体培养基中,28℃下220r/min震荡过夜培养。
(2)取1mL菌液于50mL利福平抗性的LB液体培养基中,28℃下220r/min震荡培养4~6h,直至OD600=0.5~0.7。
(3)冰浴20min,4℃下4000r/min离心10min,用10mL预冷后的0.15M NaCl溶液重悬,冰上静置10min。
(4)4℃下5000r/min离心5min,用1mL 20mM CaCl2溶液重悬后,冰上静置10min。分装至EP管,50μL/管,储存于-80℃。
冻融法转化农杆菌感受态
(1)取10μL质粒加入50μL农杆菌,轻弹管壁混匀,于冰上静置30min。
(2)冰浴30min,液氮冷激1min,37℃培养箱5min复融。
(3)加入500μL SOC/LB培养基,28℃下220r/min震荡培养2~4h。
(4)4000r/min离心5min,取100μL上清液将沉淀吹打混匀,涂在相应抗性的LB固体培养基上,于28℃培养箱倒置培养2d。
2.2农杆菌介导法转化番茄
参照Horsh的叶盘法侵染番茄品种AC,具体步骤如下:
植物材料的准备
(1)将番茄种子先浸泡于37℃左右的温水过夜,在超净工作台上用1%的次氯酸钠溶液灭菌15min,期间摇晃2~3次,最后以无菌水充分漂洗种子6~8次。
(2)将种子点播于装有MS的三角烧瓶中,暗培养4天左右,露白后转移到25℃光照下培养。
(3)取8~10天龄的子叶,预培养培养基上培养2~3天。
重组农杆菌的重悬
(1)取PCR鉴定过的载有目的质粒的农杆菌(甘油保存)50~80uL于2mL LB选择培养液中,28℃振荡培养24h,进行农杆菌的复苏。
(2)取200μL过夜培养物于5mL LB选择培养液,28℃振荡培养过夜,5000r/min,室温离心10min。
(3)弃上清液,加入诱导培养基重悬,用于转化。
愈伤组织的筛选和生根
(1)分别将预培养过的子叶浸入农杆菌重悬液中15min,取出置于无菌滤纸上吸干外植体表面的液体,放入CO培养基中,25℃ 16h光照培养2天。
(2)将外植体转移至筛选培养基中,每隔3周继代一次,直至外植体愈伤组织分化出再生苗。
(3)当再生苗2~3cm时,移入生根培养基中生根。
(4)炼苗移栽:待苗的根系足够发达后,转移至营养钵,温室中培养成活后移入大田。
2.3CTAB法提取植物基因组DNA
取100mg鲜重材料液氮下研成细粉,加入600μL 65℃预热的2×CTAB提取缓冲液(100mmol/L Tris-HCl pH 8.0,20mmol/L EDTA pH 8.0,1.4mol/L NaCl,40mmol/Lβ-巯基乙醇,2%CTAB)混匀;65℃水浴保温1h后加入等体积的氯仿抽提,5000×g离心10min,取上清液,加入等体积的异丙醇,室温放置15min,12000×g离心10min,弃上清,用70%乙醇冲洗后吹干沉淀后溶于50μL灭菌ddH2O中,备用。
2.4番茄转基因植株的鉴定
先提取移栽于盆中的转基因番茄幼嫩叶片的总DNA。合成筛选标志的NPTⅡ基因(卡那霉素)引物,序列如下:
NPTII-F:5’-TCTCATGCTGGAGTTCTTCGC-3’;SEQ ID NO.19
NPTII-R:5’-GTCACCGACTTGAGCCATTTG-3’;SEQ ID NO.20
用上述引物进行PCR扩增,取番茄转化苗总DNA每个样品各1μL为模板,以空质粒pBI121作为阳性对照,野生型番茄总DNA作为阴性对照。取7uL PCR扩增产物进行1.0%琼脂糖凝胶电泳检测。
定量RT-PCR确定基因表达
对于PCR阳性的转基因植株,进一步从RNA水平上确认。先提取植株总RNA,反转录合成cDNA,作为模板,使用实时定量PCR的方法检测基因的表达水平。本实验采用相对定量方法,分析目的基因在样品组与对照组间差异表达的倍数(Rel.Quantity)。实验以UBI3基因为内参,采用2-△△Ct法进行分析计算,并算出标准误差。PCR反应程序为:95℃30s解链,60℃同时复性,延伸20s,40个循环。
2.5病原菌Pst DC3000胁迫:
(1)将病原菌Pst DC3000在利福平抗性LB固体培养基上划线活化,28℃恒温培养箱倒置培养2d。挑克隆于2mL利福平抗性LB液体培养基中,28℃下190r/min过夜震荡培养。
(2)将菌液3000r/min离心6min,弃上清,收集菌体并重悬于1mL 10mM MgCl2缓冲溶液中,重复此步骤1次,稀释10倍测OD600
(3)用缓冲液稀释至2L(OD600=2×10-5),加入0.005% Silwet L-77。
(4)选取培养条件一致、长势良好的5周龄番茄植株,用锡箔纸固定其地下部分与土壤,将植株倒置,使叶片完全浸泡于菌液中,将以上装置放入真空干燥器中并密封,连接并启动真空泵,压力表数值达到最大后持续20s,将植株取出检查菌液是否完全进入叶片(叶片背面呈深绿色),若无则继续。
2.6台盼蓝染色
1、配置台盼蓝染色液(乳酸10mL、甘油10mL、苯酚10mL、台盼蓝粉末40mg、ddH2O10mL),将番茄叶片完全浸没于染色液中,100℃水浴3min。
2、将叶片置于90%乙醇中,于水平摇床上脱色,6h更换一次脱色液直至将叶绿素脱尽,拍照记录。
2.7叶片菌落计数
1、于植株的同一分支、同一位置打孔取相同大小与数量(2孔或3孔)的叶片,加入1mL10mM MgCl2缓冲溶液进行研磨,研磨充分后吸入EP管,得到原液。
2、用10mM MgCl2缓冲液将原液稀释至10-1、10-2、10-3倍,取5μL上述稀释后的样品匀液,接种到利福平抗性LB固体培养基上,于28℃培养箱中倒置培养,2d后记录菌落数并拍照。
3、根据平板菌落数目与稀释倍数,计算出单位体积(mL)菌液中Pst DC3000菌落形成单位(colony-forming units,CFU)的数量。使用Microsoft Excel 2013、GraphPadPrism 8进行统计学分析并作图,图中数据为平均值±标准差(n=3),通过t检验分析显著性差异,*表示P<0.05,**表示P<0.01。
3、结果
3.1SlSPL3基因表达模式分析
通过实时定量PCR对野生型番茄AC不同组织的SlSPL3表达水平进行分析,明确SlSPL3基因在各组织和果实发育过程中的表达情况。
收集野生型番茄AC的不同组织:叶(leaf)、根部(root)、茎(stem)、花(flower)、未熟绿果(immature green,IMG)、成熟绿果(mature green,MG)、破红果实(break red,BR)、成熟红果(ripe red,RR)、种子(seed)。取0.15g样品,用Trizol法提取总RNA,利用HiScriptⅢ反转录试剂盒进行反转录得到cDNA,进行qRT-PCR分析。根据番茄SlSPL3(Solyc07g062980.2.1)的基因组序列设计引物SPL3RTF、SPL3RTR,以番茄SlUBI3作为内参基因。
结果如图2所示,SlSPL3基因在所有的组织中均有表达,表现出组成型表达特性,其中种子中的表达量最高,其次是茎;在果实发育阶段,随着果实的成熟进程,SlSPL3的表达水平逐渐升高。
3.2转基因植株的鉴定
通过对转基因番茄基因组DNA进行PCR分析,对于PCR阳性的转基因植株,进一步从RNA水平上确认。实时定量RT-PCR的方法检测转基因植株和野生型SlSPL3基因的表达水平,转基因植株明显高于野生型(图3)。说明真核重组质粒已经整合到番茄植株的基因组D NA中。
3.1.3转pBI121::SlSPL3基因的番茄叶片抗丁香假单胞菌
各选3株5周龄番茄植株进行Pst DC3000胁迫处理,观察不同株系对病原菌的耐受程度、叶片菌落及数据统计、台盼蓝染色,分析转基因植株内源防御相关基因的表达量变化,评价转基因植株对病原菌的响应差异。
叶片表型如图4所示,Pst DC3000胁迫6d时,相较于野生型和共抑制株,过表达株系获得了很好的抗病性,没有或有极少量黄褐色病斑,而共抑制株病斑数量显著增多,抗病性大幅减弱。
从图5平板菌落生长状态与菌落计数可以看出,共抑制株系叶片菌落数相较于野生型菌落数显著增多,而过表达株系叶片菌落相较野生型明显得到抑制。
在接种Pst DC3000后5h时对叶片进行台盼蓝染色并脱色,结果如图6所示,共抑制株系的死细胞明显增多,过表达株系则很少。
3.1.4转pBI121::SlSPL3基因引起抗病相关基因表达量上调
为了探讨SlSPL3基因的过表达与抑制是否影响病原体诱导的防御反应,本申请中分析了Pst DC3000感染后不同时间点时,转基因植株中防御基因的表达量变化。收集0h、6h的叶片样本,提取其RNA,反转录后做荧光定量PCR,以SlUBI3为内参基因,计算时以0h-AC为参照。
结果如图7所示,在被Pst DC3000感染后,与未感染的野生型AC相比,6h时的野生型、过表达与共抑制植株的防御基因均上调。其中在SlSPL3-OE植株中观察到SlPR1a、SlPTI5、SlWRKY28和SlGRAS2等防御基因的表达上调幅度极大,与野生型之间差异极显著,而SlSPL3-CS植株中抗病基因表达量的变化与AC相比没有显著性差异。
这些结果表明,番茄SlSPL3基因的过表达能够大幅度增强Pst DC3000诱导的防御基因的表达,从而调节番茄植株对该细菌病原体的免疫应答。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.番茄SlSPL3基因在选育抗叶斑病番茄植株中的应用,所述番茄SlSPL3基因编号为Solyc07g062980.2.1。
2.根据权利要求1所述的应用,其特征在于:所述叶斑病的病原菌为丁香假单胞菌。
3.根据权利要求2所述的应用,其特征在于:所述叶斑病的病原菌为丁香假单胞菌番茄致病变种Pst DC3000。
4.根据权利要求1所述的应用,其特征在于:扩增所述番茄SlSPL3基因的引物序列如SEQ ID NO.3和SEQ ID NO.4所示。
5.一种重组质粒,其特征在于:包括如SEQ ID NO.1所示的核苷酸序列。
6.根据权利要求5所述的一种重组质粒,其特征在于:所述重组质粒包含卡那霉素抗性基因。
7.一种提高番茄抗病性的方法,所述抗病性包括对丁香假单胞菌的抗性,其特征在于:在番茄植株中过表达番茄SlSPL3基因以提高番茄抗病性。
8.根据权利要求7所述的一种提高番茄抗病性的方法,其特征在于:将包含如SEQ IDNO.1所示的核苷酸序列的重组质粒通过农杆菌介导法转化至番茄植株中,获得抗性植株。
9.番茄SlSPL3基因在调控Pst DC3000诱导的防御基因的表达中的应用。
10.根据权利要求9所述的应用,其特征在于:所述Pst DC3000诱导的防御基因包括SlPR1a、SlPTI5、SlWRKY28和SlGRAS2基因中的至少一种。
CN202310517750.5A 2023-05-09 2023-05-09 SlSPL3基因在诱导番茄抵抗病原菌中的应用 Pending CN116497149A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310517750.5A CN116497149A (zh) 2023-05-09 2023-05-09 SlSPL3基因在诱导番茄抵抗病原菌中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310517750.5A CN116497149A (zh) 2023-05-09 2023-05-09 SlSPL3基因在诱导番茄抵抗病原菌中的应用

Publications (1)

Publication Number Publication Date
CN116497149A true CN116497149A (zh) 2023-07-28

Family

ID=87324615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310517750.5A Pending CN116497149A (zh) 2023-05-09 2023-05-09 SlSPL3基因在诱导番茄抵抗病原菌中的应用

Country Status (1)

Country Link
CN (1) CN116497149A (zh)

Similar Documents

Publication Publication Date Title
CN102485897B (zh) 利用棉花基因GbF3H改变花瓣颜色
CN107541520B (zh) 与水稻根发育和抗逆性相关OsSAUR11基因及编码蛋白与应用
CN109797157B (zh) 一种抗非生物逆境转录因子PbrbHLH92及其引物、编码的蛋白和应用
CN112898391B (zh) 枳抗寒基因PtrERF9在植物抗寒遗传改良中的应用
Krasnyanski et al. Effect of an enhanced CaMV 35S promoter and a fruit-specific promoter on uida gene expression in transgenic tomato plants
CN109355297B (zh) 铁皮石斛DcWOX4基因及其在提高植物茎分蘖中的应用
CN116640201B (zh) 调控MfERF026基因在紫花苜蓿生长发育和耐胁迫中的应用
CN111424037B (zh) 一种春兰CgWRKY70基因及其应用
Kushikawa et al. Agrobacterium-mediated transformation of Saintpaulia ionantha Wendl.
CN114671932B (zh) 提早枇杷开花时间的EjAGL6基因及其编码蛋白与应用
CN116083445A (zh) 一种CrBZR1基因及其应用
CN116590301A (zh) 一种杂交鹅掌楸LhWUS基因及其表达蛋白和应用
El-Siddig et al. Agrobacterium-mediated transformation of tomato plants expressing defensin gene
CN111424038B (zh) 一种春兰CgWRKY40基因及其应用
CN104673803B (zh) 基因甲基化在调控基因表达方面的应用
CN116497149A (zh) SlSPL3基因在诱导番茄抵抗病原菌中的应用
CN107099534B (zh) 一种在植物生长的特定时期内表达的水稻种子特异性启动子
CN111961675A (zh) 无芒隐子草闭花基因CsCly及其应用
CN101831429B (zh) 水稻胚乳特异表达基因的启动子及表达模式鉴定
CN111304222A (zh) 一种春兰CgWRKY11基因及其应用
CN109628468A (zh) 一种春兰CgWRKY53基因及其应用
CN111424040B (zh) 一种春兰CgWRKY21基因及其应用
CN110904110B (zh) 降低OsHAP3C基因表达在培育抽穗期推后、生育期延长水稻品种中的应用
CN113666992B (zh) 一种草莓白粉病抗性基因及其应用
CN116640200B (zh) 调控MfERF086基因在紫花苜蓿生长发育和/或耐冷性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination