CN116360017A - 一种硫系玻璃irg206基底长波红外镜片及其制备方法 - Google Patents

一种硫系玻璃irg206基底长波红外镜片及其制备方法 Download PDF

Info

Publication number
CN116360017A
CN116360017A CN202310202225.4A CN202310202225A CN116360017A CN 116360017 A CN116360017 A CN 116360017A CN 202310202225 A CN202310202225 A CN 202310202225A CN 116360017 A CN116360017 A CN 116360017A
Authority
CN
China
Prior art keywords
film
substrate
irg206
zns
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310202225.4A
Other languages
English (en)
Inventor
周慎敏
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310202225.4A priority Critical patent/CN116360017A/zh
Publication of CN116360017A publication Critical patent/CN116360017A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3621Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3628Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a sulfide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明公开了一种硫系玻璃IRG206基底长波红外镜片及其制备方法,适用的增透波段为8‑12um,属于红外光学领域。所述长波红外镜片以硫系玻璃IRG206为基底,基底的正反面均镀制了同种红外增透膜系结构:IRG206/0.251ZnS/0.285Ge/0.247ZnS/0.760Ge/0.359ZnS/0.880YbF3/0.419ZnS/空气。本发明ZnS作为第一层膜,起到基底和膜层结构之间的过渡作用,以此提高膜层的附着力,减少脱膜情况的发生;第二至第第六层膜采用透光性能好的Ge、ZnS和YbF3,增大透光率;最后将ZnS作为保护膜镀制在最外层,以此减少外界环境对内部膜层的影响。在镀膜过程中采用离子源辅助,提高膜层和基底间的结合性能,改善薄膜的生长质量,降低膜层的残余应力。

Description

一种硫系玻璃IRG206基底长波红外镜片及其制备方法
技术领域
本发明涉及一种硫系玻璃IRG206基底长波红外镜片及其制备方法,属于红外光学领域。
背景技术
硫系玻璃一般指的是以VI族元素S、Se、Te等元素为主,与As、Ge、Sb、Ga等元素形成的化合物玻璃。其优点有折射率温度系数低、通过的波段宽以及消色差和消热差性能好等,是一类优异的红外光学材料,在红外光学方面应用广泛。且相对于Ge等红外光学材料而言,其制备成本更低,不论是在红外光学的研发方面还是产品制造方面都有着不错的替代性。对于现有的以硫系玻璃IRG206(As40Se60)为基底且镀膜的长波红外镜片,8-12um的透光率不足50%、膜层质量低,无法满足工作需求。
发明内容
本发明旨在改进现有技术,提供一种硫系玻璃IRG206(As40Se60)基底长波红外镜片及其制备方法,使得长波红外镜片透光率高、膜层质量高。
为实现上述目的,本发明是通过如下技术方案实现的:一种硫系玻璃IRG206基底长波红外镜片,适用的增透波段为8-12um,长波红外镜片以硫系玻璃IRG206为基底,基底正反面均镀制了同种红外增透膜系结构,红外增透膜系结构为:IRG206/0.251ZnS/0.285Ge/0.247ZnS/0.760Ge/0.359ZnS/0.880YbF3/0.419ZnS/空气,膜料前面的数字表示膜层厚度,单位为um。
优选地,IRG206基底的厚度为2mm。
一种硫系玻璃IRG206基底长波红外镜片的制备方法,包括如下步骤:
步骤一:基底预处理:清洁基底表面,在强光灯的照射下看不到有杂质即可,再将清洁好的基底装至镀膜机中;
步骤二:镀膜准备:将ZnS、Ge和YbF3膜料放入不同坩埚中,将镀膜机内抽真空,基底预热,依次对ZnS、Ge和YbF3膜料进行手动预熔,将镀膜真空室加热并保持恒温;
步骤三:镀膜:对ZnS,Ge,YbF3膜料在镀膜机中进行镀前预熔,然后采用电子束加热蒸发的方式根据膜系结构在基底正反两面依次镀制各膜层,镀膜温度为120℃,镀膜过程中使用霍尔离子源辅助镀制,膜料蒸发过程中实时调整蒸发速率,使其稳定,镀制结束后,当真空室内的温度低于50℃时,取出镜片。
具体地,步骤二具体为:清洁镀膜机真空室,清理蒸发源中的杂质,将ZnS、Ge和YbF3膜料放入不同的坩埚埚位中,将镀膜机内抽真空,打开烘烤,打开工转,烘烤工转为8转/分钟,其中,恒温温度为120℃,恒温时间为30-40min。烘烤基底,当烘烤温度达到120℃后,真空室内以该温度恒温30-40min,然后按照ZnS、Ge、YbF3的顺序,将坩埚内的膜料手动预熔到熔融状态:待室内真空度到达6*E-3Pa时候,坩埚位置调整到对应的膜料锅位,打开高压,关闭电子枪挡板,打开电子枪,调节电子枪束流大小、光斑大小以及光斑位置,对膜料进行预熔,直至膜料为熔融状态,关闭高压,关闭电子枪。
具体地,步骤三中:将ZnS,Ge,YbF3膜料在镀膜机中进行镀前预熔时,ZnS膜料预熔时的电子束电流和时间分别为20mA-40s,30mA-40s,Ge膜料预熔时的电子束电流和时间分别为120mA-30s、140mA-30s,YbF3膜料预熔时的电子束电流和时间分别为30mA-30s、40mA-30s;
具体地,步骤三中,在镀膜过程中使用霍尔离子源辅助镀制,离子源阳极电压为80v,阳极电流为0.6A,发射级电压为1.2A。
具体地,步骤三中,ZnS膜层采用电子束加热的方法镀制,电子束流为40mA,沉积速率为1.2nm/s,镀制时电子束的光斑直径为6-8mm。
具体地,步骤三中,Ge膜层采用电子束加热的方法镀制,电子束流为160mA,沉积速率为0.6nm/s,镀制时电子束的光斑直径为2-3mm。
具体地,步骤三中,YbF3膜层采用电子束加热的方法镀制,电子束流为50mA,沉积速率为0.8nm/s,镀制时电子束的光斑直径为14-16mm。
本发明的有益效果是:本发明红外镜片以硫系玻璃IRG206为基底,基底的正反面均镀制了同种红外增透膜系结构,膜系结构为7层不同材料的光学薄膜组成。在基底上由不同材料按照高折射率和低折射率相互匹配的方法依次沉积的多层膜系可以使光学镜片的透光率更大,镀制完成后的镜片透光率达到97%以上。本发明将较为致密、机械性能好且与硫系玻璃IRG206具有一定连接性的ZnS作为第一层膜,起到基底和膜层结构之间的过渡作用,以此提高膜层的附着力,减少脱膜情况的发生;第二至第六层膜采用透光性能好的Ge、ZnS、Ge、ZnS和YbF3,增大透光率;最后将ZnS作为保护膜镀制在最外层,以此减少外界环境对内部膜层的影响。在镀膜过程中采用离子源辅助,提高膜层和基底间的结合性能,改善薄膜的生长质量,降低膜层的残余应力。
附图说明
图1是本发明的膜系结构图;
图2是本发明中硫系玻璃IRG206的透光率曲线图
图3是本发明中成品的透光率曲线图。
具体实施方式
下面结合实施例和附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
实施例1:如图1-3所示,一种硫系玻璃IRG206基底长波红外镜片,适用的增透波段为8-12um,长波红外镜片以硫系玻璃IRG206为基底,基底正反面均镀制了同种红外增透膜系结构,红外增透膜系结构为:
IRG206/0.251ZnS/0.285Ge/0.247ZnS/0.760Ge/0.359ZnS/0.880YbF3/0.419ZnS/空气,膜料前面的数字表示膜层厚度,单位为um。
进一步地,IRG206基底的厚度为2mm。
一种硫系玻璃IRG206基底长波红外镜片的制备方法,包括如下步骤:
步骤一:基底预处理:使用傅里叶光谱仪检测IRG206基底的透光率,如图2所示,8-12um波段内的平均透过率为49%左右,清洁基底表面,在强光灯的照射下看不到有杂质即可,再将清洁好的基底装至镀膜机中;
步骤二:镀膜准备:将ZnS、Ge和YbF3膜料放入不同坩埚中,将镀膜机内抽真空,基底预热,依次对ZnS、Ge和YbF3膜料进行手动预熔,将镀膜真空室加热并保持恒温;
步骤三:镀膜:对ZnS,Ge,YbF3膜料在镀膜机中进行镀前预熔,然后采用电子束加热蒸发的方式根据膜系结构在基底正反两面依次镀制各膜层,镀膜温度为120℃,镀膜过程中使用霍尔离子源辅助镀制,膜料蒸发过程中实时调整蒸发速率,使其稳定,镀制结束后,当真空室内的温度低于50℃时,取出镜片。进一步地,步骤二具体为:清洁镀膜机真空室,清理蒸发源中的杂质,将ZnS、Ge和YbF3膜料放入不同的坩埚埚位中,将镀膜机内抽真空,打开烘烤,打开工转,烘烤工转为8转/分钟,其中,恒温温度为120℃,恒温时间为30-40min。烘烤基底,当烘烤温度达到120℃后,真空室内以该温度恒温30-40min,然后按照ZnS、Ge、YbF3的顺序,将坩埚内的膜料手动预熔到熔融状态:
预熔ZnS膜料:待室内真空度到达6*E-3Pa时候,坩埚位置调整到ZnS膜料锅位,打开高压,关闭电子枪挡板,打开电子枪,调节电子枪束流大小、光斑大小以及光斑位置,对ZnS膜料进行预熔,直至ZnS膜料为熔融状态,关闭高压,关闭电子枪。
预熔Ge膜料:ZnS膜料预熔完成后,坩埚位置调整到Ge膜料锅位,打开高压,关闭电子枪挡板,打开电子枪,调节电子枪束流大小、光斑大小以及光斑位置,对Ge膜料进行预熔,直至Ge膜料为熔融状态,关闭高压,关闭电子枪。
预熔YbF3膜料:Ge膜料预熔完成后,坩埚位置调整到YbF3膜料锅位,打开高压,关闭电子枪挡板,打开电子枪,调节电子枪束流大小、光斑大小以及光斑位置,对YbF3膜料进行预熔,直至YbF3膜料为熔融状态,关闭高压,关闭电子枪。
进一步地,步骤三中:将ZnS,Ge,YbF3膜料在镀膜机中进行镀前预熔时,ZnS膜料预熔时的电子束电流和时间分别为20mA-40s,30mA-40s,Ge膜料预熔时的电子束电流和时间分别为120mA-30s、140mA-30s,YbF3膜料预熔时的电子束电流和时间分别为30mA-30s、40mA-30s;
进一步地,步骤三中,在镀膜过程中使用霍尔离子源辅助镀制,离子源阳极电压为80v,阳极电流为0.6A,发射级电压为1.2A。
进一步地,步骤三中,ZnS膜层采用电子束加热的方法镀制,电子束流为40mA,沉积速率为1.2nm/s,镀制时电子束的光斑直径为6-8mm。
进一步地,步骤三中,Ge膜层采用电子束加热的方法镀制,电子束流为160mA,沉积速率为0.6nm/s,镀制时电子束的光斑直径为2-3mm。
进一步地,步骤三中,YbF3膜层采用电子束加热的方法镀制,电子束流为50mA,沉积速率为0.8nm/s,镀制时电子束的光斑直径为14-16mm。
对镀膜镜片进行性能测试如下:
透过率测试:使用傅里叶光谱仪测量镀膜镜片的透过率,如图3所示,8-12um波段内平均透过率大于97%。
附着力试验:按照GJB2485-1995标准3.4.1.1中的检测方法,使用3M胶带牢牢贴在膜层表面,垂直迅速拉起后,无脱膜现象。
湿热试验:将镀膜镜片放置在温度50℃,湿度95%湿热试验箱中,恒温恒湿静置24h后取出,取出后观察膜层表面,无变色、龟裂、脱膜现象。
高低温试验:将镀膜镜片放入高低温试验箱中,分别在-62℃的低温中和70℃的高温中静置2h,待其降至室温后取出,检测膜层均无起皮、起泡、裂纹、脱膜等现象。
耐磨试验:在橡皮摩擦头外包裹两层干燥脱脂纱布,保持4.9N压力下顺着同一轨迹对膜层进行摩擦,距离为20mm,往返25次,膜层均无擦痕等损伤。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (9)

1.一种硫系玻璃IRG206基底长波红外镜片,其特征在于:适用的增透波段为8-12um,长波红外镜片以硫系玻璃IRG206为基底,基底正反面均镀制了同种红外增透膜系结构,红外增透膜系结构为:
IRG206/0.251ZnS/0.285Ge/0.247ZnS/0.760Ge/0.359ZnS/0.880YbF3/0.419ZnS/空气,膜料前面的数字表示膜层厚度,单位为um。
2.根据权利有要求1所述的一种硫系玻璃IRG206基底长波红外镜片,其特征在于:IRG206基底的厚度为2mm。
3.一种硫系玻璃IRG206基底长波红外镜片的制备方法,其特征在于:包括如下步骤:
步骤一:基底预处理:清洁基底表面,在强光灯的照射下看不到有杂质即可,再将清洁好的基底装至镀膜机中;
步骤二:镀膜准备:将ZnS、Ge和YbF3膜料放入不同坩埚中,将镀膜机内抽真空,基底预热,依次对ZnS、Ge和YbF3膜料进行手动预熔,将镀膜真空室加热并保持恒温;
步骤三:镀膜:对ZnS,Ge,YbF3膜料在镀膜机中进行镀前预熔,然后采用电子束加热蒸发的方式根据膜系结构在基底正反两面依次镀制各膜层,镀膜温度为120℃,镀膜过程中使用霍尔离子源辅助镀制,膜料蒸发过程中实时调整蒸发速率,使其稳定,镀制结束后,当真空室内的温度低于50℃时,取出镜片。
4.根据权利要求3所述的一种硫系玻璃IRG206基底长波红外镜片的制备方法,其特征在于:步骤二具体为:清洁镀膜机真空室,清理蒸发源中的杂质,将ZnS、Ge和YbF3膜料放入不同的坩埚埚位中,将镀膜机内抽真空,打开烘烤,打开工转,烘烤工转为8转/分钟,其中,恒温温度为120℃,恒温时间为30-40min。烘烤基底,当烘烤温度达到120℃后,真空室内以该温度恒温30-40min,然后按照ZnS、Ge、YbF3的顺序,将坩埚内的膜料手动预熔到熔融状态:待室内真空度到达6*E-3Pa时候,坩埚位置调整到对应的膜料锅位,打开高压,关闭电子枪挡板,打开电子枪,调节电子枪束流大小、光斑大小以及光斑位置,对膜料进行预熔,直至膜料为熔融状态,关闭高压,关闭电子枪。
5.根据权利要求3所述的一种硫系玻璃IRG206基底长波红外镜片的制备方法,其特征在于:步骤三中:将ZnS,Ge,YbF3膜料在镀膜机中进行镀前预熔时,ZnS膜料预熔时的电子束电流和时间分别为20mA-40s,30mA-40s,Ge膜料预熔时的电子束电流和时间分别为120mA-30s、140mA-30s,YbF3膜料预熔时的电子束电流和时间分别为30mA-30s、40mA-30s。
6.根据权利要求3所述的一种硫系玻璃IRG206基底长波红外镜片的制备方法,其特征在于:步骤三中,霍尔离子源阳极电压为80v,阳极电流为0.6A,发射级电压为1.2A。
7.根据权利要求3所述的一种硫系玻璃IRG206基底长波红外镜片的制备方法,其特征在于:步骤三中,ZnS膜层采用电子束加热的方法镀制,电子束流为40mA,沉积速率为1.2nm/s,镀制时电子束的光斑直径为6-8mm。
8.根据权利要求3所述的一种硫系玻璃IRG206基底长波红外镜片的制备方法,其特征在于:步骤三中,Ge膜层采用电子束加热的方法镀制,电子束流为160mA,沉积速率为0.6nm/s,镀制时电子束的光斑直径为2-3mm。
9.根据权利要求3所述的一种硫系玻璃IRG206基底长波红外镜片的制备方法,其特征在于:步骤三中,YbF3膜层采用电子束加热的方法镀制,电子束流为50mA,沉积速率为0.8nm/s,镀制时电子束的光斑直径为14-16mm。
CN202310202225.4A 2023-03-04 2023-03-04 一种硫系玻璃irg206基底长波红外镜片及其制备方法 Pending CN116360017A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310202225.4A CN116360017A (zh) 2023-03-04 2023-03-04 一种硫系玻璃irg206基底长波红外镜片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310202225.4A CN116360017A (zh) 2023-03-04 2023-03-04 一种硫系玻璃irg206基底长波红外镜片及其制备方法

Publications (1)

Publication Number Publication Date
CN116360017A true CN116360017A (zh) 2023-06-30

Family

ID=86933663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310202225.4A Pending CN116360017A (zh) 2023-03-04 2023-03-04 一种硫系玻璃irg206基底长波红外镜片及其制备方法

Country Status (1)

Country Link
CN (1) CN116360017A (zh)

Similar Documents

Publication Publication Date Title
CN114200552B (zh) 一种锗基底8-12um红外波段窗口片及其制备方法
CN111090134B (zh) 硫系玻璃基底激光、中波红外、长波红外复合减反射薄膜
CN110989053B (zh) 一种硫系玻璃基底低剩余反射率减反射薄膜及其制备方法
CA1113764A (en) Enhanced bonding of adjacent layers of silicon oxides and silver
CN101738652B (zh) 三光合一超宽波段高增透膜的制备方法
CN111722307B (zh) 一种以非球面硫系玻璃为基底的红外增透膜及其制备方法
CN115421226A (zh) 一种硫系玻璃光学元件及其制备方法
CN112458400B (zh) 一种抗砂尘防潮防霉窗口复合增透膜的制备方法
CN104561907A (zh) 硅或锗基底中红外光学波段宽角度入射增透膜的制备方法
CN115368031B (zh) 硫系玻璃8-12um波段高耐久性增透膜的制备方法
CN111206214A (zh) 一种有效改善硫系玻璃镀膜膜层牢固度问题的镀膜工艺
CN107746187B (zh) 一种镀dlc膜的红外硫系玻璃镜片及其制备方法
CN114114475B (zh) 一种用于硒化锌基片的高附着力高表面质量的增透膜及其制备方法和应用
CN116360017A (zh) 一种硫系玻璃irg206基底长波红外镜片及其制备方法
CN112501557B (zh) 一种蓝宝石基底1-5μm超宽带增透膜及其制备方法
CN111286700B (zh) 基于混合物单层膜的光学镀膜元件面形补偿方法
CN103439803B (zh) 抗蓝光镜片
CN111850480A (zh) 一种镀膜工艺及其制备的光学镜头
JP4249937B2 (ja) 撥水性薄膜を有する光学部材およびレンズの製造方法
CN111485237A (zh) 基底红外增透保护膜及其制备方法
CN116540333A (zh) 一种8~12μm波段高透过率膜系及其制备方法以及应用
CN112578481B (zh) 一种大角度中长波红外增透保护膜及其制备方法
CN115433906A (zh) 硒化锌基底8-12um波段高耐久性增透膜的制备方法
CN221056698U (zh) 模压硫系玻璃镜片
CN116639886B (zh) 硫系玻璃光学元件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination