CN116440926A - 一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用 - Google Patents

一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用 Download PDF

Info

Publication number
CN116440926A
CN116440926A CN202310475980.XA CN202310475980A CN116440926A CN 116440926 A CN116440926 A CN 116440926A CN 202310475980 A CN202310475980 A CN 202310475980A CN 116440926 A CN116440926 A CN 116440926A
Authority
CN
China
Prior art keywords
znin
bivo
benzyl alcohol
alcohol
carboxylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310475980.XA
Other languages
English (en)
Other versions
CN116440926B (zh
Inventor
蒋和雁
秦隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN202310475980.XA priority Critical patent/CN116440926B/zh
Publication of CN116440926A publication Critical patent/CN116440926A/zh
Application granted granted Critical
Publication of CN116440926B publication Critical patent/CN116440926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种改性Z型ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用。ZnIn2S4/BiVO4催化剂的制备方法为:采用低温溶剂热法将二维ZnIn2S4纳米片装饰到十面体BiVO4表面。进一步加入过量的硫代乙酰胺引入硫空位。将ZnIn2S4/BiVO4异质结用于苄醇C‑O活化及二氧化碳的光催化羧化。生物质平台原料糠醇可以实现二羧酸化,制备生物质衍生聚合物前体不对称呋喃二羧酸。在Z型异质结ZnIn2S4/BiVO4中,空间分离氧化还原中心的构建增强了光生空穴和电子分离,有利于C‑O的活化和二氧化碳羧化。此外,S空位的引入有助于光生电子的富集和底物捕获能力的提高。该羧化产物的合成方法简单,催化剂制备方法简单易操作,反应条件温和,催化剂容易回收利用。

Description

一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的 应用
技术领域
本发明涉及一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用。
背景技术
能源的过度消耗和二氧化碳的大量排放导致了温室效应等环境问题。因此,废弃碳资源CO2的再利用已成为人类迫切需要解决的问题。含量丰富、易得、毒性低的二氧化碳作为化学合成中理想的单碳源的可行性受到广泛关注。除了将CO2转化为CO、HCOOH或CH4等产物外,随着近年来CO2光催化连续单电子还原技术的实现,将CO2转化为用于制药和聚合物工业的高附加值的羧基产品已成为一个新的CO2利用的研究热点。芳香族醇及其衍生物普遍存在于天然产物、生物活性分子和大宗化学品中,因其低毒性、稳定性和容易获得而被认为是环境友好型反应物。此外,实现碳氧键活化和二氧化碳再利用合成高价值的羧酸产物是一项极具吸引力和挑战性的任务。
可再生、易得、储量丰富的生物质及其平台产品有望成为缓解能源危机的新兴替代品。呋喃生物质作为木质素的下游产物,是公认的最重要的生物质衍生物之一。科学家对呋喃生物质的各种催化技术进行了探索。除了呋喃生物质的自偶联生产航空燃料前体等成功案例外,呋喃与CO2的羧基化也是一种很有吸引力的呋喃生物质的利用方式。然而,考虑到CO2还原的能源壁垒很高,如何将生物质利用与CO2循环利用结合起来,仍然是可持续发展的一个具有挑战性的问题。
三金属硫化物ZnIn2S4具有带隙窄、无有毒金属原子的特点,是目前研究最多的金属硫化物之一。然而,原始ZnIn2S4中光诱导载流子的剧烈电荷重组限制了其在光催化领域的广泛应用。与原始的ZnIn2S4相比,带有硫空位的ZnIn2S4纳米片可以增加光生载流子寿命,从而表现出优异的光催化性能。除了缺陷工程和形貌调控外,通过构建Z型异质结以抑制载流子重组、促进电荷迁移并实现较强的还原氧化能力是一种很有吸引力的方法。
发明内容
本发明公开了一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用,其特征在于:通过苄醇酯化、光生空穴对C-O的活化和CO2羧化可制备碳链增加的羧酸;
改性ZnIn2S4/BiVO4异质结的制备:采用低温溶剂热法将二维ZnIn2S4纳米片装饰到十面体BiVO4表面,将20ml水和3ml甘油注入50ml的圆底瓶中,用0.5 M的HCl调节溶液的pH值至2.5,超声处理3min以混匀溶液,然后在上述悬浮液中加入27.2 mg ZnCl2、58.6 mgInCl3·4H2O和30 mg硫代乙酰胺,搅拌30 min,随后加入上述产生的BiVO40.16mmol,搅拌10min, 80℃溶剂热反应2 h,反应结束后,用超纯水和乙醇洗涤3次,真空烘箱干燥6 h,硫空位富集的Sv-ZnIn2S4/BiVO4的合成过程与ZnIn2S4/BiVO4类似,只是在制备过程中加入了过量的60 mg硫代乙酰胺;
苄醇和CO2光催化羧基化制备碳链增加的芳基羧酸:将10 mg光催化剂和0.8 mmol碱添加剂K2CO3加入到10 mL双颈圆底烧瓶中,并将其充满CO2,然后在圆底瓶中加入0.2mmol苄醇,1.05当量的乙酸酐和3 mL DMF,50℃油浴5 h,然后在0.75 W/cm2蓝色LED灯下搅拌反应24 h,其中苄醇包括苯甲醇、对甲氧基苯乙醇、对甲基苯乙醇、邻三氟甲基苯甲醇、间三氟甲基苯甲醇、对三氟甲基苯甲醇、对硝基苯甲醇、对氰基苯甲醇、香草醇;
噻吩甲醇或糠醇与CO2光催化制备碳链增加的二羧酸:将10 mg光催化剂和0.8mmol碱添加剂K2CO3加入到10 mL双颈圆底烧瓶中,并将其充满CO2,然后在圆底瓶中加入0.2mmol的2-噻吩甲醇或糠醇,1.05当量的乙酸酐和3 mL DMF,50℃油浴5 h,然后在0.75 W/cm2蓝色LED灯下搅拌反应24 h,在温和的催化反应条件下,2-噻吩甲醇在消耗2当量CO2的情况下以86%的收率制备不对称羧酸,糠醇在消耗2当量CO2的情况下以95%的收率制备不对称羧酸。
一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用,其特征在于:在没有牺牲剂的条件下实现了苄醇和CO2光催化羧基化制备碳链增加的羧酸。
一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用,其特征在于:碳链增加的芳基羧酸收率可达48%~98%。
附图说明
图1a-e是实施案例1制备催化剂的扫描电镜(SEM)图像:a)BiVO4,b)ZnIn2S4(缩写为:ZIS)纳米花,c)ZnIn2S4/BiVO4(缩写为:ZIS/BVO)异质结,d)Sv-ZnIn2S4/BiVO4(缩写为:Sv-ZIS/BVO)异质结和e) 部分放大的Sv-ZIS/BVO异质结的SEM图像。图1f是实施案例1制备催化剂Sv-ZIS/BVO的透射电镜(TEM)图像。
图2是实施案例1制备催化剂ZnIn2S4、BiVO4、ZnIn2S4/BiVO4和Sv-ZnIn2S4/BiVO4的粉末X射线衍射(XRD)图谱。
图3是实施案例1制备催化剂ZnIn2S4, BiVO4, ZnIn2S4/BiVO4和Sv-ZnIn2S4/BiVO4的X射线光电子能谱(XPS):(a)全谱,(b) Bi 4f和S 2p,(c) In 3d,(d) Zn 2p。
具体实施方式
下面结合具体实施案例对本发明进行详细说明。
实施案例1:
ZnIn2S4(缩写为:ZIS)光催化剂的制备:68 mg ZnCl2和293 mg InCl3·4H2O溶于25mL去离子水和5 mL乙二醇。室温下剧烈搅拌30分钟后,向溶液中加入150 mg硫代乙酰胺(TAA)。再搅拌30分钟后,将溶液转移到100毫升的特氟龙内衬不锈钢水热釜中,在烘箱中120°C保持12小时。自然冷却后离心收集产物,用乙醇和蒸馏水洗涤2次,真空干燥6 h备用。
BiVO4的制备:采用水热法合成了十面体形貌的BiVO4。Bi(NO3)3·5H2O (2.91 g)和NH4VO3(0.7g)分散在2.0 M HNO3溶液(50 mL)中。随后通过NH3·H2O调节上述混合溶液的pH值至2.0,并伴有橙色沉淀的形成。将混合物转移到100 mL特氟龙内衬不锈钢水热釜中,混合物在室温下老化2 h, 200℃水热反应24 h,水热反应后得到亮黄色粉末;用超纯水和乙醇充分洗涤,真空干燥6小时备用。
ZnIn2S4/BiVO4(缩写为:ZIS/BVO)和Sv-ZnIn2S4/BiVO4(缩写为:Sv-ZIS/BVO)异质结的制备:采用低温溶剂热法将二维ZnIn2S4纳米片装饰到十面体BiVO4表面。将20ml水和3ml甘油注入50ml的圆底瓶中,用0.5 M的HCl调节溶液的pH值至2.5,超声处理3min以混匀溶液。然后,在上述悬浮液中加入ZnCl2(27.2 mg, 0.2 mmol)、InCl3·4H2O (58.6 mg, 0.2mmol)和TAA (30 mg, 0.4 mmol),搅拌30 min,随后加入上述产生的BiVO40.16mmol。搅拌10 min, 80℃溶剂热反应2 h。反应结束后,用超纯水和乙醇洗涤3次,真空烘箱干燥6 h。Sv-ZnIn2S4/BiVO4的合成过程与ZnIn2S4/BiVO4相似,只是在制备过程中加入了过量的TAA(60 mg, 0.8 mmol)。
扫描电镜(SEM)图像显示,制备的BiVO4表现出规则的十面体形貌,尺寸为5-6μm,表面相对光滑(图1a)。ZnIn2S4显示直径为500-600nm的花状分层微球结构,完全由几纳米厚的超薄2D纳米片组成(图1b)。ZnIn2S4/BiVO4异质结构的SEM图像如图1c所示,观察到ZnIn2S4薄纳米片在加载后均匀地垂直生长在BiVO4表面。从图1d可以看出引入S空位后ZnIn2S4/BiVO4异质结的形貌没有明显变化,表明S空位对ZnIn2S4/BiVO4的形貌没有影响。部分放大的SEM图像证实了BiVO4和ZnIn2S4之间的紧密联系(图1e)。高分辨率透射电镜图像显示,间距为0.225和0.251 nm的晶格条纹分别与ZnIn2S4相和BiVO4相的(100)晶面和(002)晶面吻合良好(图1f)。
对本实施案例中制备的催化材料,采用X射线衍射(XRD)对ZnIn2S4、BiVO4、ZnIn2S4/BiVO4和Sv-ZnIn2S4/BiVO4的相组成进行了检测(图2)。ZnIn2S4的峰对应其六方结构(JCPDSNo. 65-2023),在20.4°、27.3°和47.0°处的峰分别为ZnIn2S4的(006)、(102)和(110)晶面。BiVO4的特性峰有18.7°, 19.0°, 28.9°, 30.5°, 34.5°, 35.2°, 39.8°, 42.4°, 46.0°,46.2°, 49.8°, 54.2°, 58.6°, 60.8°, 对应于(110)、(011)、(121)、(040)、(200)、(002)、(211)、(051)、(241)、(240)、(202)、(161)、(321)、(123)晶面。ZIS/BVO的衍射峰与普通的BiVO4基本相同,需要说明的是,ZnIn2S4的衍射峰明显小于BiVO4, BiVO4的含量大于ZnIn2S4。所有样品中均没有杂质峰,表明原料的相纯度高,晶相保持良好。硫空位引入后,Sv-ZnIn2S4/BiVO4的相组成变化不明显,说明S空位对ZIS/BVO的晶面组成影响不大。异质结ZnIn2S4/BiVO4相比BiVO4特征峰强度的降低表明BiVO4与ZnIn2S4成功结合。
采用X射线光电子能谱(XPS)分析了BiVO4、ZnIn2S4、ZnIn2S4/BiVO4和Sv-ZnIn2S4/BiVO4的化学状态和表面原子组成。图3a显示了所有材料的全谱,证实了Z型异质结中Bi、V、O、Zn、In、S元素的存在。图3b为Bi 4f的高分辨率XPS谱图,BiVO4在164.2和158.9 eV处的两个峰应归属于Bi3+的Bi 4f5/2和Bi 4f7/2。BiVO4与ZnIn2S4形成Z型异质结后,Bi 4f5/2和Bi4f7/2的结合能降低了0.3 eV左右,表明BiVO4与ZnIn2S4之间形成了新的作用力。此外,图3b中的S化学态在162.5和160.8 eV下也被检测到,分别为S 2p1/2和S 2p3/2。S空穴具有较强的电子富集能力,随着ZIS/BVO电子向S空穴转移,S原子平衡电子云密度降低。因此,S原子的结合能在S空位形成后降低。对于ZnIn2S4, 452.3和444.8 eV处的两个峰应分布在In 3d3/2和In 3d5/2(图3c)。1045.0和1022.1 eV处的峰值与Zn 2p1/2和Zn 2p3/2一致(图3d)。ZIS/BVO中Zn 2p和In 3d结合能较ZnIn2S4有轻微的负位移,证明了Z型异质结的成功制备。值得注意的是,引入S空位后,ZnIn2S4/BiVO4中Zn 2p和In 3d结合能出现轻微的负移,这表明S空位导致Zn和In配位数的下降。
实施案例2(反应参考表1,条目1)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h。然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为37%。
实施案例3(反应参考表1,条目2)
在1个大气压N2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h。然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,没有苯乙酸的生成。
实施案例4(反应参考表1,条目3)
在1个大气压CO2气氛中,无可见光照射,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h。然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,没有苯乙酸的生成。
实施案例5(反应参考表1,条目4)
在1个大气压CO2气氛中,可见光照射下,无催化剂,苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,没有苯乙酸的生成。
实施案例6(反应参考表1,条目5)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),未添加碱性物质,溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为68%,没有苯乙酸的生成。
实施案例7(反应参考表1,条目6)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),无乙酸酐,然后用0.15Wcm-2蓝色LED (λ = 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,没有苯乙酸的生成。
实施案例8(反应参考表1,条目7)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.75Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为62%。
实施案例9(反应参考表1,条目8)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的叔戊酸酐(Piv2O),50℃油浴5 h,然后用0.75Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为76%,苯乙酸的选择性为46%。
实施案例10(反应参考表1,条目9)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的三氟乙酸酐(TFAH),50℃油浴5 h,然后用0.75Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为39%。
实施案例11(反应参考表1,条目10)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K3PO4(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.75Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为55%。
实施案例12(反应参考表1,条目11)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),Na2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.75Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为58%。
实施案例13(反应参考表1,条目12)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂MeCN(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为87%,苯乙酸的选择性为17%。
实施案例14(反应参考表1,条目13)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂CH3OH(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为67%,苯乙酸的选择性为44%。
实施案例15(反应参考表,条目14)
在1个大气压CO2气氛中,可见光照射下,BiVO4(10 mg),苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为32%。
实施案例16(反应参考表1,条目15)
在1个大气压CO2气氛中,可见光照射下,ZnIn2S4/BiVO4(10 mg),苯甲醇(0.2mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为79%。
实施案例17(反应参考表1,条目16)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),苯甲醇(0.2mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析苯甲醇的转化率和苯乙酸的选择性。苯甲醇的转化率为100%,苯乙酸的选择性为98%。
实施案例18(反应参考表2,条目2)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),对甲氧基苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析对甲氧基苯甲醇的转化率和对甲氧基苯乙酸的选择性。对甲氧基苯甲醇的转化率为100%,对甲氧基苯乙酸的选择性为47%。
实施案例19(反应参考表2,条目3)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),对甲基苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析对甲基苯甲醇的转化率和对甲基苯乙酸的选择性。对甲基苯甲醇的转化率为100%,对甲基苯乙酸的选择性为51%。
实施案例20(反应参考表2,条目4)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),对硝基苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析对硝基苯甲醇的转化率和对硝基苯乙酸的选择性。对硝基苯甲醇的转化率为100%,对硝基苯乙酸的选择性为62%。
实施案例2(反应参考表2,条目5)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),对氰基苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析对氰基苯甲醇的转化率和对氰基苯乙酸的选择性。对氰基苯甲醇的转化率为100%,对氰基苯乙酸的选择性为81%。
实施案例22(反应参考表2,条目6)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),邻三氟甲基苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析邻三氟甲基苯甲醇的转化率和邻三氟甲基苯乙酸的选择性。邻三氟甲基苯甲醇的转化率为100%,邻三氟甲基苯乙酸的选择性为85%。
实施案例23(反应参考表2,条目7)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),间三氟甲基苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析间三氟甲基苯甲醇的转化率和间三氟甲基苯乙酸的选择性。间三氟甲基苯甲醇的转化率为100%,间三氟甲基苯乙酸的选择性为82%。
实施案例24(反应参考表2,条目8)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),对三氟甲基苯甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析对三氟甲基苯甲醇的转化率和对三氟甲基苯乙酸的选择性。对三氟甲基苯甲醇的转化率为100%,对三氟甲基苯乙酸的选择性为87%。
实施案例25(反应参考表2,条目9)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),香草醇(0.2mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析香草醇的转化率和高香草酸的选择性。香草醇的转化率为100%,高香草酸的选择性为72%。
实施案例26(反应参考表2,条目10)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),2-噻吩甲醇(0.2 mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析2-噻吩甲醇的转化率和不对称羧酸的选择性。2-噻吩甲醇的转化率为100%,不对称羧酸的选择性为86%。
实施案例27(反应参考表2,条目11)
在1个大气压CO2气氛中,可见光照射下,Sv-ZnIn2S4/BiVO4(10 mg),糠醇(0.2mmol),K2CO3(0.8mmol)和溶剂DMF(3ml),1.05当量的乙酸酐(Ac2
O),50℃油浴5 h,然后用0.15Wcm-2蓝色LED (λ= 460 nm)在室温下反应24 h。通过HPLC分析糠醇的转化率和5-羧基甲基呋喃-2-羧酸的选择性。糠醇的转化率为100%,5-羧基甲基呋喃-2-羧酸的选择性为95%。

Claims (3)

1.本发明公开了一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用,其特征在于:通过苄醇酯化、光生空穴对C-O的活化和CO2羧化可制备碳链增加的羧酸;
改性ZnIn2S4/BiVO4异质结的制备:采用低温溶剂热法将二维ZnIn2S4纳米片装饰到十面体BiVO4表面,将20ml水和3ml甘油注入50ml的圆底瓶中,用0.5 M的HCl调节溶液的pH值至2.5,超声处理3min以混匀溶液,然后在上述悬浮液中加入27.2 mg ZnCl2、58.6 mg InCl3·4H2O和30 mg硫代乙酰胺,搅拌30 min,随后加入上述产生的BiVO4 0.16mmol,搅拌10 min,80℃溶剂热反应2 h,反应结束后,用超纯水和乙醇洗涤3次,真空烘箱干燥6 h,硫空位富集的Sv-ZnIn2S4/BiVO4的合成过程与ZnIn2S4/BiVO4类似,只是在制备过程中加入了过量的60mg硫代乙酰胺;
苄醇和CO2光催化羧基化制备碳链增加的芳基羧酸:将10 mg光催化剂和0.8 mmol碱添加剂K2CO3加入到10 mL双颈圆底烧瓶中,并将其充满CO2,然后在圆底瓶中加入0.2 mmol苄醇,1.05当量的乙酸酐和3 mL DMF,50℃油浴5 h,然后在0.75 W/cm2蓝色LED灯下搅拌反应24 h,其中苄醇包括苯甲醇、对甲氧基苯乙醇、对甲基苯乙醇、邻三氟甲基苯甲醇、间三氟甲基苯甲醇、对三氟甲基苯甲醇、对硝基苯甲醇、对氰基苯甲醇、香草醇;
噻吩甲醇或糠醇与CO2光催化制备碳链增加的二羧酸:将10 mg光催化剂和0.8 mmol碱添加剂K2CO3加入到10 mL双颈圆底烧瓶中,并将其充满CO2,然后在圆底瓶中加入0.2 mmol的2-噻吩甲醇或糠醇,1.05当量的乙酸酐和3 mL DMF,50℃油浴5 h,然后在0.75 W/cm2蓝色LED灯下搅拌反应24 h,在温和的催化反应条件下,2-噻吩甲醇在消耗2当量CO2的情况下以86%的收率制备不对称羧酸,糠醇在消耗2当量CO2的情况下以95%的收率制备不对称羧酸。
2.一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用,其特征在于:在没有牺牲剂的条件下实现了苄醇和CO2光催化羧基化制备碳链增加的羧酸。
3.一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用,其特征在于:碳链增加的芳基羧酸收率可达48%~98%。
CN202310475980.XA 2023-04-28 2023-04-28 一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用 Active CN116440926B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310475980.XA CN116440926B (zh) 2023-04-28 2023-04-28 一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310475980.XA CN116440926B (zh) 2023-04-28 2023-04-28 一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用

Publications (2)

Publication Number Publication Date
CN116440926A true CN116440926A (zh) 2023-07-18
CN116440926B CN116440926B (zh) 2024-07-02

Family

ID=87132038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310475980.XA Active CN116440926B (zh) 2023-04-28 2023-04-28 一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用

Country Status (1)

Country Link
CN (1) CN116440926B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB306471A (zh) * 1928-02-21 1929-09-16 The Selden Company
DE102004032117A1 (de) * 2004-07-01 2006-01-19 Studiengesellschaft Kohle Mbh Katalysator für die selektive Oxidation von Alkoholen
US20210331149A1 (en) * 2020-04-27 2021-10-28 Chengdu University Of Information Technology Biochar-modified bismuth vanadate catalyst and preparation method and use thereof
CN113856671A (zh) * 2021-08-26 2021-12-31 浙江工业大学 一种含有s空位的z型异质结光催化剂的制备方法
CN114653381A (zh) * 2022-02-15 2022-06-24 江苏大学 一种ZnIn2S4纳米片包裹BiVO4微米棒核壳异质结催化剂的制备方法及其应用
CN114736179A (zh) * 2022-05-01 2022-07-12 重庆工商大学 ZnIn2S4纳米片光催化C-H活化和CO2还原

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB306471A (zh) * 1928-02-21 1929-09-16 The Selden Company
DE102004032117A1 (de) * 2004-07-01 2006-01-19 Studiengesellschaft Kohle Mbh Katalysator für die selektive Oxidation von Alkoholen
US20210331149A1 (en) * 2020-04-27 2021-10-28 Chengdu University Of Information Technology Biochar-modified bismuth vanadate catalyst and preparation method and use thereof
CN113856671A (zh) * 2021-08-26 2021-12-31 浙江工业大学 一种含有s空位的z型异质结光催化剂的制备方法
CN114653381A (zh) * 2022-02-15 2022-06-24 江苏大学 一种ZnIn2S4纳米片包裹BiVO4微米棒核壳异质结催化剂的制备方法及其应用
CN114736179A (zh) * 2022-05-01 2022-07-12 重庆工商大学 ZnIn2S4纳米片光催化C-H活化和CO2还原

Also Published As

Publication number Publication date
CN116440926B (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
Fan et al. Recent advances on cobalt metal organic frameworks (MOFs) for photocatalytic CO2 reduction to renewable energy and fuels: A review on current progress and future directions
Li et al. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction
Wu et al. Synthesis of glycerol carbonate from glycerol and diethyl carbonate over Ce-NiO catalyst: the role of multiphase Ni
Zhai et al. Bimetal Co8Ni2 catalyst supported on chitin-derived N-containing carbon for upgrade of biofuels
CN114736179B (zh) ZnIn2S4纳米片光催化C-H活化和CO2还原
TWI462777B (zh) 合成甲醇及二甲醚之Cu-Zn-Al觸媒製備方法
CN110841661A (zh) 1t-2h二硫化钼@硫化镉复合纳米材料的制备方法及其应用
CN110013862B (zh) 一种羟基氧化铁/硫化镉纳米带直接Z-scheme光催化剂及其制备方法
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN112827503A (zh) 一种2D/2D硫化铟锌/MXene光催化异质结产氢材料及其制备方法
CN113751028A (zh) 一种有机-无机杂化光催化析氢材料及其制备方法和应用
CN111203238B (zh) Z型MoS2/CaTiO3异质结及制备方法和用途
Shahid et al. Transition metal chalcogenides and phosphides for photocatalytic H2 generation via water splitting: a critical review
Lee et al. Review on inorganic and polymeric materials-coordinated metal-organic-framework photocatalysts for green hydrogen evolution
Shao et al. Selective conversion of levulinic acid to gamma-valerolactone over Ni-based catalysts: Impacts of catalyst formulation on sintering of nickel
CN116440926B (zh) 一种改性ZnIn2S4/BiVO4异质结在苄醇和CO2光催化羧基化中的应用
CN112387292B (zh) 量子点修饰的多壳CaTiO3立方体及制备方法和用途
CN114082444B (zh) 多酸团簇嵌入硫铟锌纳米片z型双功能复合光催化剂及其制备方法和应用
CN112756002B (zh) 一种元素掺杂的过渡金属硫化物超薄片及其制备和应用
CN115090298A (zh) 一种铜掺杂二硫化锡复合光催化材料的制备方法
CN118179565A (zh) C/N-In2O3/ZnIn2S4双异质结在芳香族化合物和CO2光催化羧基化中的应用
CN113856722A (zh) 一种高载量的金属单原子催化剂及其制备方法和应用
CN113828331A (zh) 一种钛酸钾-四硫化七铜复合材料及其制备方法和应用
CN114672844B (zh) 一种复合材料的制备方法及应用
Saravanan et al. Production of biofuel from shorea robusta seed oil using nano MgO catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant