CN116466103A - Water flow velocity and flow direction detection device and detection method - Google Patents

Water flow velocity and flow direction detection device and detection method Download PDF

Info

Publication number
CN116466103A
CN116466103A CN202310292787.2A CN202310292787A CN116466103A CN 116466103 A CN116466103 A CN 116466103A CN 202310292787 A CN202310292787 A CN 202310292787A CN 116466103 A CN116466103 A CN 116466103A
Authority
CN
China
Prior art keywords
detection
ball
water flow
stress
rope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310292787.2A
Other languages
Chinese (zh)
Inventor
王艳璐
刘东红
荆学亚
白旭军
郭宏
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Huaxing Engineering Testing Co ltd
Third Engineering Co Ltd of China Railway 17th Bureau Group Co Ltd
Original Assignee
Shanxi Huaxing Engineering Testing Co ltd
Third Engineering Co Ltd of China Railway 17th Bureau Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Huaxing Engineering Testing Co ltd, Third Engineering Co Ltd of China Railway 17th Bureau Group Co Ltd filed Critical Shanxi Huaxing Engineering Testing Co ltd
Priority to CN202310292787.2A priority Critical patent/CN116466103A/en
Publication of CN116466103A publication Critical patent/CN116466103A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

The invention provides a water flow velocity and direction detection device and a detection method, wherein the water flow velocity and direction detection device comprises a floating ball, a power supply device, a detection rope, a plurality of detection balls and a control device, wherein the floating ball floats on the water surface, and the power supply device is arranged on the floating ball; the detection rope is connected with the power supply device and penetrates through the bottom end of the floating ball to extend out of the lower portion of the floating ball, the detection ball is arranged on the detection rope, and the stress detection device is arranged on the detection rope and can detect the stress of the rope; the detection ball is provided with a plurality of wires, each wire is provided with a position sensor, a loop can be formed under the action of water flow, the control device is arranged in the floating ball, and the control device is connected with the stress detection device and the position sensors. The invention can simultaneously detect the flow velocity and the flow direction of the water body by arranging the detection rope and the detection balls, and simultaneously detect the flow velocity and the flow direction of the water body with different depths by arranging a plurality of detection balls.

Description

Water flow velocity and flow direction detection device and detection method
Technical Field
The invention belongs to the technical field of detection devices, and particularly relates to a water flow speed and direction detection device and a water flow speed and direction detection method.
Background
A flow meter, as the name implies, is an instrument that measures flow rate. The range is very wide, if the flow meter is divided according to the measuring instrument, the flow meter comprises a water conservancy instrument, a Doppler flow meter, a radar flow meter and the like, and the flow meter can measure the flow rate, the flow quantity and other data of the water body, and the measuring precision is high, so that the flow meter is widely used.
However, the existing flow velocity meter can only measure the flow velocity of the water body, but cannot measure the flow direction of the water body, and when the flow velocity and the flow direction of the water body need to be measured, a flow direction measuring device is often needed, so that the flow velocity meter is inconvenient to use in a multi-line operation mode.
In addition, in some sea areas, due to the complexity of the environment, the flow velocity and even the flow direction of the seawater with different depths can be different, and the existing flow velocity meter or flow direction measuring device can not detect the flow velocity and the flow direction of the multi-layer water area at the same time, so that the requirements are difficult to meet.
Disclosure of Invention
The invention aims to provide a water flow speed and direction detection device, which solves the problem that the existing flow speed and direction measurement device cannot detect the flow speed and direction of a multi-layer water area at the same time.
In order to achieve the above purpose, the invention adopts the following technical scheme: the water flow speed and direction detection device comprises a floating ball, a power supply device, a detection rope, a plurality of detection balls and a control device, wherein the floating ball floats on the water surface, a fixing rope is arranged on the floating ball, and the other end of the fixing rope is arranged on a fixing block at the bottom of the water; the power supply device is arranged on the floating ball; the detection cable is connected with the power supply device, penetrates through the bottom end of the floating ball and extends out to the lower part of the floating ball; the detection balls are arranged on the detection cable, the detection balls are uniformly arranged at intervals, each detection ball is penetrated by the detection cable, a stress detection device is arranged on the detection cable, and the stress detection device can detect the stress of the detection cable; the detection ball is provided with a plurality of wires, the wires are provided with position sensors, and under the action of water flow, the detection cable can be contacted with one of the wires to form a loop; and the control device is arranged in the floating ball and is connected with the stress detection device and the position sensor.
In one possible implementation manner, the water flow rate and direction detection device is sleeved with a waterproof layer, and the waterproof layer is set in a loose state at a position where the detection rope is close to the detection ball.
In one possible implementation manner, the power supply device includes a solar power generation mechanism and an electric storage mechanism, the electric storage mechanism is connected with the solar power generation mechanism, the solar power generation mechanism is arranged at the top of the floating ball, the electric storage mechanism is arranged in the floating ball, the electric storage mechanism can store electric energy generated by the solar power generation mechanism, and the detection cable is connected with the electric storage mechanism.
In a possible implementation manner, the through holes are formed in two ends of the detection ball, the detection cable passes through the through holes, the detection cable comprises a detection inner core and a detection outer cable, the detection inner core passes through the detection outer cable, the detection inner core and the detection outer cable are made of conductive materials, an insulating coating is arranged between the detection inner core and the detection outer cable, the detection inner core and the detection outer cable are respectively connected with the anode and the cathode of the power supply device, each wire is arranged on the inner wall of the detection ball, each wire is arranged along the direction of the detection cable and corresponds to the upper hemisphere and the lower hemisphere of the detection ball, the wires are divided into two groups which are arranged at intervals and in one-to-one correspondence, one end of each wire is connected with the detection inner core, and the other end of each wire is arranged on the side wall of the through hole of the corresponding hemisphere.
In one possible implementation manner, the wire includes a vertical line set along the extending direction of the detection cable, a connecting line connecting one end of the vertical line close to the center of the sphere in the same hemisphere and a plurality of positioning cables with one end connected with the connecting line, the other end of the positioning cable is connected with the detection inner core, one end of each vertical line far away from the center of the sphere is arranged on the side wall of the through hole of the hemisphere where the vertical line is located, and the vertical line and the connecting line are fixedly arranged on the side wall of the hemisphere where the vertical line is located.
In one possible implementation manner, two stress sensors are disposed on the detection cable and are disposed in the corresponding detection balls, and the two stress sensors are disposed symmetrically up and down with the center of the detection ball as the center.
In one possible implementation manner, the control device is preset with corresponding data of the water flow velocity and the water flow transverse thrust received by the detection ball, and the control device can calculate the transverse thrust received by the detection ball according to the stress of the detection cable corresponding to the detection ball.
In one possible implementation manner, the device further comprises a communication device and a receiving device, wherein the communication device is connected with the control device, and can transmit the information of the flow rate and the flow direction of the seawater detected by each detection ball obtained by the control device to the receiving device, and the receiving device is held by a worker.
The water flow speed and direction detection device provided by the invention has the beneficial effects that: compared with the prior art, the invention has the advantages that the plurality of wires are arranged on the detection balls, the position sensor is arranged on the wires, the detection cable can be contacted with one wire to form a loop under the action of water flow, at the moment, the position sensor transmits signals to the control device, the flow direction of the water flow can be judged according to the signals of the position sensor, meanwhile, the stress on each detection ball is measured by arranging the stress detection device, the flow speed of the water flow can be judged according to the stress judgment, so that the flow speed and the flow direction of the water flow can be detected by the water flow speed and flow direction detection device at the same time, and meanwhile, the plurality of detection balls are uniformly arranged at intervals, so that the flow speeds and the flow directions of the water bodies with different depths can be detected by different detection balls at the same time.
The invention also relates to a water flow speed and direction detection method, which adopts the water flow speed and direction detection device and comprises the following steps: s1, fixing the flow speed and flow direction detection device in a water area to be detected; s2, sequentially marking the detection balls as 1,2 and … … from bottom to top so as to distinguish the data of the detection balls; s3, detecting the water flow direction of each detection ball; s4, measuring and calculating the transverse stress born by each detection ball; and S5, obtaining the water flow velocity at each detection ball according to the preset corresponding data of the transverse stress and the water flow velocity.
In one possible implementation, in step S4, two stress sensors in each detection ball, wherein the detection data of the upper sensor is F n1 The detection data of the sensor positioned below is F n2 Detecting the stress F to which the ball is subjected n =F n1 -F n2 Given the weight force of the test ball, the transverse force of the test ball can be calculated from trigonometric functions based on the vectorial nature of the force.
The water flow rate and direction detection method provided by the invention has the beneficial effects that: compared with the prior art, the flow direction of the water body can be conveniently obtained by using the water flow direction detection device, and the flow speed of the water body can be conveniently obtained by calculating the stress of the detection ball, so that the water body is convenient and quick; in addition, the flow velocity and the flow direction of the water bodies with different depths can be detected at the same time.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings that are needed in the embodiments or the description of the prior art will be briefly described below, it being obvious that the drawings in the following description are only some embodiments of the present invention, and that other drawings may be obtained according to these drawings without inventive effort for a person skilled in the art.
FIG. 1 is a schematic diagram of a water flow rate and direction detection device according to an embodiment of the present invention;
FIG. 2 is a schematic diagram of a floating ball of a water flow velocity and direction detection device according to an embodiment of the present invention;
FIG. 3 is a schematic diagram of the structure of the inside of a detection ball according to an embodiment of the present invention;
FIG. 4 is a schematic diagram of the structure of the detecting ball under the condition of no stress according to the embodiment of the invention;
FIG. 5 is a schematic diagram of the structure of the detecting ball under stress provided by the embodiment of the invention;
fig. 6 is a schematic structural diagram of a test cable according to an embodiment of the present invention.
Wherein, each reference sign is as follows in the figure:
1. sea water; 2. a floating ball; 3. a solar power generation device; 4. detecting a ball; 5. a fixing rope; 6. a fixed block; 7. detecting a rope; 8. a stress sensor; 9. a position sensor; 10. a wire; 11. a positioning rope; 12. a sphere; 13. detecting an outer cable; 14. detecting the cable inner core; 15. a vertical line is arranged; 16. and (5) connecting wires.
Detailed Description
In order to make the technical problems, technical schemes and beneficial effects to be solved more clear, the invention is further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are for purposes of illustration only and are not intended to limit the scope of the invention.
It should be further noted that the drawings and embodiments of the present invention mainly describe the concept of the present invention, and on the basis of the concept, some specific forms and arrangements of connection relations, position relations, power units, power supply systems, hydraulic systems, control systems, etc. may not be completely described, but those skilled in the art may implement the specific forms and arrangements described above in a well-known manner on the premise of understanding the concept of the present invention.
When an element is referred to as being "fixed" or "disposed on" another element, it can be directly on the other element or be indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or be indirectly connected to the other element.
The terms "length," "width," "upper," "lower," "front," "rear," "left," "right," "vertical," "horizontal," "top," "bottom," "inner," "outer," etc. indicate or are based on the orientation or positional relationship shown in the drawings, merely to facilitate describing the invention and simplify the description, and do not indicate or imply that the devices or elements referred to must have a particular orientation, be constructed and operated in a particular orientation, and therefore should not be construed as limiting the invention.
The terms "first," "second," and "second" are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defining "a first" or "a second" may explicitly or implicitly include one or more such feature. In the description of the present invention, the meaning of "a plurality" means two or more, and the meaning of "a number" means one or more, unless specifically defined otherwise.
Example 1
The water flow rate and direction detection device provided by the invention will now be described.
Referring to fig. 1 and 2, the water flow rate and direction detecting device includes a floating ball 2, a power supply device, a detecting rope 7, a plurality of detecting balls 4 and a control device, wherein the floating ball 2 floats on the water surface of the seawater 1, a fixing rope 5 is arranged on the floating ball 2, and the other end of the fixing rope 5 is arranged on a fixing block 6 at the bottom of the water; the power supply device is arranged on the floating ball 2; the detection rope 7 is connected with the power supply device, passes through the bottom of the floating ball 2 and stretches out to the below of the floating ball 2, a plurality of detection balls 4 are arranged on the detection rope 7, a plurality of detection balls 4 are evenly arranged at intervals, each detection ball 4 is penetrated by the detection rope 7, a stress detection device is arranged on the detection rope 7, the stress detection device can detect the stress of the rope 7, a plurality of wires 10 are arranged on the detection ball 4, a position sensor 9 is arranged on the wires 10, the detection rope 7 can be contacted with one of the wires 10 under the action of water flow to form a loop, the control device is arranged in the floating ball 2, and the control device is connected with the stress detection device and the position sensor 9.
The beneficial effect that the water velocity flow direction detection device that this embodiment provided is: compared with the prior art, the water flow speed and direction detection device provided by the embodiment is characterized in that the plurality of wires 10 are arranged on the detection balls 4, the position sensor 9 is arranged on the wires 10, the detection rope 7 can be contacted with one of the wires 10 and form a loop under the action of water flow, the position sensor 9 transmits signals to the control device, the flow direction of the water flow can be judged according to the position sensor 9, meanwhile, the stress detection device is arranged, the stress borne by each detection ball 4 is measured, the flow speed of the water flow can be judged according to the stress judgment, the water flow speed and direction detection device can detect the flow speed and direction of the water body simultaneously, and meanwhile, the plurality of detection balls 4 are uniformly arranged at intervals due to the plurality of detection balls 4, so that different detection balls 4 can detect the flow speed and the flow direction of the water body with different depths simultaneously.
Based on the design thought, the water flow rate and direction detection device overcoat is equipped with the waterproof layer, and the waterproof layer sets up to the relaxation state in the position department that detects cable 7 and is close to detection ball 4, makes here detect the ball and does not receive the pulling influence of waterproof layer, prevents to influence measuring accuracy because the waterproof layer atress. In addition, the waterproof layer still has anticorrosive effect, prevents to be corroded by sea water 1, and the waterproof layer adopts flexible material, and wraps up water velocity flow direction detection device integral type inside.
In this embodiment, the power supply device includes a solar power generation mechanism 3 and an electric storage mechanism, the electric storage mechanism is connected with the solar power generation mechanism 3, the solar power generation mechanism 3 is arranged at the top of the floating ball 2, the electric storage mechanism is arranged in the floating ball 2, the electric storage mechanism can store electric energy generated by the solar power generation mechanism 3, and the detection cable 7 is connected with the electric storage mechanism. Specifically, the solar power generation mechanism 3 can adopt a solar panel, the electric storage mechanism can be selected as a storage battery, and the storage battery is arranged in the floating ball 2, so that the seawater 1 can be prevented from damaging the storage battery.
As shown in fig. 3, 4 and 6, the two ends of the detecting ball 4 are provided with through holes, the detecting cable 7 passes through the through holes, the detecting cable 7 comprises a detecting inner core 14 and a detecting outer cable 13, the detecting inner core 14 passes through the detecting outer cable 13, the detecting inner core 14 and the detecting outer cable 13 are made of conductive materials, an insulating coating is arranged between the detecting inner core 14 and the detecting outer cable 13, and the detecting inner core and the detecting outer cable are respectively connected with the anode and the cathode of the power supply device. The arrangement of the insulating coating can prevent short circuit between the detecting inner core 14 and the detecting outer rope 13.
The wires 10 are fixedly arranged on the inner wall of the detecting ball 4, and the wires 10 are arranged along the direction of the detecting rope 7, namely, are arranged up and down closely to the side wall of the detecting ball 4. The upper hemisphere and the lower hemisphere corresponding to the detection ball 4 are divided into two groups which are arranged at intervals up and down and are in one-to-one correspondence, one end of each wire 10 is connected with the detection inner core 14, the other end of each wire 10 is arranged on the side wall of a through hole of the corresponding hemisphere, as shown in fig. 5, under the action of water flow, the detection outer rope 13 of the monitoring rope is contacted with the side wall of the through hole, namely one of the wires 10, a loop is formed between the wire 10 and the detection rope 7 at the moment, the position sensor 9 can transmit signals to the control device, and the control device judges the direction of the water flow according to the preset information of the position sensor 9 of the signal.
Meanwhile, the upper hemispherical wire 10 is used for sensing the stress direction of the current detection ball 4 so as to judge the water flow direction, and the lower hemispherical wire 10 is used for sensing the stress direction of the lower hemispherical wire so as to judge the water flow direction below the detection ball 4, so that the data of the detection ball 4 below are mutually verified, and errors are eliminated.
As shown in fig. 3, the wire 10 includes a vertical line 15 disposed along the extending direction of the detecting cable 7, a connecting line 16 connecting one end of the vertical line 15 in the same hemisphere near the center of the sphere, and a plurality of positioning cables 11 with one end connected to the connecting line 16, the other end of the positioning cable 11 is connected to the detecting core, and it is worth noting that in this embodiment, the connection position of the positioning cable and the detecting core is at the center of the detecting sphere 4 when not acted by external force, one end of each vertical line 15 far from the center of the sphere is disposed on the side wall of the through hole of the hemisphere where the vertical line 15 and the connecting line 16 are fixedly disposed on the inner side wall of the sphere 12.
Corresponding to each detecting ball 4, two stress sensors 8 are arranged on the detecting rope 7, the two stress sensors 8 are arranged in the corresponding detecting balls 4 and are arranged vertically symmetrically with the center of the detecting ball 4 as the center, and the two stress sensors 8 can facilitate the detection of the stress of the detecting ball 4, and the specific detecting steps will be described in detail below. It is noted that the structure of the lower hemisphere of the floating ball 2 is the same as that of the lower hemisphere of the detecting ball 4.
In this embodiment, the control device is preset with corresponding data of the water flow velocity and the water flow lateral thrust received by the detection ball 4, and the control device can calculate the lateral thrust received by the detection ball 4 according to the stress of the detection ball 4, so as to obtain the flow velocity of the water body.
As a preferable scheme, the control mechanism further comprises a communication device and a receiving device, wherein the communication device is connected with the control device, the communication device is connected with the receiving device through a network, and can transmit the information of the flow rate of the seawater 1 and the flow direction of the seawater 1 detected by each detection ball 4 obtained by the control device to the receiving device, and the receiving device is held by a worker.
Finally, as a preferred solution, the lighter and finer the test cable 7 is, the less impact it has on the monitoring ball as much as possible, if the strength requirements are met. In addition, the floating ball 2 can be provided with a warning device, so that on one hand, the floating ball 2 is conveniently searched during maintenance, and on the other hand, the floating ball 2 is prevented from being damaged by a ship in the past
Example two
The water flow rate and direction detection method provided by the invention will now be described.
The method for detecting the flow rate and the flow direction of water according to the first embodiment includes:
s1, fixing a flow speed and flow direction detection device in a water area to be detected;
s2, marking the detection balls 4 sequentially, and marking the detection balls as 1,2 and … … sequentially from bottom to top so as to distinguish the data of the detection balls 4;
s3, detecting the water flow direction at each detection ball 4;
s4, measuring and calculating transverse stress born by each detection ball 4;
and S5, obtaining the water flow velocity at each detection ball 4 according to the preset corresponding data of the transverse stress and the water flow velocity.
Specifically, in step S4, the two stress sensors 8 in each of the detection balls 4 have the detection data of Fn1 for the upper sensor and Fn2 for the lower sensor, and the stress fn=fn 1-Fn2 applied to the detection ball 4, and the transverse stress of the detection ball 4 can be calculated from the trigonometric function based on the vectoriality of the force given that the gravity applied to the detection ball 4 is known.
Meanwhile, as the control mechanism is pre-provided with the position information of each position sensor 9 in each detection ball 4, once the control mechanism receives the information of the position sensor 9, the position of the position sensor 9 transmitting the signal can be judged according to the information, and then the flow direction of the water body is judged.
Compared with the prior art, the water flow velocity and direction detection method provided by the invention can conveniently obtain the direction of the water body by using the water flow velocity and direction detection device as described in the first embodiment, and can conveniently obtain the flow velocity of the water body by calculating the stress of the detection ball. In addition, the flow velocity and the flow direction of the water bodies with different depths can be detected at the same time.
The foregoing description of the preferred embodiments of the invention is not intended to be limiting, but rather is intended to cover all modifications, equivalents, and alternatives falling within the spirit and principles of the invention.

Claims (10)

1. A water flow rate and direction detection device, comprising:
the floating ball (2) floats on the water surface, a fixed rope (5) is arranged on the floating ball (2), and the other end of the fixed rope (5) is arranged on a fixed block (6) at the bottom of the water;
the power supply device is arranged on the floating ball (2);
the detection cable (7) is connected with the power supply device, penetrates through the bottom end of the floating ball (2) and extends out to the lower part of the floating ball (2);
the detection balls (4) are arranged on the detection rope (7), the detection balls (4) are uniformly arranged at intervals, each detection ball (4) is penetrated by the detection rope (7), a stress detection device is arranged on the detection rope (7), and the stress detection device can detect the stress of the detection rope (7); a plurality of wires (10) are arranged on the detection ball (4), a position sensor (9) is arranged on each wire (10), and under the action of water flow, the detection cable (7) can be contacted with one wire (10) to form a loop;
and the control device is arranged in the floating ball (2) and is connected with the stress detection device and the position sensor (9).
2. The water flow rate and direction detection device according to claim 1, wherein: the waterproof layer is sleeved outside the water flow velocity and direction detection device, and the waterproof layer is set in a loose state at the position of the detection rope (7) close to the detection ball (4).
3. The water flow rate and direction detection device according to claim 2, wherein: the power supply device comprises a solar power generation mechanism (3) and an electric storage mechanism, wherein the electric storage mechanism is connected with the solar power generation mechanism (3), the solar power generation mechanism (3) is arranged at the top of the floating ball (2), the electric storage mechanism is arranged in the floating ball (2), the electric storage mechanism can store electric energy generated by the solar power generation mechanism (3), and the detection cable (7) is connected with the electric storage mechanism.
4. A water flow rate and direction detection device according to claim 3, wherein: the utility model discloses a wire detection ball, including detection ball (4), detection ball (7) are provided with the via hole, detection ball (7) are worn to pass through the via hole sets up, detection ball (7) are including detecting inner core (14) and detection outer cable (13), detection inner core (14) are worn to locate in detection outer cable (13), detection inner core (14) with detection outer cable (13) are made for electrically conductive material, just detection inner core (14) with be equipped with insulating coating between detection outer cable (13), detection inner core with detection outer cable respectively with power supply unit's positive pole and negative pole are connected, each wire (10) are located on the inner wall of detection ball (4), and each wire (10) are followed the direction setting of detection ball (7) corresponds two hemispheres about detection ball (4), wire (10) divide into upper and lower interval arrangement and two sets of one-to-one, one end of wire (10) with detection inner core (14) are connected, the other end's corresponding hemispheres of wire (10) are located on the via hole.
5. The water flow rate and direction detection device according to claim 4, wherein: the wire (10) comprises a vertical line (15) arranged along the extending direction of the detection rope (7), a connecting line (16) and a plurality of positioning ropes (11) connected with one ends of the vertical lines (15) close to the sphere center are connected together in the same hemisphere, the other ends of the positioning ropes (11) are connected with the detection inner core, one ends of the vertical lines (15) away from the sphere center are arranged on the side wall of a through hole of the hemisphere where the vertical line (15) is located, and the connecting line (16) is fixedly arranged on the side wall of the hemisphere where the vertical line (15) is located.
6. The water flow rate and direction detection device according to claim 5, wherein: corresponding to each detection ball (4), two stress sensors (8) are arranged on the detection cable (7), the two stress sensors (8) are arranged in the corresponding detection balls (4), and the two stress sensors are arranged in an up-down symmetrical mode with the center of the detection ball (4) as the center.
7. The water flow rate and direction detection device according to claim 1, wherein: the control device is internally preset with corresponding data of the water flow velocity and the water flow transverse thrust received by the detection ball (4), and the control device can calculate the transverse thrust received by the detection ball (4) according to the stress of the detection cable (7) corresponding to the detection ball (4).
8. The water flow rate and direction detection device according to claim 1, wherein: the device also comprises a communication device and a receiving device, wherein the communication device is connected with the control device, and can transmit the flow rate of the seawater (1) and the flow direction information of the seawater (1) detected by each detection ball (4) obtained by the control device to the receiving device, and the receiving device is held by staff.
9. A water flow rate and direction detection method using the flow rate and direction detection apparatus according to claim 8, comprising:
s1, fixing the flow speed and flow direction detection device in a water area to be detected;
s2, sequentially marking the detection balls (4) as 1,2 and … … from bottom to top so as to distinguish the data of the detection balls (4);
s3, detecting the water flow direction of each detection ball (4);
s4, measuring and calculating the transverse stress born by each detection ball (4);
s5, obtaining the water flow velocity at each detection ball (4) according to the preset corresponding data of the transverse stress and the water flow velocity.
10. The water flow rate and direction detection method according to claim 9, wherein: in step S4, two stress sensors (8) in each detection ball (4), wherein the detection data of the upper sensor is Fn1, the detection data of the lower sensor is Fn2, and the stress fn=fn 1-Fn2 applied to the detection ball (4) is known, and the transverse stress of the detection ball (4) can be calculated by a trigonometric function according to the vectorization of the force when the gravity applied to the detection ball (4) is known.
CN202310292787.2A 2023-03-23 2023-03-23 Water flow velocity and flow direction detection device and detection method Pending CN116466103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310292787.2A CN116466103A (en) 2023-03-23 2023-03-23 Water flow velocity and flow direction detection device and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310292787.2A CN116466103A (en) 2023-03-23 2023-03-23 Water flow velocity and flow direction detection device and detection method

Publications (1)

Publication Number Publication Date
CN116466103A true CN116466103A (en) 2023-07-21

Family

ID=87181565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310292787.2A Pending CN116466103A (en) 2023-03-23 2023-03-23 Water flow velocity and flow direction detection device and detection method

Country Status (1)

Country Link
CN (1) CN116466103A (en)

Similar Documents

Publication Publication Date Title
CN107576314A (en) Float type depopulated zone rivers and lakes automatic monitoring system
CN206766283U (en) A kind of novel solid observes oceanic buoy system
CN213455463U (en) Integrated thermohaline deep flow detection device, detection chain and observation buoy system thereof
CN111854703A (en) Integrated warm salt deep flow detection device, system and method
CN114059518B (en) Integrated multiparameter engineering monitoring device and matrix type monitoring system
CN114088066B (en) Sea dynamic monitoring method and equipment used by same
CN220064103U (en) Water flow velocity and direction detection device
CN114572347A (en) Tsunami early warning monitoring system
CN115792166B (en) River flow speed buffer type underwater water quality monitoring device
CN116466103A (en) Water flow velocity and flow direction detection device and detection method
CN116337540A (en) Multi-parameter layered sampling water sample collector and sampling method
CN108828328B (en) Portable three-component submarine electric field instrument
CN114814990B (en) Device for forecasting and monitoring tidal volume of bay and working method thereof
CN108692773B (en) Tentacle type sensing flow meter based on artificial intelligence technology and flow measuring method thereof
CN116379989A (en) Flexible matrix type ground disaster monitoring system
CN216593656U (en) Hydrogeological exploration ground water level observation device
CN214225005U (en) A warm salt measuring apparatu for drifting buoy
CN113654529B (en) Intelligent monitoring device for tidal water level monitoring and working method thereof
CN206038110U (en) Water conservancy water level detection device
CN114660674A (en) Be suitable for groundwater water level monitoring devices of multiple aquifer condition
CN206515468U (en) ultrasonic radar flow measuring system
CN210322900U (en) Ultrasonic detector for measuring pipe network section and sludge state
CN111189510B (en) Pond underwater topography multi-point measuring device and measuring method
CN208306935U (en) Floating boat is observed in towed river
CN207248169U (en) Bottom-sitting type marine hydrology flow measuring system operation device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination