CN116457494A - 通过PVD由金属靶产生的富Al的AlCrN涂层 - Google Patents

通过PVD由金属靶产生的富Al的AlCrN涂层 Download PDF

Info

Publication number
CN116457494A
CN116457494A CN202180066642.XA CN202180066642A CN116457494A CN 116457494 A CN116457494 A CN 116457494A CN 202180066642 A CN202180066642 A CN 202180066642A CN 116457494 A CN116457494 A CN 116457494A
Authority
CN
China
Prior art keywords
coating
atomic
nitrogen
gtoreq
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180066642.XA
Other languages
English (en)
Inventor
S·克拉斯尼策
M·M·艾伯索德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Surface Solutions AG Pfaeffikon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Surface Solutions AG Pfaeffikon filed Critical Oerlikon Surface Solutions AG Pfaeffikon
Publication of CN116457494A publication Critical patent/CN116457494A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及涂层及其生产方法,其中所述涂层包含Al、Cr和N作为主要组分,并具有根据式(AlaCrb)xOyCzNq的关于这些元素的按原子百分比计的化学元素组成,其中a和b分别为铝和铬的原子比浓度,仅考虑Al和Cr以计算所述层中的元素组成,其中a+b=1且0≠a≥0.7且0≠b≥0.2,且其中x为Al的浓度与Cr的浓度之和,且y、z和q分别为氧、碳和氮的原子比浓度,仅考虑Al、Cr、O、C和N以计算所述层中的元素组成,其中x+y+z+q=1且0.45≤x≤0.55,0≤y≤0.25,0≤z≤0.25,并且其中所述涂层表现出90%或更多的fcc立方相,和2.5GPa或更大,优选2.5GPa至6GPa的压缩应力。

Description

通过PVD由金属靶产生的富Al的AlCrN涂层
本发明涉及通过物理气相沉积(PVD)方法由金属靶产生的富Al的AlCrN涂层(下文也简称为富Al的AlCrN涂层或富Al的AlCrN层或富Al的AlCrN膜)及其生产方法。
本发明还涉及由一个或多个上述本发明的富Al的AlCrN层组成或包括一个或多个上述本发明的富Al的AlCrN层的涂层体系。
根据本发明的富Al的AlCrN涂层应理解为由铝(Al)、铬(Cr)和氮(N)组成的涂层,或者包含铝(Al)、铬(Cr)和氮(N)作为主要组分的涂层。
在本文中,术语富Al的基于AlCrN的层中的“Al、Cr和N作为主要组分”的使用特别是指,如果考虑富Al的基于AlCrN的层中所含的全部化学元素以按原子百分比计确定富Al的基于AlCrN的层的全部化学元素组成,作为原子百分比浓度的富Al的基于AlCrN的层中的Al、Cr和N的含量的总和对应于大于50原子%(即>50原子%至100原子%的值),优选大于75原子%(即>75原子%至100原子%的值),更优选等于或大于80原子%(即80原子%至100原子%的值)。
在本文中,术语“富Al”特别用于表示相应的富Al的基于AlCrN的层中铝(Al)的含量等于或优选大于70原子%,如果仅考虑Al和Cr以确定按原子百分比计的化学元素组成(即Al[原子%]/Cr[原子%]>70/30)。
背景技术
对具有高于70原子%(相对于Cr)的Al含量的AlCrN涂层(其表现出立方晶体结构和柱状微结构)进行了许多研究并试图尤其在工业PVD室内获得这样的材料,因为预期这些种类的涂层与具有较低Al含量的涂层,例如基于PVD的Al0.7Cr0.3N涂层相比会显示出优异的磨损保护。
因此,还有一些出版物提出了将Al的亚稳态溶解度极限提高到超过70原子%的可能方法。然而,迄今为止所有这些提出的方法都具有一些缺点。
发明目的
本发明的目的是提供富Al的基于AlCrN的涂层及其生产方法,其克服或减轻了现有技术的缺点。
如果富Al的AlCrN涂层被施加到切削工具上,则富Al的基于AlCrN的涂层应优选地呈现立方相、高硬度、适当的压缩应力和涂层微结构,这优选地允许获得高耐磨性和改进的切削性能。
本发明的另一个目的是提供用于产生本发明的富Al的基于AlCrN的涂层的灵活可靠的方法。
发明内容
本发明的目的通过提供如下文所述和要求保护的产生富Al的AlCrN涂层的方法和涂布有由一个或多个这些富Al的AlCrN涂层组成或包括一个或多个这些富Al的AlCrN涂层的涂层体系的基材来实现。
本发明具体涉及一种涂层,其包含Al、Cr和N作为主要组分,并具有根据式(AlaCrb)xOyCzNq的关于这些元素的按原子百分比计的化学元素组成,其中a和b分别为铝和铬的原子比浓度,仅考虑Al和Cr以计算层中的元素组成,其中a+b=1且0≠a>0.7且0≠b≥0.18(更特别地,a为0.7>a≤0.82),且其中x为Al的浓度与Cr的浓度之和,且y、z和q分别为氧、碳和氮的原子比浓度,仅考虑Al、Cr、O、C和N以计算层中的元素组成,其中x+y+z+q=1且0.45≤x≤0.55,0≤y≤0.25,0≤z≤0.25,其中:
●涂层显示:
○90%或更多的fcc立方相,和
○2.5GPa或更大,例如2.5GPa至6GPa的压缩应力。
根据应用,高压缩应力可以更合适,对于这样的情况,例如优选地压缩应力为4至6GPa,如一些应用的涂层或一部分涂层所需要的。
此外,本发明具体涉及根据权利要求1在基材表面上产生涂层的方法,其中:
●在真空涂布室内部,通过使用反应性PVD阴极电弧蒸发技术合成涂层,其中:
-将氮气引入真空涂布室中用作反应性气体,
-使用至少一个电弧蒸发源,其包括作为阴极操作的靶材料以蒸发靶材料,
-靶材料由Al和Cr组成或包含Al和Cr作为主要组分,其中如果仅考虑靶材料中Al和Cr的原子百分比含量,靶材料中Al[原子%]/Cr[原子%]之比大于70/30(即Al[原子%]/Cr[原子%]>70/30),
-该方法包括来自靶材料的铝和铬与引入涂布室中的氮气之间的反应导致的氮化铝铬的反应性沉积,
-如下进行氮化铝铬的反应性沉积
i.在180℃至600℃,优选200℃至500℃的沉积温度下,
ii.在0.1Pa至9Pa,优选0.2Pa至8Pa,更优选0.6Pa至7.5Pa的氮气分压下,
iii.通过使用对应于-250V≤Ub≤-30V的范围内,优选对应于-200V≤Ub≤-40V的范围内的偏压Ub
因此,优选地,该方法通过使用Krassnitzer在PCT/EP2020/068828(国际公开号WO2021/001536A1)中描述的一种或多种电弧蒸发源进行,该文献在此通过引用并入。以这种方式,可以以如下方式进行反应性PVD涂布方法并产生富A1的AlCrN涂层(如上所述,Al含量高于70原子%):例如200A的电弧电流可以施加到靶,同时获得恒定的放电电压。
本发明人发现,在富Al的AlCrN层中,Al和Cr以上述比率组合(其是指Al[原子%]/Cr[原子%]>70/30,优选82/18≥Al[原子%]/Cr[原子%]>70/30)对改进工具和/或组件的磨损保护有很大贡献。
此外,本发明涉及包括一个或多个本发明的富Al的AlCrN涂层的涂层体系。
上述用于产生上述本发明的富Al的AlCrN涂层的本发明方法也可以通过使用例如另外的靶和/或反应性气流来改变,以便产生与本发明的富Al的AlCrN涂层组合的其它种类的涂层,以便产生不同的涂层体系,例如作为多层和/或梯度涂层体系。
此外,通过使用金属靶并同时将N2气体引入涂布PVD室/装置的反应性PVD涂布方法对于具有复杂涂层结构/设计的硬PVD涂层,如涂层或整个涂层的纳米层和/或多层部分是非常重要的。用于工具和/或组件上的硬涂层的PVD涂布解决方案。优选地,该涂布解决方案应具有所需涂层性质的组合,例如微结构、质地、弹性模量、硬度和应力,厚度不限于仅50nm或更小,以及具有通用(不是非常有限的)涂层性质,例如一个单晶晶粒取向或非常有限的低残余压缩应力。具体而言,该涂布解决方案还应能够改善Al含量为70%的AlCrN的性质,因为这种材料体系在PVD硬涂层中引起了大量关注,并因此改善例如工具在切削过程中的耐磨性。
根据本发明的富Al的AlCrN涂层和/或涂层体系(即包括根据本发明的富Al的AlCrN涂层)显示了优异的机械性质,并且预期具有有益的一组性质来为经受磨损和应力集合(stress collecCrve)的工具和组件提供优异的性能。
上述本发明的(AlaCrb)xNy层显示优选的面心立方结构。重要的是,本发明描述了通过反应性物理气相沉积(PVD)方法产生本发明的富Al的AlCrN涂层的方法,该方法通过电弧放电具有大于70原子%Al的金属AlCr靶,并通过同时将N2气体引入涂布PVD室/装置中。
为了更好地理解本发明,下面将使用一些实例、表格和附图来更详细地描述本发明。然而,这些实例、表格和附图不应被理解为对本发明的限制,而仅应被理解为本发明的具体实例和/或优选实施方案。
如下所述,根据本发明沉积的富Al的AlCrN层的本发明实例通过使用阴极电弧蒸发方法在400℃的工艺温度(在本文中,术语“工艺温度”用于特别指涂层沉积方法过程中的设定温度)和0.2Pa至5Pa的不同值的氮气分压下进行。将以原子%计的元素组成为80Al/20Cr的AlCr靶用作Al和Cr材料源,并通过施加120A至200A,或100A至200A的电弧电流和对于每个实例施加不同的基材偏压和压力,将靶作为阴极操作。
表1中给出了具有详细工艺参数的这样的沉积方法的5个实例。
通过实例1-5中给出的方法获得的富Al的基于AlCrN的涂层的性质在图1-5中给出。
附图说明
图1:(a)根据本发明实例1沉积的富Al的AlCrN涂膜的SEM断裂横截面图像,以及(b)原样沉积膜的谱图。
图2:(a)根据本发明实例2沉积的富Al的AlCrN涂膜的SEM断裂横截面图像,以及(b)原样沉积膜的谱图。
图3:(a)根据本发明实例3沉积的富Al的AlCrN涂膜的SEM断裂横截面图像,以及(b)原样沉积膜的谱图。
图4:(a)根据本发明实例4沉积的富Al的基于AlCrN的涂膜的SEM断裂横截面图像,以及(b)原样沉积膜的谱图。
图5:(a)根据本发明实例5沉积的富Al的基于AlCrN的涂膜的SEM断裂横截面图像,以及(b)原样沉积膜的谱图。
图1(a)、2(a)、3(a)、4(a)和5(a):在具有表1中给出的参数的方法的5个实例中沉积的富Al的基于AlCrN的材料的整体涂层的SEM断裂横截面图像,还包括在沉积膜中测量的杨氏模量(E)、硬度(H)和Al含量。
图1(b)、2(b)、3(b)、4(b)和5(b):由具有表1中给出的参数的方法沉积的富Al的基于AlCrN的涂层的5个实例的原样沉积膜的XRD谱图。
表1
实例 温度 源电流 N2压力 偏压
1 AlCr 80/20 400℃ 200A 5Pa -150V
2 AlCr 80/20 400℃ 200A 5Pa -100V
3 AlCr 80/20 400℃ 120A 0.2Pa -40V
4 AlCr 20/20 400℃ 120A 3.5Pa -150V
5 AlCr 80/20 400℃ 120A 3.5Pa -150V
使用装备有CuKa辐射源的PANalyCrcal X′Pert Pro MPD衍射仪通过X射线衍射(XRD)进行膜结构分析。以Bragg-Brentano几何学收集衍射图。用FEGSEM Quanta F 200扫描电子显微镜(SEM)获得膜断裂横截面的显微照片。
使用装备有Berkovich金刚石尖端的超微压痕系统测定原样沉积样品的硬度和压痕模量。测试程序包括10mN的正常负荷。根据Oliver和Pharr方法评价硬度值。因此,我们确保压痕深度小于涂层厚度的10%以使基材干扰最小化。
图1(a)、2(a)、3(a)、4(a)和5(a)显示了实例1-5的膜的断裂横截面的SEM显微照片和涂层性质:弹性模量、硬度和Al含量。
图1(b)、2(b)、3(b)、4(b)和5(b)显示:实例1-5的原样沉积膜的XRD谱图并且那些XRD谱图表明所有涂层的面心立方晶体结构。
本发明的方法能够产生具有大于70原子%的Al的由立方AlCrN或主要(至少90%)立方AlCrN制成的涂层,其对于Al在涂层内的不同的原子存在,具有整个范围的物理和化学性质,如硬度、弹性模量、质地,但重要的是,所有这些涂层的共同点是完全或至少为90%的立方体,并且同时具有大于70原子%的Al(当仅考虑Al和Cr时)。
本发明人尤其通过以满足以下条件的方式实施本发明的方法,实现产生如此宽范围的具有至少90%立方面的富Al的AlCrN涂层的令人印象深刻的可能性:
-在涂布方法过程中获得并保持高N(氮)电离,意味着到达基材用于涂层形成的N物质的大于50%是双电荷的,同时
-以可获得能量大于或等于200eV的金属离子的高能量的方式,在涂布方法过程中获得并保持金属物质(铝和铬)的高注入。
通过工艺参数的适当组合获得本发明方法中的上述条件,其必须适用于特定的PVD涂布设备以满足上述给出的2个条件。
下面给出了用于获得上述涂布条件的工艺参数组合的实例:
第1组:
对于低偏压(-100V<Ub≤-40V),只有低压(0.1Pa至1Pa)和同时较高温度(350℃至500℃)是合适的,而
第2组:
对于更高的偏压(-200V≤Ub≤-100V),可以使用更高的压力范围(0.8Pa至9Pa)和同时更高的温度范围(200℃至480℃)。
表1给出了通过满足上述条件和工艺参数的特定组合的方法沉积的富A1的基于AlCrN的涂层的具体实例。
在本说明书中给出的实例1至5中,使用Oerlikon Balzers的PVD涂布机。
在表1的实例1和2中,可以观察到,所描述的工艺参数对应于根据上述第2组的涂布参数的适当组合,其中T、源电流和压力的那些参数相同(分别为400℃、200A和5Pa),但仅将偏压从-150V变为-100V。
在图1(a,b)和图2(a,b)中,显示了通过使用表1中所示的涂布参数的组合,通过实例1和2中给出的方法获得的AlCrN涂层的基本性质。也就是说,可以看出,在这两个实例中,获得的涂层是富Al的(涂层分别含有73和75原子%的铝),两个涂层都是立方的,但具有不同的质地、E和H。
另一方面,在表1中给出的实例3中,给出了工艺参数的实例,这些参数对应于根据上述第1组的涂布参数的适当组合,其中对于-40V的非常低的偏压,仅低压力值可能是合适的(例如这里给出的压力仅为0.2Pa),其中这样的低压力可以将碰撞最小化并保持进入物质的更高水平的电离,同时Al物质的高进入通量,如非常高的Al含量(81原子%,见图3(a))所反映的,同时令人惊讶的是仍然获得主要的立方相(见图3(b))。
等离子体性质,特别是氮电离和金属离子的能量可以通过使用Langmuir技术来测量。
为了产生本发明的富Al的基于AlCrN的膜,本发明人在具有大于70原子%Al的金属靶上使用反应性电弧沉积方法,其中基于以下理解选择沉积参数的本发明组合:
a)靶:选择电弧放电电流、磁场分布和强度以形成由Al、Cr和N的单电荷离子和多电荷离子组成的成膜物质的所需等离子体状态
b)一般:选择压力、源电流和偏压的组合以提供非常高能量的物质和因此提高动能,从而提高薄膜生长前沿处的入射离子的淬灭速率。同时,控制那些工艺参数,以抑制在生长表面上的六方相的成核。此外,氮气压力足够高以形成化学计量的AlCrN薄膜。
通过优化电弧沉积的上述工艺水平,在生长表面处抑制了热力学上有利的六方相的成核,从而将c-AlCrN中Al的亚稳态溶解度提高到大于70原子%(例如大于75原子%)的较高浓度。
具体地,本发明涉及生产经涂布的基材的方法,其包括在基材表面上沉积至少一个涂层,其中:
●所述至少一个涂层通过使用反应性PVD阴极电弧蒸发技术在真空涂布室的内部合成,其中:
-将氮气引入真空涂布室中用作反应性气体,
-使用至少一个包括作为阴极操作的靶材料的电弧蒸发源以蒸发靶材料,
-靶材料由Al和Cr组成或包含Al和Cr作为主要组分,其中如果仅考虑靶材料中的Al和Cr的原子百分比含量,则靶材料中的Al[原子%]/Cr[原子%]之比大于70/30,优选70/30<Al[原子%]/Cr[原子%]≤90/10,
-该方法包括来自靶材料的铝和铬与涂布室中包含的氮气之间的反应导致的氮化铝铬的反应性沉积,
-氮化铝铬的反应性沉积如下进行
i.在180℃至600℃,优选200℃至500℃的沉积温度下,
ii.在0.1Pa至9Pa、优选0.2Pa至8Pa、更优选0.6Pa至7.5Pa的氮气分压下,
iii.通过使用对应于-250V≤Ub≤-30V的范围内,优选对应于
-200V≤Ub≤-40V的范围内的偏压Ub
iv.所形成的涂层:
a.包含Al、Cr和N作为仅有组分或作为主要组分,并具有根据式(AlaCrb)xOyCzNq的关于这些元素的按原子百分比计的化学元素组成,其中a和b分别为铝和铬的原子比浓度,仅考虑Al和Cr以计算层中的元素组成,其中a+b=1且82≥a≥>0.7且0≠b≥0.18,且其中x为Al的浓度与Cr的浓度之和,且y、z和q分别为氧、碳和氮的原子比浓度,仅考虑Al、Cr、O、C和N以计算层中的元素组成,其中x+y+z+q=1且0.45≤x≤0.55,0≤y≤0.25,0≤z≤0.25,
b.表现出90%或更多的fcc立方相,和
c.2.5GPa或更大,优选2.5GPa至6GPa的压缩应力。
如上所述的方法,其中:
-选择涂布参数,使得:
i.在至少一个涂层的沉积过程中获得并保持高氮电离,使得到达基材的氮物质的大于50%是双电荷的,
ii.通过获得对应于等于或大于200eV的值的铝和铬的金属离子的高能量,能够实现金属铝和铬物质的高注入。
如上所述的方法,其中:
-选择的涂布参数是同时在以下范围内的涂布参数的组合:
i.在-100V<Ub≤-40V的低偏压范围内的偏压Ub
ii.在0.1Pa至1Pa的低压力范围内的氮气分压,和
iii.在350℃至500℃的温度范围内的工艺温度。
或者
-选择的涂布参数是同时在以下范围内的涂布参数的组合:
i.在-200V≤Ub≤-100V的高偏压范围内的偏压Ub
ii.在0.8Pa至9Pa的高压力范围内的氮气分压,和
iii.在200℃至480℃的温度范围内的工艺温度。
如上所述的方法,其中电弧蒸发源电流为120A至200A。
包括涂层体系的经涂布的基材,该涂层体系包括根据上述任何本发明方法产生的至少一个涂层,其中所述涂层表现出高于30GPa,例如30GPa至50GPa的硬度,高于330GPa,例如330GPa至400GPa的杨氏模量,和72原子%至82原子%,即0.72≤a≤0.82的铝含量。
其它杂项
通常来说,意图在于,任选要求保护-当时间可能已经到来时-独立于或附加于最初存在的权利要求,保护根据下文的一个或多个(组合的)段落的层和/或方法:
一种涂层,其包含Al、Cr和N作为主要组分,并具有根据式(AlaCrb)xOyCzNq的关于这些元素的按原子百分比计的化学元素组成,其中a和b分别为铝和铬的原子比浓度,仅考虑Al和Cr以计算层中的元素组成,其中a+b=1且0≠a≥0.7且0≠b≥0.2,且其中x为Al的浓度与Cr的浓度之和,且y、z和q分别为氧、碳和氮的原子比浓度,仅考虑Al、Cr、O、C和N以计算层中的元素组成,其中x+y+z+q=1且0.45≤x≤0.55,0≤y≤0.25,0≤z≤0.25,其特征在于:涂层显示:90%或更多的fcc立方相,和2.5GPa或更大,优选2.5GPa至6GPa的压缩应力。
一种用于在基材表面上产生根据前述段落的涂层的方法,其特征在于,所述涂层通过使用反应性PVD阴极电弧蒸发技术在真空涂布室的内部合成,其中:将氮气引入真空涂布室中用作反应性气体,使用至少一个电弧蒸发源,其包括作为阴极操作的靶材料以蒸发靶材料,靶材料由Al和Cr组成或包含Al和Cr作为主要组分,其中如果仅考虑靶材料中的Al和Cr的原子百分比含量,靶材料中Al[原子%]/Cr[原子%]之比大于70/30,所述方法包括来自靶材料的铝和铬与涂布室中包含的氮气之间的反应导致的氮化铝铬的反应性沉积,氮化铝铬的反应性沉积在180℃至600℃,优选200℃至500℃的沉积温度下,在0.1Pa至9Pa、优选0.2Pa至8Pa、更优选0.6Pa至7.5Pa的氮气分压下,通过使用对应于-250V≤Ub≤-30V的范围内,优选对应于-200V≤Ub≤-40V的范围内的偏压Ub进行。

Claims (6)

1.用于生产经涂布的基材的方法,其包括在基材表面上沉积至少一个涂层,其特征在于:
●在真空涂布室内部,通过使用反应性PVD阴极电弧蒸发技术合成所述至少一个涂层,其中:
-将氮气引入真空涂布室中用作反应性气体,
-使用至少一个电弧蒸发源,其包括作为阴极操作的靶材料以蒸发靶材料,
-靶材料由Al和Cr组成或包含Al和Cr作为主要组分,其中如果仅考虑靶材料中的Al和Cr的原子百分比含量,靶材料中Al[原子%]/Cr[原子%]之比大于70/30,优选70/30>Al[原子%]/Cr[原子%]≥90/10,
-所述方法包括来自靶材料的铝和铬与涂布室中包含的氮气之间的反应导致的氮化铝铬的反应性沉积,
-如下进行氮化铝铬的反应性沉积
i.在180℃至600℃,优选200℃至500℃的沉积温度下,
ii.在0.1Pa至9Pa、优选0.2Pa至8Pa、更优选0.6Pa至7.5Pa的氮气分压下,
iii.通过使用对应于-250V≤Ub≤-30V的范围内,优选对应于-200V≤Ub≤-40V的范围内的偏压Ub
iv.所形成的涂层:
a.包含Al、Cr和N作为仅有组分或作为主要组分,并具有根据式(AlaCrb)xOyCzNq的关于这些元素的按原子百分比计的化学元素组成,其中a和b分别为铝和铬的原子比浓度,仅考虑Al和Cr以计算所述层中的元素组成,其中a+b=1且82≥a≥>0.7且0≠b≥0.18,且其中x为Al的浓度与Cr的浓度之和,且y、z和q分别为氧、碳和氮的原子比浓度,仅考虑Al、Cr、O、C和N以计算所述层中的元素组成,其中x+y+z+q=1且0.45≤x≤0.55,0≤y≤0.25,0≤z≤0.25,
b.表现出90%或更多的fcc立方相,和
c.2.5GPa或更大,优选2.5GPa至6GPa的压缩应力。
2.根据权利要求1所述的方法,其特征在于:
-选择涂布参数,使得:
i.在至少一个涂层的沉积过程中获得并保持高氮电离,使得到达基材的氮物质的大于50%是双电荷的,
ii.通过获得对应于等于或大于200eV的值的铝和铬的金属离子的高能量,能够实现金属铝和铬物质的高注入。
3.根据权利要求2所述的方法,其特征在于:
-选择的涂布参数是同时在以下范围内的涂布参数的组合:
i.在-100V<Ub≤-40V的低偏压范围内的偏压Ub
ii.在0.1Pa至1Pa的低压力范围内的氮气分压,和
iii.在350℃至500℃的温度范围内的工艺温度。
4.根据权利要求2所述的方法,其特征在于:
-选择的涂布参数是同时在以下范围内的涂布参数的组合:
i.在-200V≤Ub≤-100V的高偏压范围内的偏压Ub
ii.在0.8Pa至9Pa的高压力范围内的氮气分压,和
iii.在200℃至480℃的温度范围内的工艺温度。
5.根据前述权利要求任一项所述的方法,其特征在于电弧蒸发源电流为100A至200A。
6.包括涂层体系的经涂布的基材,所述涂层体系包括根据前述权利要求任一项产生的至少一个涂层,其中所述涂层表现出高于30GPa,例如30GPa至50GPa的硬度,高于330GPa,优选330GPa至490GPa的杨氏模量,和70原子%至82原子%,即0.70≤a≤0.82,优选72原子%至82原子%,即0.72≤a≤0.82的铝含量。
CN202180066642.XA 2020-09-30 2021-09-30 通过PVD由金属靶产生的富Al的AlCrN涂层 Pending CN116457494A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102020005956.2 2020-09-30
DE102020005956 2020-09-30
PCT/EP2021/077042 WO2022069686A1 (en) 2020-09-30 2021-09-30 Ai-rich aicrn coating layers produced by pvd from metallic targets

Publications (1)

Publication Number Publication Date
CN116457494A true CN116457494A (zh) 2023-07-18

Family

ID=78073950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180066642.XA Pending CN116457494A (zh) 2020-09-30 2021-09-30 通过PVD由金属靶产生的富Al的AlCrN涂层

Country Status (6)

Country Link
US (1) US20230374650A1 (zh)
EP (1) EP4222289A1 (zh)
JP (1) JP2023543518A (zh)
KR (1) KR20230078687A (zh)
CN (1) CN116457494A (zh)
WO (1) WO2022069686A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757948A (zh) * 2017-11-24 2020-10-09 欧瑞康表面处理解决方案股份公司普费菲孔 具有增强热稳定性的Al-Cr基陶瓷涂层
JP6798534B2 (ja) * 2018-09-11 2020-12-09 株式会社タンガロイ 被覆切削工具
CN114341395A (zh) 2019-07-03 2022-04-12 欧瑞康表面解决方案股份公司,普费菲孔 阴极电弧源

Also Published As

Publication number Publication date
EP4222289A1 (en) 2023-08-09
WO2022069686A1 (en) 2022-04-07
US20230374650A1 (en) 2023-11-23
KR20230078687A (ko) 2023-06-02
JP2023543518A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
JP7266810B2 (ja) Al富化AlTiN系膜
Ehiasarian et al. High power pulsed magnetron sputtered CrNx films
Ramm et al. Pulse enhanced electron emission (P3e™) arc evaporation and the synthesis of wear resistant Al–Cr–O coatings in corundum structure
US7479331B2 (en) Hard coating, target for forming hard coating, and method for forming hard coating
CN108884550B (zh) 具有锆附着层的无氢碳涂层
RU2624876C2 (ru) Покрытие из нитрида алюминия-титана с адаптированной морфологией для повышенной износостойкости при операциях обработки резанием и соответствующий способ
de Abreu Vieira et al. Approaches to influence the microstructure and the properties of Al–Cr–O layers synthesized by cathodic arc evaporation
US20100322840A1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
Žemlička et al. Enhancing mechanical properties and cutting performance of industrially sputtered AlCrN coatings by inducing cathodic arc glow discharge
CN108368601B (zh) 涂覆的切削工具和方法
Shuangquan et al. Effects of bias voltage on the structure and mechanical properties of thick CrN coatings deposited by mid-frequency magnetron sputtering
CN116457494A (zh) 通过PVD由金属靶产生的富Al的AlCrN涂层
CN116568853A (zh) 通过PVD由金属靶产生的富Al的AlTiN涂层
Sahul et al. The influence of multilayer architecture on the structure and mechanical properties of WNx/TiSiN coatings in comparison with WNx and TiSiN single layers
Bagcivan et al. Comparison of (Cr0. 75Al0. 25) N coatings deposited by conventional and high power pulsed magnetron sputtering
JP2023554056A (ja) セラミックターゲットからPVDによって製造された硬質立方晶AlリッチAlTiNコーティング層
Paritong et al. Characterisation of co-sputtered Nb: Cr coatings grown by the combined cathodic arc/unbalanced magnetron sputtering technique
Koval’ et al. Structure and properties of the Ti-Si-N nanocrystalline coatings synthesized in vacuum by the electroarc method
Zhang et al. Formation of transition metal carbide thin films by dual ion beam deposition at room temperature
Delplancke-Ogletree et al. Preparation of TiC and TiC/DLC multilayers by metal plasma immersion ion implantation and deposition: relationship between composition, microstructure and wear properties
Abela Physical vapour deposition of magnesium alloys
He et al. Effects of the Ti/Al atomic ratio on the properties of gradient (Ti, Al) N films synthesized by ion beam assisted deposition
Park et al. Effects of process parameters on the deposition rate, hardness, and corrosion resistance of tungsten carbide coatings deposited by reactive sputtering
Zou et al. CrN Films Deposited by Middle Frequency Magnetron Sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination