CN116354713B - 一种NiCuZn软磁铁氧体材料及其制备方法 - Google Patents

一种NiCuZn软磁铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN116354713B
CN116354713B CN202310359667.XA CN202310359667A CN116354713B CN 116354713 B CN116354713 B CN 116354713B CN 202310359667 A CN202310359667 A CN 202310359667A CN 116354713 B CN116354713 B CN 116354713B
Authority
CN
China
Prior art keywords
nicuzn
sintering
soft magnetic
powder
main material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310359667.XA
Other languages
English (en)
Other versions
CN116354713A (zh
Inventor
刘浩天
张怀武
夏宝广
刘奎
廖宇龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310359667.XA priority Critical patent/CN116354713B/zh
Publication of CN116354713A publication Critical patent/CN116354713A/zh
Application granted granted Critical
Publication of CN116354713B publication Critical patent/CN116354713B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种高熵NiCuZn软磁铁氧体材料及其制备方法,该材料包含:主料、离子取代剂和助烧剂;所述主料、所述离子取代剂和所述助烧剂的质量比为(98.25~99.0)∶(0.25~0.75)∶1.0;所述助烧剂为Bi2O3,离子取代剂为Nb2O5;本发明解决了现有技术高熵铁氧体材料使用高温烧结,无法与银电极实现共烧的技术问题。本发明中Nb2O5离子取代剂在预烧前就和主料进行了混合球磨可以更好的进行取代,CuO和Co2O3产生了协同效应,实现了烧结温度在960℃以下能够制得高熵NiCuZn软磁材料。

Description

一种NiCuZn软磁铁氧体材料及其制备方法
技术领域
本发明涉及一种软磁铁氧体材料,具体涉及一种高熵NiCuZn软磁铁氧体材料及其制备方法。
背景技术
高熵陶瓷材料通常是指由五种或五种以上金属阳离子以等物质的量或近等物质的量组成的多组元固溶体。一般来说,对于随机固溶体,每摩尔的理想构型熵(△Sconf)>1.5R的材料被归为高熵类,而1.0R<△Sconf<1.5R和△Sconf<1.0R的材料分别被归为中熵和低熵类。
近年来,高熵陶瓷(High-entropy ceramics,HECs)由于具有单一的晶体结构和优异的物理化学性能,成为陶瓷领域的研究热点之一。熵是衡量体系混乱度的物理量,熵越高即体系混乱度越高。高熵材料因其独特的组成与微观结构,而展示出的各种优异的性能,使其自诞生以来就被学者们广泛关注。因为熵稳定材料的晶体结构具有高度无序的特征,所以其结构更加稳定。高熵陶瓷是高熵化合物的一种,其具有独特的结构能够在许多领域都表现出优异的的性能,如:力学性能、导热性能、储能性能、磁性能等。目前高熵陶瓷的研究主要集中电化学、光学、导热、电学等方向上,但关于高熵陶瓷磁性的研究较少。利用高熵陶瓷优异的磁学性能,在实际应用中需要与银电极共烧,从而实现可靠性、小型化的微波模块。然而现有的高熵铁氧体材料普遍使用高温烧结,无法与熔点为961℃的银电极实现共烧。
发明内容
本发明的目的是提供一种高熵NiCuZn软磁铁氧体材料及其制备方法,解决了现有技术高熵铁氧体材料使用高温烧结,无法与银电极实现共烧的技术问题,实现了在较低温度下制得高熵NiCuZn软磁铁氧体材料,不仅消耗能量少,而且能够与熔点为961℃的银电极共烧。
为了达到上述目的,本发明提供了一种高熵NiCuZn软磁铁氧体材料,该材料包含:
主料、离子取代剂和助烧剂;所述主料、所述离子取代剂和所述助烧剂的质量比为(98.25~99.0)∶(0.25~0.75)∶1.0;所述主料为以Fe2O3、ZnO、Co2O3、CuO、NiO和Mn3O4为原料,按照Mn0.15Ni0.4Zn0.15Co0.15Cu0.15Fe2O4分子式的比例称料,配制得到主料;所述助烧剂为Bi2O3;离子取代剂为Nb2O5;所述主料与离子取代剂混合后磨球、预烧,预烧结束后再加入助烧剂进行球磨、制成坯件后再进行两次烧结制得。
优选地,所述主料、所述离子取代剂和所述助烧剂的质量比为(98.25~99.0)∶(0.25~0.5)∶1.0。
本发明还提供了一种如所述的高熵NiCuZn软磁铁氧体材料的制备方法,该方法包含:
(1)称取主料;
(2)将离子取代剂Nb2O5与步骤(1)得到的主料混合,得到粉料;
(3)将步骤(2)得到的粉料进行球磨后烘干,以2℃/min的速度升温至800℃烧结,冷却后得到NiCuZn主料;
所述以2℃/min的速度升温至800℃烧结的作用是使NiCuZn主料中的各份原料颗粒间进行初步固相反应,控制升温速度(2℃/min)使NiCuZn主料加热均匀,固相反应完全,800℃只会使NiCuZn主料发生初步反应,不会成瓷。
(4)将助烧剂Bi2O3与步骤(3)得到的NiCuZn主料混合得到NiCuZn粉料进行球磨,烘干,加入聚乙烯醇造粒成型并压制成坯件,再将制成的坯件以2℃/min的速度升温至450℃烧结,继续以2℃/min升温至900~920℃烧结,以2℃/min降温至600℃后自然冷却,得到所述高熵NiCuZn软磁铁氧体材料。
所述450℃烧结,并保温一段时间可以将坯件中的聚乙烯醇粘合剂挥发,从而使后期材料烧结的更致密。所述900℃~920℃烧结可以实现与银电极的共烧,低于银的熔点(961℃),过低的温度材料不会成瓷。
优选地,在步骤(3)中,所述球磨是将质量比为1∶1.5∶3的粉料、水和铁球混合后进行球磨12h。与传统方法相比,在预烧前添加离子取代剂Nb2O5,可以使主料和离子掺杂剂得到更好的混合。所述质量比为1∶1.5∶3的粉料、水和铁球为保持行星球磨机的平衡。
优选地,在步骤(3)中,所述烘干的温度为100℃;所述烧结的时间为2h。
优选地,在步骤(4)中,所述球磨是将质量比为1∶1∶3的粉料、水和铁球混合后,以220r/min的转速进行球磨12h,有利于Bi2O3与离子取代剂Nb2O5发生协同作用。所述球磨使用的罐子为铁罐,过高的转速会使铁罐中的铁流入材料中,过低的转速会使材料的表面能过低,不利于烧结。
优选地,在步骤(4)中,所述450℃烧结的时间为2h。
优选地,在步骤(4)中,所述900~920℃烧结的时间为2h。
优选地,在步骤(4)中,所述压制成坯件的压力为20Mpa。
更优选地,所述压力的保持时间为120s。以20Mpa的压力来压制,可以得到密度更高的坯件,从而使材料致密度更高。
本发明的一种高熵NiCuZn软磁铁氧体材料及其制备方法,解决了现有技术高熵铁氧体材料使用高温烧结,无法与银电极实现共烧的技术问题,具有以下优点:
1、本发明中Nb2O5离子取代剂在预烧前就和主料进行了混合球磨可以更好的进行取代,从而大大提高材料的性能。
2、本发明在NiCuZn铁氧体材料中加入了Nb2O5离子取代剂和Bi2O3助烧剂,Bi2O3和Nb2O5形成BiNbO4共熔物,促进Bi8Nb18O57和Bi5Nb3O15相向BiNbO4低温相转变,进而实现了烧结温度在960℃以下能够制得高熵NiCuZn软磁材料,不仅消耗能量少,而且能够与熔点为961℃的银电极共烧。
3、本发明的CuO和Co2O3产生了协同效应,CuO的提供了另一温度梯度,CuO的加入可以使材料畴壁移动与畴转磁化,烧结致密度增大,晶粒尺寸长大,同时材料的饱和磁感应强度增大,当达到另一温度梯度时CO2O3的加入使畴壁“冻结”,避免了不可逆畴壁位移的发生,CuO和CO2O3协同使得晶粒尺寸均匀,铁氧体的电阻率也得到提升,涡流损耗也随之降低,从而降低材料的损耗。
附图说明
图1为本发明实施例2得到的铁氧体材料的X射线衍射图。
图2为本发明实施例2得到的铁氧体材料的扫描电镜图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种高熵NiCuZn软磁铁氧体材料的制备方法,该方法包含:
(1)以Fe2O3、ZnO、Co2O3、CuO、NiO和Mn3O4为原料,按照Mn0.15Ni0.4Zn0.15Co0.15Cu0.15Fe2O4分子式的比例称料,配制得到主料;
(2)将Nb2O5离子取代剂加入步骤(1)得到的主料中,配成粉料,粉料中Mn0.15Ni0.4Zn0.15Co0.15Cu0.15Fe2O4主料和离子取代剂的质量比为99∶0;
(3)将水、铁球和步骤(2)制得的粉料进行一次球磨(其中粉料、水和铁球的质量比为1∶1.5∶3),球磨时间为12h,取出后在100℃下烘干,烘干后得到的粉料放入烧结炉内,以2℃/min的升温速率由室温升温至800℃并保温2h,然后随炉自然降温至室温,得到NiCuZn主料;
(4)将Bi2O3助烧剂加入至步骤(3)得到的NiCuZn主料中,配成NiCuZn粉料(NiCuZn粉料中的Mn0.15Ni0.4Zn0.15Co0.15Cu0.15Fe2O4主料和助烧剂的质量比为99∶1)进行二次球磨,球磨时,NiCuZn粉料、水和铁球的质量比为1∶1∶3,球磨时间12h,球磨转速220r/min;然后将二次球磨后的NiCuZn粉料取出并烘干,加入聚乙烯醇(PVA)造粒成型并压制成坯件,再将坯件放入烧结炉中,先以2℃/min的升温速率升至450℃并保温2h,再以2℃/min的升温速率升至900~920℃下烧结2h,以2℃/min降温至600℃后随炉自然降温至室温,即得到所述低温烧结高熵NiCuZn软磁铁氧体材料。其中压制成坯件是使用模具将造粒成型的NiCuZn粉料压制成环,压力为20Mpa,压力保持时间为120s。
实施例2
一种高熵NiCuZn软磁铁氧体材料的制备方法与实施例1基本相同,区别在于:
(2)粉料中主料和离子取代剂的质量比换为98.75∶0.25;
(4)NiCuZn粉料中的主料和助烧剂的质量比换为98.75∶1。
实施例3
一种高熵NiCuZn软磁铁氧体材料的制备方法与实施例1基本相同,区别在于:
(2)粉料中主料和离子取代剂的质量比换为98.5∶0.5;
(4)NiCuZn粉料中的主料和助烧剂的质量比换为98.5∶1。
实施例4
一种高熵NiCuZn软磁铁氧体材料的制备方法与实施例1基本相同,区别在于:
(2)粉料中主料和离子取代剂的质量比换为98.25∶0.75;
(4)NiCuZn粉料中的主料和助烧剂的质量比换为98.25∶1。
实验例1高熵NiCuZn软磁铁氧体材料的表征
1、对实施例2制得的高熵NiCuZn软磁铁氧体材料的XRD表征
如图1所述,本发明实施例2得到的铁氧体材料的X射线衍射图,其中横坐标为2θ;纵坐标为强度。由图1可知,实施例2制得的高熵NiCuZn软磁铁氧体材料以尖晶石相存在,没有生成另相,这表明Cu、Co取代和Bi2O3掺杂在这一阶段没有产生任何显著或明显的杂质相。
2、对实施例2制得的高熵NiCuZn软磁铁氧体材料的扫描电镜
如图2所述,本发明实施例2得到的铁氧体材料的扫描电镜图。由图2可知,本发明实施例2通过加入1.0份的Bi2O3助烧剂(主料和Bi2O3助烧剂的质量比为99∶1)和0.25份的Nb2O5离子取代剂(主料与Nb2O5离子取代剂的质量比为99∶0)后低温烧结得到的高熵铁氧体材料的晶粒明显生长,加入的CuO和Bi2O3在烧结时形成台阶式的烧结曲线,使CuO和Bi2O3分别与CO2O3和Nb2O5发生协同作用,Bi2O3和Nb2O5形成BiNbO4共熔物,促进Bi8Nb18O57和Bi5Nb3O15相向BiNbO4低温相转变,进而降低烧结温度,使且晶粒均匀,表面致密,大大提高材料的饱和磁感应强度和初始磁导率。
CuO提供了另一温度梯度,CuO的加入可以使材料畴壁移动与畴转磁化,烧结致密度增大,晶粒尺寸长大,同时材料的饱和磁感应强度增大,当达到另一温度梯度时CO2O3的加入使畴壁“冻结”,避免了不可逆畴壁位移的发生,CuO和CO2O3协同使得晶粒尺寸均匀,铁氧体的电阻率也得到提升,因此材料的涡流损耗Pe也随之降低,从而降低材料的损耗。
实验例2高熵NiCuZn软磁铁氧体材料的性能测试
对实施例1~4制得的高熵NiCuZn软磁铁氧体材料进行性能测试,具体的测试过程为:将环状高熵NiCuZn软磁铁氧体材料绕十匝双匝金属线圈后,用IWATSU SY-8232仪器对高熵NiCuZn软磁铁氧体材料的功耗进行测试,通过阻抗分析仪(E4991B,Agilent)来测试高熵NiCuZn软磁铁氧体材料的磁导率,测试结果如表1所示。
表1实施例1~4制得的高熵NiCuZn软磁铁氧体材料的性能结果
由表1得知,实例2所制得的高熵NiCuZn软磁铁氧体材料的性能最为优异。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种NiCuZn软磁铁氧体材料,其特征在于,该材料包含:
主料、离子取代剂和助烧剂;
所述主料、所述离子取代剂和所述助烧剂的质量比为(98.25~99.0)∶(0.25~0.75)∶1.0;
所述主料为以Fe2O3、ZnO、Co2O3、CuO、NiO和Mn3O4为原料,按照Mn0.15Ni0.4Zn0.15Co0.15Cu0.1 5Fe2O4分子式的比例称料,配制得到主料;
所述助烧剂为Bi2O3,离子取代剂为Nb2O5
所述主料与离子取代剂混合后磨球、预烧,预烧结束后再加入助烧剂进行球磨、制成坯件后再进行两次烧结制得,得到的所述NiCuZn软磁铁氧体材料能够与熔点为961℃的银电极共烧。
2.根据权利要求1所述的NiCuZn软磁铁氧体材料,其特征在于,所述主料、所述离子取代剂和所述助烧剂的质量比为(98.25~99.0)∶(0.25~0.5)∶1.0。
3.一种如权利要求1或2所述的NiCuZn软磁铁氧体材料的制备方法,其特征在于,该方法包含:
(1)称取主料;
(2)将离子取代剂Nb2O5与步骤(1)得到的主料混合,得到粉料;
(3)将步骤(2)得到的粉料进行球磨后烘干,以2℃/min的速度升温至800℃烧结,冷却后得到NiCuZn主料;
(4)将助烧剂Bi2O3与步骤(3)得到的NiCuZn主料混合得到NiCuZn粉料进行球磨,烘干,加入聚乙烯醇造粒成型并压制成坯件,再将制成的坯件以2℃/min的速度升温至450℃烧结,继续以2℃/min升温至900~920℃烧结,以2℃/min降温至600℃后自然冷却,得到所述NiCuZn软磁铁氧体材料。
4.根据权利要求3所述的制备方法,其特征在于,在步骤(3)中,所述球磨是将质量比为1∶1.5∶3的粉料、水和铁球混合后进行球磨12h。
5.根据权利要求3所述的制备方法,其特征在于,在步骤(3)中,所述烘干的温度为100℃;所述烧结的时间为2h。
6.根据权利要求3所述的制备方法,其特征在于,在步骤(4)中,所述球磨是将质量比为1∶1∶3的粉料、水和铁球混合后,以220r/min的转速进行球磨12h。
7.根据权利要求3所述的制备方法,其特征在于,在步骤(4)中,所述450℃烧结的时间为2h。
8.根据权利要求3所述的制备方法,其特征在于,在步骤(4)中,所述900~920℃烧结的时间为2h。
9.根据权利要求3所述的制备方法,其特征在于,在步骤(4)中,所述压制成坯件的压力为20Mpa。
10.根据权利要求9所述的制备方法,其特征在于,所述压力的保持时间为120s。
CN202310359667.XA 2023-04-06 2023-04-06 一种NiCuZn软磁铁氧体材料及其制备方法 Active CN116354713B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310359667.XA CN116354713B (zh) 2023-04-06 2023-04-06 一种NiCuZn软磁铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310359667.XA CN116354713B (zh) 2023-04-06 2023-04-06 一种NiCuZn软磁铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116354713A CN116354713A (zh) 2023-06-30
CN116354713B true CN116354713B (zh) 2024-02-09

Family

ID=86938153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310359667.XA Active CN116354713B (zh) 2023-04-06 2023-04-06 一种NiCuZn软磁铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116354713B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405800A (zh) * 2002-11-05 2003-03-26 清华大学 高磁导率低温烧结中高频叠层片式电感材料及制备方法
CN110723967A (zh) * 2019-10-12 2020-01-24 电子科技大学 一种抗直流偏置低温烧结铁氧体材料及其制备方法
CN113860911A (zh) * 2021-10-27 2021-12-31 江西科技师范大学 一种高熵铁氧体多孔陶瓷材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405800A (zh) * 2002-11-05 2003-03-26 清华大学 高磁导率低温烧结中高频叠层片式电感材料及制备方法
CN110723967A (zh) * 2019-10-12 2020-01-24 电子科技大学 一种抗直流偏置低温烧结铁氧体材料及其制备方法
CN113860911A (zh) * 2021-10-27 2021-12-31 江西科技师范大学 一种高熵铁氧体多孔陶瓷材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Multi-Method Characterization of the High-Entropy Spinel Oxide Mn0.2Co0.2Ni0.2Cu0.2Zn0.2Fe2O4: Entropy Evidence, Microstructure, and Magnetic Properties;Svenja Senkale等;Chemistry Methods;20221025;1-16 *
低温共烧NiCuZn铁氧体复合掺杂及离子调控研究;杨燕;中国优秀硕士学位论文全文数据库工程科技Ⅱ辑;20210315;B015-415 *

Also Published As

Publication number Publication date
CN116354713A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN110204328B (zh) 一种高熵氧化物陶瓷的制备方法
CN108424137B (zh) 高各向异性低铁磁共振线宽六角铁氧体材料及制备方法
CN101552074A (zh) 一种NiZnCu铁氧体材料及其制备方法
CN108706968B (zh) 一种低温烧结抗直流偏置NiCuZn铁氧体及制备方法
Xu et al. Densification and magnetic properties of NiCuZn low-sintering temperature ferrites with Bi2O3-Nb2O5 composite additives
CN106565228B (zh) 一种铕、锆共掺铁酸铋多铁陶瓷及其制备方法
CN104177075A (zh) 一种耐热冲击软磁铁氧体材料及其制备方法
CN103725951B (zh) 一种微波烧结制备纳米晶软磁材料的方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
Yang et al. Effects of Li2CO3 addition on the microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites
CN106630992B (zh) 一种高性能SrFe12O19/CoFe2O4复合铁氧体材料及制备方法
CN110483032B (zh) 基于ltcc技术的低温烧结yig铁氧体及制备方法
CN116354713B (zh) 一种NiCuZn软磁铁氧体材料及其制备方法
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN115594497B (zh) 一种具有尖晶石结构的高熵陶瓷及其制备方法和应用
CN108793993B (zh) 一种单相陶瓷靶材及其制备方法和用途
Xie et al. Influences of Li 2 O–B 2 O 3–SiO 2 Glass Addition on Microstructural and Magnetic Properties of LiZnTi Ferrites
Zhang et al. The effect of Zn ion substitution on electromagnetic properties of low-temperature fired Z-type hexaferrite
CN113072369B (zh) 高剩磁比的u型六角铁氧体材料及制备方法
CN109206131A (zh) 一种稀土掺杂的m型锶铁氧体磁性材料及其制备方法
CN115626820A (zh) 一种异质叠层共烧铁氧体陶瓷的制备方法
CN112939590B (zh) 一种x波段准平面化器件用六角铁氧体材料及其制备方法
CN108774057A (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN114605142A (zh) 一种ltcf变压器用复合铁氧体基板材料及其制备方法
Collins et al. Low‐Loss Lithium Ferrites for Microwave Latching Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant