CN116440896A - 一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法 - Google Patents

一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法 Download PDF

Info

Publication number
CN116440896A
CN116440896A CN202310001401.8A CN202310001401A CN116440896A CN 116440896 A CN116440896 A CN 116440896A CN 202310001401 A CN202310001401 A CN 202310001401A CN 116440896 A CN116440896 A CN 116440896A
Authority
CN
China
Prior art keywords
srmno
perovskite
thermochemical conversion
salt
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310001401.8A
Other languages
English (en)
Other versions
CN116440896B (zh
Inventor
刘向雷
高轲
宣益民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202310001401.8A priority Critical patent/CN116440896B/zh
Publication of CN116440896A publication Critical patent/CN116440896A/zh
Application granted granted Critical
Publication of CN116440896B publication Critical patent/CN116440896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法,其化学式为Sr0.6Ce0.4Mn1‑xAlxO3,其中x取值为0~0.6;制备方法包括以下步骤:(1)以锶盐、铈盐、锰盐和铝盐为前驱体,加入絮凝剂和络合剂,制备成湿凝胶;(2)将湿凝胶干燥,然后研磨成粉末;(3)将粉末煅烧,然后研磨,得到所述基于SrMnO3钙钛矿的CO2热化学转化材料;该材料在SrMnO3的基础上掺杂铈和铝或铈,并调整了锰和铝之间的比例,降低了还原和氧化两步反应之间的温差,提高了光谱吸收性能和循环稳定性。

Description

一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法
技术领域
本发明涉及一种CO2热化学转化材料及其制备方法,特别涉及一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法。
背景技术
在过去几十年,传统化石燃料的大量使用导致了全球气候变暖和能源短缺等问题,而人类对于清洁、可持续燃料的需求却不断增加。为了解决当前这一问题,人类发现将二氧化碳转化为燃料是一个非常好的途径,这是因为二氧化碳是合成许多其他化学燃料(如甲醇、甲酸和乙酸)的廉价且广泛可用的原料,同时二氧化碳利用不仅仅是为了缓解日益危险的气候变化挑战,也是为了为可持续能源生产提供一条成本效益高的途径。
二氧化碳转化途径,如电化学还原、光化学催化、热化学重整等等。在这些方法中,两步法氧化还原循环的太阳热化学二氧化碳转化因其高选择性、广泛的太阳光谱利用和简单的操作条件而备受关注。同时,两步热化学循环体系通过采用还原反应和氧化反应交替进行,可以使二氧化碳转化成燃料能够在较低的温度下完成,其主要步骤为:该反应基于金属氧化物的氧化还原反应包括两个过程,第一个过程是吸热反应,金属氧化物在高温惰性气氛(通常为1400)下还原到低价态,同时释放氧气;第二个过程是放热反应,CO2与还原的金属氧化物在较低的温度(通常为1000)下反应,产生CO并再变为生金属氧化物。
然而,在进行两步法反应时,所采用的催化剂颗粒大都面临着第一步还原温度较高,第二步一氧化碳的产量较低,两步反应间循环温差大,热损失高,循环稳定性差及光谱吸收性能弱等问题。
发明内容
发明目的:本发明第一目的为提供一种降低还原和氧化两步反应之间的温差,提高光谱吸收性能和循环稳定性的基于SrMnO3钙钛矿的CO2热化学转化材料;本发明的第二目的为提供所述基于SrMnO3钙钛矿的CO2热化学转化材料的制备方法。
技术方案:本发明所述基于SrMnO3钙钛矿的CO2热化学转化材料,其化学式为Sr0.6Ce0.4Mn1-xAlxO3,其中x取值为0~0.6。
优选的,所述x取值为0.2~0.4。
本发明所述的基于SrMnO3钙钛矿的CO2热化学转化材料的制备方法,包括以下步骤:
(1)以锶盐、铈盐、锰盐和铝盐为前驱体,加入絮凝剂和络合剂,制备成湿凝胶;
(2)将湿凝胶干燥,然后研磨成粉末;
(3)将粉末煅烧,最后研磨,得到所述基于SrMnO3钙钛矿的CO2热化学转化材料。
优选的,步骤(3)中,所述煅烧温度为1300~1500℃,煅烧时间4~6小时。
优选的,步骤(1)中,锶盐、铈盐、锰盐和铝盐分别为硝酸锶、硝酸铈、硝酸锰、硝酸铝。硝酸盐在煅烧过程中杂质易挥发,仅保留金属成分,同时不用离心过滤等复杂操作。
优选的,步骤(1)中,所述絮凝剂和络合剂为一水合柠檬酸。
优选的,步骤(2)中,所述干燥温度为100~140℃,干燥时间为20~30小时。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)该材料在SrMnO3的基础上掺杂铈和铝或铈,并调整了锰和铝之间的比例,降低了还原和氧化两步反应之间的温差,提高了光谱吸收性能和循环稳定性;(2)Sr0.6Ce0.4Mn0.8Al0.2O3第一步还原反应温度1350℃,第二步氧化反应温度1100℃,CO产量为799.3μmol g-1,在200~2500nm的波段范围内的平均光谱吸收率87.98%;(3)制备方法简单,绿色环保。
附图说明
图1为本发明基于SrMnO3钙钛矿的CO2热化学转化材料的制备流程图;
图2为本发明中CO2热化学转化装置流程图;
图3为实施例1~4制备的Sr0.6Ce0.4Mn1-xAlxO3在1350/1100℃下催化特性图;
图4为实施例1~4制备的Sr0.6Ce0.4Mn1-xAlxO3的太阳能光谱平均吸收率图;
图5为实施例1制备的Sr0.6Ce0.4Mn0.8Al0.2O3不同还原温度下催化特性图;
图6为实施例1制备的Sr0.6Ce0.4Mn0.8Al0.2O3长时间稳定性测试特性图;
图7为实施例1制备的Sr0.6Ce0.4Mn0.8Al0.2O3循环前后的SEM电镜图;
图8为实施例1制备的Sr.6Ce0.4Mn0.8Al0.2O3的循环前后的XRD谱图。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明。
实施例1
本发明的基于SrMnO3钙钛矿的CO2热化学转化材料,其化学式为Sr0.6Ce0.4Mn0.8Al0.2O3,其制备方法包括以下步骤:
(1)取0.006mol硝酸锶、0.004mol六水合硝酸铈、0.008mol硝酸锰(质量分数50%)和0.002mol九水合硝酸铝作为金属前驱体,加入100ml去离子水中,并加入0.03mol一水合柠檬酸,在90℃下磁力搅拌3h,待水分蒸干后,形成湿凝胶;
(2)将湿凝胶置于干燥箱中,在120℃的温度条件下干燥24h,形成干凝胶,然后研磨成粉末;
(3)将粉末放入氧化锆坩埚中,以5℃/min的升温速率升至1400℃煅烧并保温6h,并以5℃/min降温至500℃,待自然冷却至室温后,再次进行研磨,获得复合催化剂Sr0.6Ce0.4Mn0.8Al0.2O3
实施例2
本发明的基于SrMnO3钙钛矿的CO2热化学转化材料,其化学式为Sr0.6Ce0.4MnO3,其制备方法包括以下步骤:
(1)取0.006mol硝酸锶、0.004mol六水合硝酸铈和0.01mol硝酸锰(质量分数50%)作为金属前驱体,加入100ml去离子水中,并加入0.003mol一水合柠檬酸,在90℃下磁力搅拌3h,待水分蒸干后,形成湿凝胶;
(2)将湿凝胶置于干燥箱中,在120℃的温度条件下干燥24h,形成干凝胶,然后研磨成粉末;
(3)将粉末放入氧化锆坩埚中,以5℃/min的升温速率升至1400℃煅烧并保温6h,并以5℃/min降温至500℃,待自然冷却至室温后,再次进行研磨,获得复合催化剂Sr0.6Ce0.4MnO3
实施例3
本发明的基于SrMnO3钙钛矿的CO2热化学转化材料,其化学式为Sr0.6Ce0.4Mn0.6Al0.4O3,其制备方法同实施例1,区别在于硝酸锰为0.006mol,九水合硝酸铝0.004mol。
实施例4
本发明的基于SrMnO3钙钛矿的CO2热化学转化材料,其化学式为Sr0.6Ce0.4Mn0.4Al0.6O3,其制备方法同实施例1,区别在于硝酸锰为0.004mol,九水合硝酸铝0.006mol。
对比例1
(1)取0.01mol硝酸锶和0.01mol硝酸锰(质量分数50%)作为金属前驱体,加入100ml去离子水中,并加入0.03mol一水合柠檬酸,在90℃下磁力搅拌3h,待水分蒸干后,形成湿凝胶;
(2)将湿凝胶置于干燥箱中,在120℃的温度条件下干燥24h,形成干凝胶,然后研磨成粉末;
(3)将粉末放入氧化锆坩埚中,以5℃/min的升温速率升至1400℃煅烧并保温6h,并以5℃/min降温至500℃,待自然冷却至室温后,再次进行研磨,得到SrMnO3
对比例2
制备方法同实施例1,区别在于硝酸锰为0.002mol,九水合硝酸铝0.008mol,得到Sr0.6Ce0.4Mn0.2Al0.8O3
性能测试
(1)Sr0.6Ce0.4Mn1-xAlxO3的CO2热化学转化性能测试
测试方法:如图2所示,分别取150mg实施例1~4和对比例1~2制备的样品均匀平铺在氧化铝坩埚中,并将氧化铝坩埚置于高温管式炉内部;反应过程中,通过质量流量计控制Ar和CO2的种类和流速,并进行气体的切换,通过设置高温管式炉的升温/降温程序来设定反应温度;在整个反应过程中,第一步反应温度为1350℃,Ar的流速为200sccm,CO2的流速为0sccm,即全为氩气;第二步反应温度为1100℃,Ar的流速为100sccm,CO2的流速为100sccm,即各占50%,将经过高温管式炉出口处的气体输送至气体检测装置进行检测和数据的记录。
如图3所示,在所制备的Sr0.6Ce0.4Mn1-xAlxO3(x取值为0~0.6)中,Sr0.6Ce0.4Mn0.8Al0.2O3具有最佳的催化性能,其平均CO产量为799.3μmol g-1;Sr0.6Ce0.4Mn0.6Al0.4O3的CO产量为656.1μmol g-1;Sr0.6Ce0.4Mn0.4Al0.6O3的CO产量为504.2μmol g-1;Sr0.6Ce0.4MnO3的CO产量为730.2μmol g-1;SrMnO3的CO产量为450.2μmol g-1;Sr0.6Ce0.4Mn0.2Al0.8O3的CO产量为302.6μmol g-1;Sr0.6Ce0.4Mn1-xAlxO3(x取值为0~0.6)的催化性能较SrMnO3大幅提升,随着锰和铝中锰的比例下降,催化活性下降,当锰与铝的摩尔比为2:8时,催化活性反而低于SrMnO3
(2)Sr0.6Ce0.4Mn1-xAlxO3太阳能光谱吸收率性能测试
测试方法:将实施例1~4和对比例1~2制备的样品研磨成成粉末后,放入测试用的样品仓中,然后利用紫外可见分光分度计进行光谱吸收性能测试。
如图4所示,Sr0.6Ce0.4Mn1-xAlxO3中x为0,0.2,0.4,0.6对应的在200~2500nm的波段范围内的平均光谱吸收率分别为87.51%,87.98%,88.39%,86.71%;传统材料CeO2的平均光谱吸收率13.3%;SrMnO3的平均光谱吸收率为79.47%,Sr0.6Ce0.4Mn0.2Al0.8O3的光谱吸收率为78.93%;Sr0.6Ce0.4Mn1-xAlxO3的光谱吸收率较SrMnO3大幅提高,表明该材料具有良好的光谱吸收特性,并为以后的光热耦合实验提供理论指导。
(3)Sr0.6Ce0.4Mn0.8Al0.2O3在不同还原温度下的催化性能测试
测试方法:取150mg Sr0.6Ce0.4Mn0.8Al0.2O3均匀平铺在氧化铝坩埚中,并将氧化铝坩埚置于高温管式炉内部;反应过程中,通过质量流量计控制Ar和CO2的种类和流速,并进行气体的切换,通过设置高温管式炉的升温/降温程序来设定第一步和第二步的反应温度;在整个反应过程中,第一步反应温度分别为1400℃,1350℃,1250℃,1150℃和1100℃(共进行5次实验测试),Ar的流速为200sccm,CO2的流速为0sccm;第二步反应温度保持为1100℃不变,Ar的流速为100sccm,CO2的流速为100sccm,将经过高温管式炉出口处的气体输送至气体检测装置进行检测和数据的记录。
如图5所示,在所有预设的还原温度中,Sr0.6Ce0.4Mn0.8Al0.2O3在1100℃还原温度下,基本上没有催化活性,而在1350℃的还原温度下表现出最好的催化性能,CO产量为799.3μmol g-1;说明了对于复合催化剂Sr0.6Ce0.4Mn0.8Al0.2O3来说,在相同的氧化温度下,随着还原温度的增加,其CO的产量随之增加,但当温度达到1400℃,由于样品表面烧结的影响,CO产量从799.3μmol g-1下降至674.5μmol g-1
(4)Sr0.6Ce0.4Mn0.8Al0.2O3在1350℃/1100℃循环下长时间性能测试
测试方法:取150mg催化剂均匀平铺在氧化铝坩埚中,催化剂放于氧化铝坩埚中,并将氧化铝坩埚置于高温管式炉内部;反应过程中,通过质量流量计控制Ar和CO2的种类和流速,并进行气体的切换,通过设置高温管式炉的升温/降温程序来设定第一步和第二步的反应温度;在整个反应过程中,第一步还原反应温度和第二步氧化反应温度分别保持1350℃和1100℃不变,其中,第一步Ar的流速为200sccm,CO2的流速为0sccm;第二步Ar的流速为100sccm,CO2的流速为100sccm,将经过高温管式炉出口处的气体输送至气体检测装置进行检测和数据的记录;
如图6所示,Sr0.6Ce0.4Mn0.8Al0.2O3在经过20次循环后,其CO产量从799.3μmol g-1变为749.5μmol g-1,仅降低了6.23%;说明Sr0.6Ce0.4Mn0.8Al0.2O3在1350℃/1100℃循环的工况下,具有良好的循环稳定性,并没有明显的衰减现象。
如图7(a)和7(b)所示,对比循环前和四次循环后Sr0.6Ce0.4Mn0.8Al0.2O3,发现反应前后的材料形貌并没有发生改变,但尺寸略有增加;结合Sr0.6Ca0.4Mn0.8Al0.2O3的循环前后的XRD图(图8),发现衍射峰并没有发生偏移,峰强略微增加,说明该材料的晶体结构稳定。

Claims (7)

1.一种基于SrMnO3钙钛矿的CO2热化学转化材料,其特征在于,其化学式为Sr0.6Ce0.4Mn1-xAlxO3,其中x取值为0~0.6。
2.根据权利要求1所述的基于SrMnO3钙钛矿的CO2热化学转化材料,其特征在于,所述x取值为0.2~0.4。
3.一种权利要求1或2所述的基于SrMnO3钙钛矿的CO2热化学转化材料的制备方法,其特征在于,包括以下步骤:
(1)以锶盐、铈盐、锰盐和铝盐为前驱体,加入絮凝剂和络合剂,制备成湿凝胶;
(2)将湿凝胶干燥,然后研磨成粉末;
(3)将粉末煅烧,然后研磨,得到所述基于SrMnO3钙钛矿的CO2热化学转化材料。
4.根据权利要求3所述的基于SrMnO3钙钛矿的CO2热化学转化材料的制备方法,其特征在于,步骤(3)中,所述煅烧温度为1300~1500℃,煅烧时间4~6小时。
5.根据权利要求3所述的基于SrMnO3钙钛矿的CO2热化学转化材料的制备方法,其特征在于,步骤(1)中,所述絮凝剂和络合剂为一水合柠檬酸。
6.根据权利要求3所述的基于SrMnO3钙钛矿的CO2热化学转化材料的制备方法,其特征在于,步骤(2)中,所述干燥温度为100~140℃,干燥时间为20~30小时。
7.根据权利要求3所述的基于SrMnO3钙钛矿的CO2热化学转化材料的制备方法,其特征在于,步骤(1)中,锶盐、铈盐、锰盐和铝盐分别为硝酸锶、硝酸铈、硝酸锰、硝酸铝。
CN202310001401.8A 2023-01-03 2023-01-03 一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法 Active CN116440896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310001401.8A CN116440896B (zh) 2023-01-03 2023-01-03 一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310001401.8A CN116440896B (zh) 2023-01-03 2023-01-03 一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116440896A true CN116440896A (zh) 2023-07-18
CN116440896B CN116440896B (zh) 2023-12-29

Family

ID=87124432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310001401.8A Active CN116440896B (zh) 2023-01-03 2023-01-03 一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116440896B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591315A (en) * 1987-03-13 1997-01-07 The Standard Oil Company Solid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions
JPH10272336A (ja) * 1997-03-31 1998-10-13 Nissan Motor Co Ltd 二酸化炭素吸収材および排ガス中の二酸化炭素の分離回収方法
CN1348192A (zh) * 2000-10-11 2002-05-08 株式会社村田制作所 具有负电阻温度系数的半导体陶瓷和负温度系数热敏电阻
CN1674985A (zh) * 2002-07-09 2005-09-28 大发工业株式会社 排气净化用催化剂
US20180305831A1 (en) * 2017-04-19 2018-10-25 California Institute Of Technology Oxygen evolution reaction catalysis
CN109759077A (zh) * 2019-01-08 2019-05-17 南京航空航天大学 一种钙钛矿氧化物催化剂及其制备方法和应用
CN113582240A (zh) * 2020-12-11 2021-11-02 浙江大学 热化学储热材料、热化学储热模块及制备方法
CN114904511A (zh) * 2022-03-24 2022-08-16 南京航空航天大学 一种基于SmMnO3钙钛矿的CO2热化学转化材料制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591315A (en) * 1987-03-13 1997-01-07 The Standard Oil Company Solid-component membranes electrochemical reactor components electrochemical reactors use of membranes reactor components and reactor for oxidation reactions
JPH10272336A (ja) * 1997-03-31 1998-10-13 Nissan Motor Co Ltd 二酸化炭素吸収材および排ガス中の二酸化炭素の分離回収方法
CN1348192A (zh) * 2000-10-11 2002-05-08 株式会社村田制作所 具有负电阻温度系数的半导体陶瓷和负温度系数热敏电阻
CN1674985A (zh) * 2002-07-09 2005-09-28 大发工业株式会社 排气净化用催化剂
US20180305831A1 (en) * 2017-04-19 2018-10-25 California Institute Of Technology Oxygen evolution reaction catalysis
CN109759077A (zh) * 2019-01-08 2019-05-17 南京航空航天大学 一种钙钛矿氧化物催化剂及其制备方法和应用
CN113582240A (zh) * 2020-12-11 2021-11-02 浙江大学 热化学储热材料、热化学储热模块及制备方法
CN114904511A (zh) * 2022-03-24 2022-08-16 南京航空航天大学 一种基于SmMnO3钙钛矿的CO2热化学转化材料制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANITA HAEUSSLER ET AL: """Investigation of reactive perovskite materials for solar fuel production via two-step redox cycles: Thermochemical activity, thermodynamic properties and reduction kinetics""", 《MATERIALS CHEMISTRY AND PHYSICS》, vol. 276, pages 2 *
SU JEONG HEO ET AL: ""Double-Site Substitution of Ce into (Ba, Sr)MnO3 Perovskites for Solar Thermochemical Hydrogen Production"", 《ACS ENERGY LETT》, vol. 6, no. 9, pages 3038 *

Also Published As

Publication number Publication date
CN116440896B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
Polychronopoulou et al. Rapid microwave assisted sol-gel synthesis of CeO2 and CexSm1-xO2 nanoparticle catalysts for CO oxidation
Pecchi et al. Effect of the preparation method on the catalytic activity of La1− xCaxFeO3 perovskite-type oxides
JP3560580B2 (ja) 12CaO・7Al2O3化合物とその作成方法
Zhu et al. Metal modified hexaaluminates for syngas generation and CO2 utilization via chemical looping
CN112058270B (zh) 一种片状La0.8Sr0.2CoO3钙钛矿型催化剂的原位合成方法及其应用
Li et al. Enhanced performance of LaFeO3 oxygen carriers by NiO for chemical looping partial oxidation of methane
CN113135598B (zh) 一种用于甲烷化学链重整制合成气的氧载体及其制备方法和应用
Zhang et al. Ultrafine PdO x nanoparticles on spinel oxides by galvanic displacement for catalytic combustion of methane
JP5982189B2 (ja) 水分解用光触媒
CN106232230A (zh) 由纳米结构化基体制备金属/金属氧化物材料的方法及其应用
Jiang et al. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol
CN112473678B (zh) 用于湿法熄焦蒸气混合重整甲烷的催化剂及其制备方法
Rumruangwong et al. Synthesis of ceria–zirconia mixed oxide from cerium and zirconium glycolates via sol–gel process and its reduction property
CN116440896B (zh) 一种基于SrMnO3钙钛矿的CO2热化学转化材料及其制备方法
Portarapillo et al. Syngas production through H2O/CO2 thermochemical splitting
CN114471589A (zh) 催化剂、耐硫变换催化反应的方法和甲烷的制备方法
KR102199485B1 (ko) 일단 수성가스 전이 반응을 위한 촉매의 제조 방법
Laqdiem et al. Impact of lattice properties on the CO2 splitting kinetics of lanthanide-doped cerium oxides for chemical looping syngas production
CN114405511B (zh) 一种制取合成气并联产co和氢的氧载体及其制备方法和应用
CN114904511A (zh) 一种基于SmMnO3钙钛矿的CO2热化学转化材料制备方法和应用
CN115626666A (zh) 三钙钛矿型复合金属氧化物载氧体及其制备方法和应用
KR102270807B1 (ko) 금속산화물을 이용한 이산화탄소 전환 방법
CN113264768A (zh) 一种高透氧量的铜基双相混合导体透氧膜材料及其制备方法
CN111285327A (zh) 一种甲烷化学链部分氧化制合成气的方法
Zhou et al. General and facile synthesis of ceria-based solid solution nanocrystals and their catalytic properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant