CN116446186A - 静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器 - Google Patents

静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器 Download PDF

Info

Publication number
CN116446186A
CN116446186A CN202310345758.8A CN202310345758A CN116446186A CN 116446186 A CN116446186 A CN 116446186A CN 202310345758 A CN202310345758 A CN 202310345758A CN 116446186 A CN116446186 A CN 116446186A
Authority
CN
China
Prior art keywords
polylactic acid
electrostatic spinning
fiber membrane
polyaniline
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310345758.8A
Other languages
English (en)
Inventor
王宗荣
陈凯峰
陈昭宏
王文海
李起阳
曲绍兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310345758.8A priority Critical patent/CN116446186A/zh
Publication of CN116446186A publication Critical patent/CN116446186A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了一种静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器,该方法包括:利用静电纺丝的技术制备形貌可控的聚乳酸静电纺丝纤维膜;利用紫外‑臭氧或者氧等离子体,以及表面改性剂对聚乳酸纤维膜进行表面改性;将改性后的聚乳酸纤维膜浸泡在苯胺单体和氧化剂的酸性溶液中进行聚苯胺的原位聚合生长;将得到的聚乳酸/聚苯胺导电纤维膜进行清洗和干燥。本发明工艺简单,反应条件温和,易于操作和控制,使得聚苯胺能够均匀地在聚乳酸纤维表面进行原位生长,以此制备的复合纤维导电膜具有良好的压力传感回复性和稳定性,确保了该复合导电纤维薄膜应用于可穿戴柔性压力传感等领域时能够具有良好的稳定性和使用价值。

Description

静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力 传感器
技术领域
本发明属于复合导电纤维制备领域,具体涉及一种用于柔性压力传感器的静电纺丝聚乳酸/聚苯胺导电纤维膜及其制备方法,其可用于柔性压力传感器。
背景技术
在过去的几十年中,导电聚合物开辟了聚合物应用的新视野。2000年,AlanJ.Heeger,Alan G.MacDiarmid和Hideki Shirakawa因发明导电高分子获得了诺贝尔奖。聚苯胺(PANI)由于其易合成、成本低和优良的环境稳定性,吸引了广泛的关注。由于其容易实现可逆的掺杂-脱掺杂过程,聚苯胺在电气和光学等领域被应用于传感器和电极材料等,且占据了重要地位。此外,凭借出色、可调的生物电活性,对动物细胞的生物相容性,聚苯胺已经被应用于组织工程中的骨细胞的再生(Jing Chen.Journal of Colloid and InterfaceScience.2018,514:517-527)以及成纤维细胞的培养(Marija Gidavic-Nikolaidis.Polymer Chemistry.2011,49:4902-4910)等。聚乳酸是一种新型的生物可降解材料,具有优良的生物相容性和力学性能,其静电纺丝的纤维材料被应用于生物支架的制备(Xifeng Liu.RSC Advances.2015,5:100824-100833;Anna Magiera.Journal ofNanomaterials.2017,9246802)。另一方面,得益于静电纺丝纤维较大的比表面积以及大量的纤维-纤维接触位点,在聚乳酸静电纺丝纤维的表面原位生长聚苯胺有望制备出具备生物相容性的高性能柔性压力传感器,能够用于体内如脑颅内压等局部生理体征信号的监测。然而,直接在聚乳酸纤维的表面进行聚苯胺的原位生长时,两者之间仅靠氢键结合,结合较弱,容易脱层,且聚苯胺导电层的形貌并不均匀,导致最终的复合导电纤维膜稳定性差,寿命短,且制备的器件之间的一致性差。若能够解决该问题,对于该复合导电纤维膜在生物医疗领域等领域的产业化应用具有极大的推动意义。
发明内容
本发明旨在解决聚苯胺在静纺纤维膜表面原位生长时不均匀的问题,提供一种基于原位化学生长的静电纺丝聚乳酸/聚苯胺复合导电纤维膜的制备方法,可提高复合导电纤维膜制备的可控性和一致性,进而提高用于柔性压力传感器时的回复性和稳定性。
为了实现上述目的,本发明采用以下技术方案:
一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,包括以下步骤:
(1)聚乳酸静电纺丝液的制备
把聚乳酸溶解到溶剂一中搅拌溶解,配成静电纺丝液;
优选的,纺丝液浓度通常可以为20wt%;
所述的溶剂一可以为二氯甲烷(CH2Cl2)、三氯甲烷(CHCl3)和N,N-二甲基甲酰胺(DMF)中的至少一种。
(2)聚乳酸静电纺丝纤维膜的制备
把所述的静电纺丝液进行静电纺丝,收集纺丝纤维,将纤维膜取下后,干燥;
优选的,所述的静电纺丝所加的电压为12-18kV,所述的纺丝液喷射的流量为3.6mL/h,接收距离为12-18cm,环境温度10-30℃,相对湿度20-80%。
(3)聚乳酸静电纺丝纤维膜的表面改性
把干燥后的聚乳酸静电纺丝膜用紫外-臭氧或者氧等离子体进行处理,将处理后的膜在含有氨基的硅烷偶联剂的乙醇溶液中浸泡2小时;
所述的含有氨基的硅烷偶联剂包括氨丙基三乙氧基硅烷(APTES)、氨丙基三甲氧基硅烷(APS)等的至少一种。
(4)苯胺单体溶液和氧化剂溶液的配制
将苯胺单体和掺杂酸溶于水中,配制成一定浓度的酸性苯胺溶液,优选的,苯胺单体的浓度为0.07-0.33mol/L,掺杂酸的浓度为0-1mol/L;称取一定质量的氧化剂,溶于水中,氧化剂溶液的浓度与苯胺单体溶液的浓度相同;
所述的掺杂酸为盐酸、硫酸、硝酸、十二烷基苯磺酸、柠檬酸和苹果酸中的至少一种;所述的氧化剂为过硫酸铵和氯化铁中的至少一种。
(5)聚苯胺在聚乳酸纤维表面的原位聚合生长
将表面改性后的聚乳酸纤维膜用去离子水洗涤后,浸泡在酸性苯胺单体溶液中,置于低温环境中保存,同时将氧化剂溶液也在低温环境中保存,随后将等体积的氧化剂与浸泡有聚乳酸纤维膜的苯胺单体溶液混合搅拌均匀后,在低温环境中保存,将纤维膜取出后洗涤干燥,得到静电纺丝聚乳酸/聚苯胺导电纤维膜。所述的复合导电纤维膜的电阻率范围在20-130kΩ·cm。
所述的低温环境通常为0-6℃,通过在低温环境下进行缓慢反应,可以避免反应过快而生成大量游离的杂质影响产物性能。
本发明的优点:
本发明采用化学原位聚合法在聚乳酸静电纺丝纤维的表面生长聚苯胺导电层,通过紫外臭氧处理和硅烷偶联剂对聚乳酸静电纺丝纤维的表面改性,利用硅烷偶联剂末端的氨基与聚苯胺形成化学的接枝键合,解决了传统原位聚合生长聚苯胺导电层时形貌不可控和均匀性差的问题:经过紫外臭氧或氧等离子体处理后,聚乳酸纤维的表面会形成羟基等含氧基团,与硅烷偶联剂水解后形成的羟基进行脱水键合,形成氧-硅-氧的化学键合网络,同时,硅烷偶联剂末端的氨基将与苯胺形成化学键合,实现聚苯胺的接枝生长,在这种生长模式下,聚苯胺将不再形成管状、棒状等结构,而是在聚乳酸纤维的表面形成连续、均匀的壳层,且与聚乳酸纤维之间具有牢固的结合,提高了界面的可靠性,有利于改善力学传感时器件的稳定性。综合来讲,该发明实现了聚乳酸/聚苯胺复合导电纤维膜的可控制备,且具有作为高灵敏度、高稳定性的柔性压力传感材料的巨大潜力。
附图说明
图1为本发明聚乳酸/聚苯胺导电纤维膜制备流程图;
图2为经过表面改性后的聚乳酸纤维表面原位聚合生长聚苯胺的原理示意图
图3为不同苯胺单体浓度下,未经过表面改性后的聚乳酸纤维表面,原位聚合生长聚苯胺的SEM照片;
图4为未经过和经过表面改性后聚乳酸纤维表面原位聚合生长聚苯胺的SEM照片;
图5为不同苯胺单体浓度下,经过表面改性后的聚乳酸纤维表面,原位聚合生长聚苯胺的SEM照片及电阻率;
图6为相同苯胺单体浓度,不同掺杂酸浓度下,制备的聚乳酸/聚苯胺复合导电纤维膜的SEM照片及电阻率;
图7为不同表面处理方式制备的聚乳酸/聚苯胺复合导电纤维膜的SEM图
图8为制备的聚乳酸/聚苯胺复合导电纤维膜的电流-压力曲线(a-e),以及线性拟合之后计算得到的灵敏度(f)。
具体实施方式
以下结合附图和具体实施例对本发明作进一步说明:
下述实例中,聚乳酸静电纺丝纤维膜采用如下方法制得:
把聚乳酸溶解到溶剂一中搅拌溶解,配成静电纺丝液;溶剂一通常可以为二氯甲烷(CH2Cl2)、三氯甲烷(CHCl3)和N,N-二甲基甲酰胺(DMF)等溶液中的至少一种。纺丝液的质量浓度通常可以为20%。纺丝完成后,将纤维膜取下后置于真空干燥箱中干燥;参数可以如下:电压为12-18kV,所述的纺丝液从针尖喷射的流量为3.6mL/h,所述的针尖与滚筒接收器之间的距离为12-18cm,环境温度10-30℃,相对湿度20-80%。在聚苯胺在纤维表面原位生长步骤中,优选将纤维膜浸入酸性苯胺溶液中于0-6℃低温环境保存至少1小时,氧化剂溶液也在0-6℃低温环境保存至少1小时,二者混合后0-6℃低温环境保存至少12小时,使其进行充分反应。
根据本发明的一种具体实例,干燥后的聚乳酸静电纺丝膜可以用紫外-臭氧进行处理也可以采用氧等离子体进行处理,处理后的膜再放入表面改性剂的乙醇溶液中浸泡;从而实现对纤维膜的表面改性。本发明所制得的复合导电纤维膜的电阻率的测试方法为:利用四探针电阻率测试仪测量薄膜的电阻率。所述的静电纺丝聚乳酸/聚苯胺导电纤维膜的电阻率范围在20-130kΩ·cm。
复合导电纤维膜的压力传感测试方法为:
将导电纤维膜裁剪成1cm×1cm的方片后,放置在经过刻蚀的ITO玻璃上(在完整的ITO镀层上刻蚀出一道宽为1mm的绝缘区,绝缘区的两边分别连接数字源表的正负极),利用推拉力计对导电纤维膜施加压力,利用数字源表读取该压力下导电纤维膜的电阻值,通过建立电阻-压力曲线,并利用线性拟合计算电阻-压力曲线的斜率,即可得到所述的复合导电纤维膜作为压力传感材料的灵敏度。
实施例1
未表面改性的情况下苯胺单体浓度为变量的对比
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤
(1)量取10mL乙醇,加入1mL氨丙基三乙氧基硅烷,搅拌均匀;
(2)制备三个不同浓度的苯胺单体溶液:称取一水合柠檬酸加入去离子水搅拌溶解,浓度分别为0.017、0.033和0.05mol/L,加入苯胺单体,搅拌溶解,浓度分别为0.07、0.14和0.2mol/L;另配制浓度为0.07、0.14和0.2mol/L的过硫酸铵溶液;
(3)取三片相同的聚乳酸静电纺丝纤维膜分别浸泡在2)中配制的苯胺单体溶液(10mL)中,放入冰箱中冷藏2小时;将(2)中的过硫酸铵溶液放入冰箱中冷藏2小时;
(4)各取10mL冷藏后的过硫酸铵溶液,分别与浸泡有聚乳酸纤维膜的不同浓度的苯胺单体溶液混合,放入冰箱中冷藏12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(5)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干;
从制备得到的样品上裁取小片,粘贴在碳胶带上,喷金后放置于场发射扫描电子显微镜中观察聚乳酸纤维表面原位生长聚苯胺导电层的形貌。如图3所示,随着苯胺单体浓度的增加,未改性的聚乳酸纤维表面生长的聚苯胺层增厚,且有许多游离的聚苯胺纳米纤维,聚苯胺层的均匀性很差。将制备的复合导电纤维膜(柠檬酸浓度为0.05mol/L,苯胺浓度为0.2mol/L)进行压力传感测试,如图8(a)所示,基于该纤维膜的传感器表现出了极大的信号漂移,且信号稳定慢,加载后超过30s仍无法稳定,此外加载卸载回复性也较差。
实施例2
使用和未使用氨丙基三乙氧基硅烷对聚乳酸纤维膜进行表面改性对比
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤:
(1)量取10mL乙醇,加入1mL氨丙基三乙氧基硅烷,搅拌均匀;
(2)取两片相同的聚乳酸静电纺丝纤维膜,一片使用紫外-臭氧处理正反面各4分钟后,在步骤(1)中配制的溶液中浸泡2小时后,用去离子水清洗,另一片不做表面改性处理;
(3)称取一水合柠檬酸加入去离子水搅拌溶解,浓度为0.05mol/L,加入苯胺单体,搅拌溶解,浓度为0.2mol/L;另称取0.45g过硫酸铵溶解于10mL水中,配制成浓度为0.2mol/L的溶液;
(4)将表面改性和未表面改性的聚乳酸纤维膜分别浸泡在(3)中配制的苯胺单体溶液(10mL)中,放入冰箱中冷藏2小时;将(3)中的过硫酸铵溶液放入冰箱中冷藏2小时;
(5)各取10mL冷藏后的过硫酸铵溶液,分别与浸泡有表面改性和未表面改性的聚乳酸纤维膜的苯胺单体溶液混合,放入冰箱中冷藏12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(6)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干;
从制备得到的样品上裁取小片,粘贴在碳胶带上,喷金后放置于场发射扫描电子显微镜中观察聚乳酸纤维表面原位生长聚苯胺导电层的形貌。如图4所示,使用紫外-臭氧及硅烷偶联剂处理后(图4中(b)),制备的聚乳酸/聚苯胺复合导电纤维膜中没有游离的聚苯胺,相对于未表面处理的样品(图4中(a))极大提高了复合导电纤维膜的均匀性和制备可控性。
实施例3
使用FeCl3作为氧化剂在表面改性后的聚乳酸纤维膜原位生长聚苯胺
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤:
(1)量取10mL乙醇,加入1mL APTES,搅拌均匀;
(2)取一片聚乳酸静电纺丝纤维膜,使用紫外-臭氧处理正反面各4分钟后,在步骤(1)中配制的溶液中浸泡2小时后,用去离子水清洗;
(3)称取一水合柠檬酸加入去离子水搅拌溶解,浓度为0.05mol/L,加入苯胺单体,搅拌溶解,浓度为0.2mol/L;另称取0.54g氯化铁(FeCl3·6H2O)溶解于10mL水中,配制成浓度为0.2mol/L的溶液;
(4)将表面改性的聚乳酸纤维膜浸泡在(3)中配制的苯胺单体溶液(10mL)中,放入冰箱中冷藏2小时;将(3)中的氯化铁溶液放入冰箱中冷藏2小时;
(5)取10mL冷藏后的氯化铁溶液,与浸泡有表面改性的聚乳酸纤维膜的苯胺单体溶液混合,放入冰箱中冷藏12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(6)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干。
实施例4
表面改性的情况下苯胺单体浓度为变量的对比
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤:
(1)量取10mL乙醇,加入1mL氨丙基三乙氧基硅烷,搅拌均匀;
(2)取四片相同的聚乳酸静电纺丝纤维膜,使用紫外-臭氧处理正反面各4分钟,随后在步骤(1)中配制的溶液中浸泡2小时后,用去离子水清洗;
(3)制备三个不同浓度的苯胺单体溶液:称取一水合柠檬酸加入去离子搅拌溶解,浓度分别为0.033、0.05、0.067和0.082mol/L,加入苯胺单体,搅拌溶解,浓度分别为0.14、0.2、0.27和0.33mol/L;另配制浓度为0.14、0.2、0.27和0.33mol/L的过硫酸铵溶液;
(4)将表面改性后的聚乳酸纤维膜分别浸泡在(3)中配制的苯胺单体溶液(10mL)中,放入冰箱中冷藏2小时;将(3)中的过硫酸铵溶液放入冰箱中冷藏2小时;
(5)各取10mL冷藏后的过硫酸铵溶液,分别与浸泡有聚乳酸纤维膜的不同浓度的苯胺单体溶液混合,放入冰箱中冷藏12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(6)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干;
从制备得到的样品上裁取小片,粘贴在碳胶带上,喷金后放置于场发射扫描电子显微镜中观察聚乳酸纤维表面原位生长聚苯胺导电层的形貌。如图5所示,聚乳酸纤维在表面改性后,原位生长聚苯胺导电层的过程中,苯胺单体的浓度对于聚苯胺层的形貌并没有显著影响,但最终导电纤维膜的电导率有较大变化。理论上,苯胺单体浓度的增大将很大程度上提高游离聚苯胺的产生,而在表面改性后,聚乳酸纤维的表面游离聚苯胺的生成得到了很大的抑制,即使在高浓度下,纤维表面也没有游离苯胺,这与未表面改性的情况(图3)产生了鲜明的对比。
实施例5
仅使用紫外-臭氧对聚乳酸纤维进行表面改性
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤:
(1)取一片聚乳酸静电纺丝纤维膜,使用紫外-臭氧处理正反面各4分钟;
(2)制备苯胺的掺杂酸溶液:称取一水合柠檬酸加入去离子水中溶解,浓度0.05mol/L,加入苯胺单体,搅拌溶解,浓度为0.2mol/L;另配制浓度为0.2mol/L的过硫酸铵溶液;
(3)将表面改性后的聚乳酸纤维膜浸泡在(2)中配制的苯胺的掺杂酸溶液(10mL)中,放入冰箱中冷藏2小时;将(2)中的过硫酸铵溶液放入冰箱中冷藏2小时;
(4)取10mL冷藏后的过硫酸铵溶液,与浸泡有聚乳酸纤维膜的苯胺单体溶液混合,放入冰箱中冷藏12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(5)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干;
将制备的复合导电纤维膜在扫描电子显微镜下观察形貌,如图7(a)所示,可以看到纤维表面附着了许多游离的聚苯胺,均匀性较差。进行压力传感测试,如图8(b)所示,与未表面改性(图8(a))对比,传感器的信号漂移问题得到了改善,但稳定时间长、回复性差等问题仍存在。
实施例6
仅使用APTES进行表面改性
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤:
(1)量取10mL乙醇,加入1mL氨丙基三乙氧基硅烷,搅拌均匀;
(2)取一片聚乳酸静电纺丝纤维膜,在步骤(1)中配制的溶液中浸泡2小时后,用去离子水清洗;
(3)制备苯胺的掺杂酸溶液:称取一水合柠檬酸加入去离子水中溶解,浓度0.05mol/L,加入苯胺单体,搅拌溶解,浓度为0.2mol/L;另配制浓度为0.2mol/L的过硫酸铵溶液;
(4)将表面改性后的聚乳酸纤维膜浸泡在(3)中配制的苯胺的掺杂酸溶液(10mL)中,放入冰箱中冷藏2小时;将(3)中的过硫酸铵溶液放入冰箱中冷藏2小时;
(5)取10mL冷藏后的过硫酸铵溶液,与浸泡有聚乳酸纤维膜的苯胺单体溶液混合,放入冰箱中冷藏12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(6)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干;
将制备的复合导电纤维膜在扫描电子显微镜下观察形貌,如图7(b)所示,可以看到有的纤维表面生长了很厚的聚苯胺层,而有的纤维表面无生长,均匀性较差。进行压力传感测试,如图8(c)所示,与仅使用紫外-臭氧进行表面改性(图8(b))对比,传感器的信号回复性问题得到了改善,但在0.4kPa时,信号的回复性和稳定性产生了劣化。
实施例7
同时使用紫外-臭氧和APTES进行表面改性,在20℃环境中生长聚苯胺
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤:
(1)量取10mL乙醇,加入1mL氨丙基三乙氧基硅烷,搅拌均匀;
(2)取聚乳酸静电纺丝纤维膜,使用紫外-臭氧处理正反面各4分钟,随后在步骤(1)中配制的溶液中浸泡2小时后,用去离子水清洗;
(3)制备苯胺的掺杂酸溶液:称取一水合柠檬酸加入去离子水中溶解,浓度0.05mol/L,加入苯胺单体,搅拌溶解,浓度为0.2mol/L;另配制浓度为0.2mol/L的过硫酸铵溶液;
(4)将表面改性后的聚乳酸纤维膜浸泡在(3)中配制的苯胺单体溶液(10mL)中,20℃室温下浸泡2小时;将(3)中的过硫酸铵溶液也在20℃室温下放置2小时;
(5)取10mL冷藏后的过硫酸铵溶液,与浸泡有聚乳酸纤维膜的苯胺单体溶液混合,20℃室温下反应12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(6)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干;
将制备的复合导电纤维膜在扫描电子显微镜下观察形貌,如图7(c)所示,可以看到,在许多纤维的表面存在着或大或小的聚苯胺颗粒或片状聚苯胺,整体的生长均匀性仍较差。进行压力传感测试,如图8(d)所示,与未表面改性(图8(a))对比,传感器的信号稳定性和回复性问题得到了改善,信号漂移问题仍存在。
实施例8
表面改性的情况下掺杂酸浓度为变量的对比
所述的聚乳酸/聚苯胺复合导电纤维膜的制备方法,包括以下步骤:
(1)量取10mL乙醇,加入1mL氨丙基三乙氧基硅烷,搅拌均匀;
(2)取四片相同的聚乳酸静电纺丝纤维膜,使用紫外-臭氧处理正反面各4分钟,随后在步骤(1)中配制的溶液中浸泡2小时后,用去离子水清洗;
(3)制备四个不同浓度的掺杂酸溶液:称取一水合柠檬酸加入去离子水中溶解,浓度分别为0、0.025、0.05、0.1和0.2mol/L,分别对应于掺杂酸和苯胺单体的摩尔比为0、0.125、0.25、0.5和1。加入苯胺单体,搅拌溶解,浓度为0.2mol/L;另配制浓度为0.2mol/L的过硫酸铵溶液;
(4)将表面改性后的聚乳酸纤维膜分别浸泡在(3)中配制的不同柠檬酸浓度的苯胺单体溶液(10mL)中,放入冰箱中冷藏2小时;将(3)中的过硫酸铵溶液放入冰箱中冷藏2小时;
(5)各取10mL冷藏后的过硫酸铵溶液,分别与浸泡有聚乳酸纤维膜的不同柠檬酸浓度的苯胺单体溶液混合,放入冰箱中冷藏12小时,使聚苯胺在聚乳酸纤维表面原位聚合生长;
(6)取出聚乳酸/聚苯胺复合导电纤维膜,用去离子水洗涤后在真空干燥箱中烘干;
从制备得到的样品上裁取小片,粘贴在碳胶带上,喷金后放置于场发射扫描电子显微镜中观察聚乳酸纤维表面原位生长聚苯胺导电层的形貌。如图6所示,随着掺杂酸浓度的增加,复合导电纤维膜表面生长的聚苯胺层的形貌并没有改变,都非常均匀,利用四探针法测量电阻率,随着柠檬酸浓度的增加,导电纤维膜的电阻率随之降低,符合预期。
将制备的柠檬酸CA和苯胺ANI摩尔比为0.25的复合导电纤维膜进行压力传感测试,如图8(e)所示,与未表面改性或者其他表面处理方式(图8(a-d))对比,综合来看,基于该纤维膜的传感器具有更好的加载卸载回复性,更低的信号漂移和更快的信号稳定响应。对其电信号进行线性拟合,结果显示该传感器在两个不同压力区间具有良好的线性响应,灵敏度分别约为5kPa-1(0-1kPa)和3kPa-1(1-6kPa)。
本发明利用紫外臭氧对聚乳酸纤维的表面进行亲水处理,并利用含有氨基的硅烷偶联剂等表面活性剂对聚乳酸纤维进行表面改性,在表面形成化学键和的硅烷网络,并形成均匀的游离氨基的薄层,在苯胺的聚合过程中给,游离的氨基能够与苯胺分子化学键合,完成聚苯胺的接枝,在氧化剂的作用下,聚苯胺沿着该接枝延续生长,最终完成聚苯胺在聚乳酸纤维表面均匀的原位接枝聚合,形成了均匀的聚苯胺导电层。此外,通过调整掺杂酸的浓度可以对聚苯胺导电层的掺杂浓度进行调控,进而实现聚乳酸/聚苯胺复合导电纤维膜的电阻率的可控调节。本发明工艺简单,反应条件温和,易于操作和控制,使得制得的纳米材料具有良好的导电性能与生物相容性,具有广阔的应用前景。
本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及具体方式、条件的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,包括以下步骤:
步骤一、聚乳酸静电纺丝液的制备
把聚乳酸溶解到溶剂一中搅拌溶解,配成静电纺丝液;
步骤二、聚乳酸静电纺丝纤维膜的制备
把所述的静电纺丝液进行静电纺丝收集纺丝纤维,将纤维膜取下后,干燥;
步骤三、聚乳酸静电纺丝纤维膜的表面改性
把步骤二中干燥后的聚乳酸静电纺丝膜用紫外-臭氧或者氧等离子体进行处理,将处理后的膜在表面改性剂的乙醇溶液中浸泡;
步骤四、苯胺单体溶液和氧化剂溶液的配制
将苯胺单体和掺杂酸溶于水中,配制成酸性苯胺溶液;称取一定质量的氧化剂,溶于水中,氧化剂溶液的浓度与苯胺单体溶液的浓度相同;
步骤五、聚苯胺在聚乳酸纤维表面的原位聚合生长
将步骤三中表面改性后的聚乳酸纤维膜用去离子水洗涤后,浸泡在步骤四中所述的酸性苯胺溶液中,将该溶液以及氧化剂溶液同时置于0-6℃的环境中保存,随后将等体积的氧化剂溶液与浸泡有聚乳酸纤维膜的酸性苯胺溶液混合搅拌均匀后,在0-6℃的环境中保存,将纤维膜取出后洗涤干燥,得到静电纺丝聚乳酸/聚苯胺导电纤维膜。
2.根据权利要求1所述的一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,所述的步骤一中的溶剂一为二氯甲烷(CH2Cl2)、三氯甲烷(CHCl3)和N,N-二甲基甲酰胺(DMF)中的至少一种。
3.根据权利要求1所述的一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,所述步骤二中的静电纺丝所加的电压为12-18kV,所述的纺丝液喷射的流量为3.6mL/h,接收距离为12-18cm,环境温度10-30℃,相对湿度20-80%。
4.根据权利要求1所述的一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,所述步骤三中的表面改性剂为含有氨基的硅烷偶联剂。
5.根据权利要求1所述的一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,所述步骤四中的所述的掺杂酸为盐酸、硫酸、硝酸、十二烷基苯磺酸、柠檬酸和苹果酸中的至少一种。
6.根据权利要求1所述的一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,所述步骤四中的氧化剂为过硫酸铵和氯化铁中的至少一种。
7.根据权利要求1所述的一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,步骤二所制备的聚乳酸静电纺丝纤维膜的纤维直径在500-1000nm。
8.根据权利要求1所述的一种静电纺丝聚乳酸/聚苯胺导电纤维膜的制备方法,其特征在于,步骤五中制备的静电纺丝聚乳酸/聚苯胺导电纤维膜的电阻率范围在20-130kΩ·cm。
9.一种聚乳酸/聚苯胺导电纤维膜,其特征在于,采用如权利要求1-8任一项所述的方法制得。
10.一种柔性压力传感器,其特征在于,采用如权利要求8所述的纤维膜作为压敏材料。
CN202310345758.8A 2023-04-03 2023-04-03 静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器 Pending CN116446186A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310345758.8A CN116446186A (zh) 2023-04-03 2023-04-03 静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310345758.8A CN116446186A (zh) 2023-04-03 2023-04-03 静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器

Publications (1)

Publication Number Publication Date
CN116446186A true CN116446186A (zh) 2023-07-18

Family

ID=87131415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310345758.8A Pending CN116446186A (zh) 2023-04-03 2023-04-03 静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器

Country Status (1)

Country Link
CN (1) CN116446186A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117188157A (zh) * 2023-09-05 2023-12-08 浙江大学 一种基于铜金属-有机框架的压敏材料、制备方法及传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117188157A (zh) * 2023-09-05 2023-12-08 浙江大学 一种基于铜金属-有机框架的压敏材料、制备方法及传感器

Similar Documents

Publication Publication Date Title
Razal et al. Carbon nanotube biofiber formation in a polymer‐free coagulation bath
Wang et al. One‐Dimensional Nanostructured Polyaniline: Syntheses, Morphology Controlling, Formation Mechanisms, New Features, and Applications
Xiao et al. An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel
CN111171362B (zh) 导电丝素材料及其制备方法和应用
CN103980670B (zh) 一种细菌纤维素/聚3,4-乙烯二氧噻吩纳米导电复合材料及其制备方法
CN102954848A (zh) 新型柔性力学传感器及其制备方法
CN116446186A (zh) 静电纺丝聚乳酸/聚苯胺导电纤维膜、其制备方法及柔性压力传感器
CN111944167B (zh) 一种导电水凝胶及其制备方法和应用
CN109634020B (zh) 基于纳米纤维素-银纳米线的电致发光器件及其应用
Faria-Tischer et al. Structure and effects of gold nanoparticles in bacterial cellulose–polyaniline conductive membranes
Fan et al. Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly (3, 4-ethylenedioxythiophene) conducting polymer nanocomposites
CN108659237B (zh) 一种导电性能随温度调谐的纳米纤维复合水凝胶及其制备方法和应用
Uzunçar et al. Amperometric detection of glucose and H2O2 using peroxide selective electrode based on carboxymethylcellulose/polypyrrole and Prussian Blue nanocomposite
Lv et al. Preparation of bacterial cellulose/carbon nanotube nanocomposite for biological fuel cell
Pereira et al. Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries
Yuan et al. A facile strategy to construct flexible and conductive silk fibroin aerogel for pressure sensors using bifunctional PEG
Cai et al. High performance flexible silk fabric electrodes with antibacterial, flame retardant and UV resistance for supercapacitors and sensors
Mehdikhani et al. Electrically conductive poly-ϵ-caprolactone/polyethylene glycol/multi-wall carbon nanotube nanocomposite scaffolds coated with fibrin glue for myocardial tissue engineering
Lee et al. Macroscopic assembly of sericin toward self-healable silk
Shrestha et al. Fabrication of flexible glucose sensor based on heterostructure ZnO nanosheets decorated PU/Chitosan-PANI hybrid nanofiber
CN110164706A (zh) 一种细菌纤维素-碳纳米管/聚苯胺复合微纤维及微型超级电容器的制备方法
Aycan et al. Development of hyaluronic acid-based electroconductive hydrogel as a sensitive non-enzymatic glucose sensor
Du et al. Stretchable and tough tannic acid-modified graphene oxide/polyvinyl alcohol conductive hydrogels for strain and pressure sensors
Luo et al. Multifunctioning of carboxylic-cellulose nanocrystals on the reinforcement of compressive strength and conductivity for acrylic-based hydrogel
CN103572606A (zh) 具有核-壳结构的复合多孔纤维及双重孔结构膜制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination