CN116345298B - 外腔半导体激光器及反射式半导体光学放大器的芯片集成 - Google Patents

外腔半导体激光器及反射式半导体光学放大器的芯片集成 Download PDF

Info

Publication number
CN116345298B
CN116345298B CN202310222030.6A CN202310222030A CN116345298B CN 116345298 B CN116345298 B CN 116345298B CN 202310222030 A CN202310222030 A CN 202310222030A CN 116345298 B CN116345298 B CN 116345298B
Authority
CN
China
Prior art keywords
waveguide
optical
rsoa
channel
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310222030.6A
Other languages
English (en)
Other versions
CN116345298A (zh
Inventor
李若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Yingxun Xinguang Technology Co ltd
Original Assignee
Zhuhai Yingxun Xinguang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Yingxun Xinguang Technology Co ltd filed Critical Zhuhai Yingxun Xinguang Technology Co ltd
Priority to PCT/CN2023/088891 priority Critical patent/WO2023236662A1/zh
Publication of CN116345298A publication Critical patent/CN116345298A/zh
Application granted granted Critical
Publication of CN116345298B publication Critical patent/CN116345298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种外腔半导体激光器及反射式半导体光学放大器的芯片集成,由有源RSOA芯片与无源光子芯片经RSOA通道和光波导耦合对接集成,有源RSOA芯片与无源光子芯片的耦合端面镀有光学抗反射膜,有源RSOA芯片的另一端面镀有光学高反射膜,在无源光子芯片的光波导上设有波导位相控制区、波导滤波反馈区和波导光学耦合器,波导位相控制区和波导滤波反馈区均设有用于改变光波导折射率的电极,RSOA通道包括增益RSOA通道和放大RSOA通道构成反射式半导体光学放大器,增益RSOA通道和与之耦合光波导上的波导位相控制区和波导滤波反馈区构成外腔半导体激光器。本发明在光强放大的同时保持光的相干性,避免光学杂散效应。

Description

外腔半导体激光器及反射式半导体光学放大器的芯片集成
技术领域
本发明涉及一种外腔半导体激光器及反射式半导体光学放大器的芯片集成。
背景技术
光子集成芯片的发展趋势是向以CMOS为基础的硅半导体平台进行的转移,具体代表就是硅光子技术,即在硅晶圆上利用CMOS半导体工艺和技术,实现高性能、低成本的光器件的大规模集成和制造。
SOA(Semiconductor Optical Amplifier)或者半导体光学放大器,是很多应用场景中必不可少的核心元器件。在光通讯中,为了保证发射的激光信号达到一定功率强度,对激光发射的光功率进行放大。新的应用如激光雷达和长距离光子传感,在要求半导体激光器保持高光谱纯度如单模和高相干性的同时,对激光功率也提出了更高要求。在利用SOA对激光光强或光信号进行放大时,一般是光从SOA的一个端口进入,经放大后再从另一个端口输出,这时SOA是运行在透过模式,和被放大的激光器在光路上是串联的方式连接。
透射式SOA光学放大器在光路的嵌入主要有两种方式:
一种方式是作为一个独立元器件带有输入和输出光纤接口,在光传输过程中某一传输节点连入光纤网络对入射光进行放大。
另一种方式是将SOA和激光器或集成光路芯片直接进行单片集成。早期磷化铟芯片(如1550nm激光器和放大器)技术的做法就是把半导体激光器和SOA生长集成在同一个化合半导体衬底芯片上,它的特点是激光器发出的光经光波导传输到SOA直接放大后再传出。
在硅光集成技术的发展应用中,由于硅是间接带隙半导体,不能发光,任何跟发光相关的功能要依赖化合物半导体器件来实现。化合物半导体发光芯片或功能向硅光芯片的集成一般通过混合集成的方式来实现。有代表性的做法是把化合物半导体光放大器芯片倒装贴片在硅光芯片上面,通过光学瞬逝波耦合,让光子集成芯片波导中传输的光耦合到SOA的波导通道,经SOA进行放大,然后再耦合到硅光芯片的光波导中继续传输。在这一过程中SOA是以透射模式运行。但是在这种模式下由于属于不同的材料体系,化合物半导体SOA芯片向硅片的集成,都要经过多次刻蚀,对工艺要求苛刻,由于良率等原因,实现成本非常昂贵。
发明内容
本发明的目的在于提供一种外腔半导体激光器及反射式半导体光学放大器的芯片集成,能够实现高性能单模激光器的高光功率、高相干输出,并且可以通过简单的对接工艺和无源光子集成芯片的实现混合集成。
本发明的目的通过以下技术措施实现:一种外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于,它由设有RSOA通道的有源RSOA芯片与设有光波导的无源光子芯片经RSOA通道和光波导耦合对接集成,所述有源RSOA芯片与无源光子芯片的耦合端面镀有光学抗反射膜,所述有源RSOA芯片的另一端面镀有光学高反射膜,在所述无源光子芯片的光波导上设有波导位相控制区、波导滤波反馈区和波导光学耦合器,所述波导位相控制区和波导滤波反馈区均设有用于改变光波导折射率的电极,所述RSOA通道包括用于光增益的增益RSOA通道和用于光放大的放大RSOA通道构成反射式半导体光学放大器,所述增益RSOA通道和与之耦合光波导上的波导位相控制区和波导滤波反馈区构成外腔半导体激光器,所述外腔半导体激光器发出的光经光波导传输并耦合到放大RSOA通道进行放大,再由放大RSOA通道的高反射膜反射耦合回到无源光子芯片的光波导。
本发明的放大RSOA通道既作为光增益反馈又作为放大器来实现光放大。为了避免光学杂散效应,在两个连接RSOA通道的光波导中加入波导位相控制区,使得经RSOA通道放大的光和外腔半导体激光器发出的光以相干的方式叠加,在光强放大的同时保持光的相干性。
本发明多个反射式半导体光学放大器(RSOA)通道,采用简单侧边对接耦合到无源光子集成芯片中相对应的光波导,在形成外腔半导体激光器的同时,实现反射式光放大。并且,波导光路中存在多个波导位相控制区,保证经放大的光和外腔半导体激光器的发光合路后保持同位相,实现光功率的相干相加。并且,在一些实施方式中,外腔半导体激光器的外腔滤波反馈区是波长可调的,激光输出可以实现波长可调和高光功率;在另外一些实施方式中,通过对外腔半导体激光器的外腔滤波反馈区的选择及其放大ROSA通道光学连接的耦合器的选择,在实现功率放大的同时实现激光波长的大范围可调。
本发明所述有源RSOA芯片可以是含有多个RSOA通道的单芯片,也可以包括多个单芯片,每个单芯片含有一个或多个RSOA通道。
本发明在连接外腔半导体激光器和放大RSOA通道之间的光波导上设有波导位相控制区,保证光在两者之间同相相干传输。
本发明在所述放大RSOA通道和外腔半导体激光器联通光路或合波输出之间设有波导位相控制区,保证光路合波后输出光的位相相干。
本发明所述放大RSOA通道和外腔半导体激光器通过波导光学耦合器或环型共振器实现光传输及耦合。
本发明所述外腔半导体激光器的波导滤波反馈区的波长可调,外腔半导体激光器可以实现高功率输出下的波长调谐,所述波导滤波反馈区是波导反射光栅或者是由多个环形共振器形成的等效反射反馈区。
本发明所述波导反射光栅是波导取样反射光栅或波导超结构光栅,当波导取样反射光栅或波导超结构光栅是可调谐的,且所述放大RSOA通道和外腔半导体激光器之间光传输的环型共振器或波导光学耦合器是波长可调谐时,所述增益RSOA通道和放大RSOA通道的光学高反射膜之间构成复合腔波长可调激光器,该两个RSOA通道的增益发射光谱的中心波长不同,这样的复合腔可调激光器可以实现宽波长调谐范围同时保证高激光功率输出。
本发明所述无源光子芯片的两个端面均镀有光学抗反射膜。
本发明所述RSOA通道和光波导的对接耦合端口设有波导模式转换器(opticalwaveguide taper),以保证光波导和RSOA通道有最佳的光学耦合效率。
本发明所述RSOA通道的光波导和设有光学高反射膜的端面之间形成直角,以保证高效反射耦合。
本发明所述波导光学耦合器是固定分光比的分光耦合器或者是双端口的两个波导之间的分光比可以改变的可调分光耦合器。
与现有技术相比,本发明具有如下显著的效果:
⑴本发明的放大RSOA通道既作为光增益反馈又作为放大器来实现光放大。为了避免光学杂散效应,在两个连接RSOA通道的光波导中加入波导位相控制区,使得经RSOA通道放大的光和外腔半导体激光器发出的光以相干的方式叠加,在光强放大的同时保持光的相干性。
⑵本发明采用来反射式半导体光学放大器RSOA通道实现光放大,在同样的通道长度的情况下,可以加倍光子放大行程。
⑶本发明RSOA通道和无源光子芯片的光波导通过端面对接耦合实现光放大,相对于通过瞬逝波耦合的有源、无源贴片方案,可灵活的实现更高耦合效率,并大大简化了集成工艺,降低了成本。
⑷本发明在外腔半导体激光器和放大RSOA通道之间的光波导存在位相控制,保证光在两者之间相干传输。
⑸本发明在放大RSOA通道和外腔半导体激光器合波输出之间存在位相控制区,保证合波后输出光的位相相干。
⑹本发明当外腔半导体激光器的波导滤波反馈区是波长可调时,外腔半导体激光器可以实现高功率输出下的波长调谐。
⑺本发明当外腔激光器的波导滤波反馈区是取样反射光栅(sampled grating)或波导超结构光栅(super-structure grating)并且波长可调时,放大RSOA通道和外腔半导体激光器合波输出之间的环型共振器或者波导光学耦合器是波长可调时,两个RSOA通道的高反射端面之间形成复合腔大范围可调激光器。如果两个RSOA通道的发射光谱的中心波长不同,这样的复合腔大范围可调激光器可以实现大波长范围内的平坦高功率输出和更大波长调谐范围。
附图说明
下面结合附图和具体实施例对本发明作进一步的详细说明。
图1是本发明实施例1的组成结构示意图;
图2是本发明实施例1的光谱曲线示意图;
图3是本发明实施例2的组成结构示意图;
图4是本发明实施例3的结构示意图;
图5是本发明实施例4的组成结构示意图;
图6是本发明实施例5的组成结构示意图;
图7是本发明实施例5的光谱曲线示意图;
图8是本发明实施例6的组成结构示意图;
图9是本发明实施例6的光谱曲线示意图之一;
图10是本发明实施例6的光谱曲线示意图之二。
具体实施方式
实施例1
如图1所示,是本发明一种外腔半导体激光器及反射式半导体光学放大器的芯片集成,它由一个设有RSOA通道202、209的有源RSOA芯片203与设有光波导的无源光子芯片206经RSOA通道和光波导耦合对接集成,其中,RSOA通道202、209作为反射式半导体光学放大器,有源RSOA芯片203的右端面210(有源RSOA芯片203与无源光子芯片206的耦合端面)镀有光学抗反射膜,有源RSOA芯片203的另一端面(左端面201)镀有光学高反射膜。
有源RSOA芯片203可由常见的化合物半导体材料如III-V族InP系列制成,RSOA通道202、209在电流注入时通过电光转换产生宽带自发辐射光子。无源光子芯片206的左端面215和右端面216镀有光学抗反射膜。
在无源光子芯片206的光波导上设有波导位相控制区205(Phase Control或PC)、波导滤波反馈区207(Cavity Mirror或CM)、波导光学耦合器212和波导位相控制区213,其中,波导位相控制区205和波导滤波反馈区207位于光波导204上,波导位相控制区213位于光波导208上。光波导204和有源RSOA芯片203的RSOA通道202对接耦合,波导位相控制区205和波导滤波反馈区207均设有用于改变波导折射率的电极。
在本实施例中,RSOA通道202是用于光增益的增益RSOA通道,RSOA通道209是用于光放大的放大RSOA通道,它构成反射式半导体光学放大器。
RSOA通道202的高反射端面(左端面201)、RSOA通道202、光波导204、波导位相控制区205及波导滤波反馈区207构成外腔半导体激光器,其中RSOA通道202做为外腔半导体激光器的增益区并提供光子源。外腔半导体激光器发出的光经光波导传输并耦合到放大RSOA通道进行放大,再由放大RSOA通道的高反射膜反射耦合回到无源光子芯片的光波导,沿波导214传输并在右端面216出射。
波导滤波反馈区207可以是波导布拉格反射光栅,也可以是由两个以上环形共振器构成的反射反馈区。
光波导211和RSOA通道209对接耦合。
光波导204、211在和RSOA通道202、209的对接耦合端口设有波导模式转换器(Optical Waveguide Taper),以保证它们和相应RSOA通道有最佳的光学耦合效率。
RSOA通道202、209的光波导和左端面201之间形成直角,以保证高效反射耦合。RSOA通道202、209的光波导和右端面210之间可以形成很小的角度,以避免右端面210的光反射回传到ROSA通道202、209形成干扰。
外腔半导体激光器产生的光经光波导208、波导光学耦合器212和光波导211进入RSOA通道209,先经历左行放大,然后经RSOA通道209的左端面201反射,再右行经历二次放大,耦合回到光波导211。放大后的光经过1x2波导光学耦合器212后,一路光经光波导214传输,从无源光子芯片206右端面216出射;另一路光经光波导208返回外腔半导体激光器,并在波导滤波反馈区207处,部分被波导滤波反馈区207反射回原路,另一部分光透过波导滤波反馈区207进入外腔半导体激光器,并在RSOA通道202那里被增益放大,再沿光波导208输出;波导位相控制区213是用来保证这两部分光之间具有相同位相(即调节RSOA通道202、209之间光传输的位相,相差360度的整数倍)。这两部分光会继续经过波导光学耦合器212和光波导211传输到RSOA通道209,在那里放大后再通过光波导211回传到无源光子芯片206;然后,在波导光学耦合器212处分光,一路光经光波导214传输,从无源光子芯片216右端出射;另一路光经光波导208继续返回外腔半导体激光器,完成一个循环放大流程。波导位相控制区205、213的光波导带有局部金属电极,金属电极用于改变其对应覆盖部分波导的折射率,通过改变光程来控制位相。通过金属电极发热改变温度,产生热-光效应而改变波导折射率;也可改变金属电极上的电流,通过电-光效应来进行改变波导折射率。1x2波导光学耦合器212可以是固定分光比的分光耦合器,也可以是双端口的两个波导之间的分光比可以改变的可调分光耦合器。
波导滤波反馈区207可以是波导布拉格反射光栅,也可以是多个环形共振器构成的反射反馈区。
当波导滤波反馈区207的中心反射波长可以调谐时,可以实现外腔半导体激光器在高功率输出下的波长调谐。
如图2所示,RSOA通道202、209的宽带增益光谱220、221,无源光子芯片光波导上的波导滤波反馈区207的反射光谱222及构成的激光的发射谱线223,由于属于同一芯片,RSOA通道202、209的宽带增益光谱220、221非常相近。
实施例2
如图3所示,本实施例包括一个有源RSOA芯片232和无源光子芯片235。有源RSOA芯片232含有反射式半导体光学放大器RSOA通道231、238,它的左端面230镀有光学高反射膜,右端面239镀有光学抗反射膜。有源RSOA芯片232可由常见的化合物半导体材料如III-V族InP系列制成。RSOA通道2312、238在电流注入时通过电光转换产生宽带自发辐射光子。无源光子芯片235上有光波导,它的左端面244和右端面243上镀有光学抗反射膜。光波导233和有源RSOA芯片的RSOA通道231对接耦合,光波导233上有波导位相控制区234和波导滤波反馈区236。RSOA通道231的左端面230、RSOA通道231、波导233、波导位相控制区234及波导滤波反馈区236构成外腔半导体激光器,其中RSOA通道231做为外腔半导体激光器的增益区并提供光子源。
波导滤波反馈区236可以是波导布拉格反射光栅,也可以是由多个环形共振器构成的反射反馈区。
光波导240和RSOA通道238对接耦合。
光波导233、240和RSOA通道231、238的对接耦合端口设有波导模式转换器以保证它们和相应RSOA通道有最佳的光学耦合效率。RSOA通道238、231的光波导和左端面230之间形成直角,以保证经左端面反射的光高效返回耦合。RSOA通道238、231的光波导和右端面239之间可以形成很小的角度以避免右端面239的光反射回传到ROSA通道231、238。
外腔半导体激光器产生的光传输过波导光学耦合器242后,分成两路,一路经光波导237直接从无源光子芯片235的右端直接出射;另一路经光波导240进入RSOA通道238,先经历左行放大,然后经RSOA通道238的左端面230反射,再右行经历二次放大,耦合回到光波导240。这路经放大的光,经过1x2波导光学耦合器242传输到波导滤波反馈区236,这时,一部分光经波导滤波反馈区236透射进入外腔半导体激光器231,233,234进行增益放大,再沿光波导233返回传输出。另一部分光经波导滤波反馈区236反射后回传。这两部分光在经过波导光学耦合器242后,一部分沿光波导237从无源光子芯片235的右端直接出射,另一部分经光波导240进入RSOA通道238进行放大,完成一个循环放大流程。
波导位相控制区241是用来保证光在两个RSOA之间传输具有相同位相(即调节外腔半导体激光器和RSOA238之间的光放大的位相,相差360度的整数倍)。
波导位相控制区234、241的波导带有局部金属电极,金属电极用于改变其对应覆盖部分波导的折射率,通过改变光程来控制位相。通过金属电极发热改变温度,产生热-光效应而改变波导折射率;也可改变金属电极上的电流,通过电-光效应来进行改变波导折射率。
1x2波导光学耦合器可以是固定分光比的分光耦合器,也可以是双端口的两个波导之间的分光比可以改变的可调分光耦合器。
波导滤波反馈区236可以是波导布拉格反射光栅,也可以是多个环形共振器构成的反射反馈区。
当波导滤波反馈区236的反射波长可以调谐时,可以实现外腔激光器在高功率输出下的波长调谐。
实施例3
如图4所示,本实施例包括一个有源RSOA芯片303和无源光子芯片308。有源RSOA芯片303含有反射式半导体光学放大器RSOA通道302、312,它的左端面301镀有光学高反射膜,右端面313镀有光学抗反射膜。有源RSOA芯片303可由常见的化合物半导体材料如III-V族InP系列制成,RSOA通道302、312在电流注入时通过电光转换产生宽带自发辐射光子。无源光子芯片308上有光波导,无源光子芯片308的左端面319和右端面320均镀有光学抗反射膜;光波导304和有源RSOA芯片的RSOA通道302对接耦合,光波导304上有波导位相控制区305和波导滤波反馈区307;RSOA通道302的左端面301、RSOA通道302、光波导304、波导位相控制区305及波导滤波反馈区307构成外腔半导体激光器,其中RSOA通道302做为外腔半导体激光器的增益并提供光子源。
波导滤波反馈区307可以是波导布拉格反射光栅,也可以是由两个或多个环形共振器构成的反射反馈区。
光波导314和RSOA通道312对接耦合。光波导314经波导光学耦合器315分别耦合到光波导316和光波导309。
光波导304、314和RSOA通道302、312的对接耦合端口有波导模式转换器(opticalwaveguide taper)以保证它们和相应RSOA通道有最佳的光学耦合效率。
RSOA通道302、312的光波导和左端面301之间形成直角,以保证经左端面反射的光高效返回耦合。RSOA通道302、312的光波导和右端面313之间可以形成一定的角度以避免右端面313的反射光回传到ROSA通道302、312形成干扰。
外腔半导体激光器301,302,304,305,307产生的光沿光波导304传输至波导光学耦合器310时分为两路,一路沿光波导311传输,在到波导光学耦合器318与RSOA通道312放大过的光合波,由无源光子芯片308右端320出射,波导位相控制区317是保证合波后的光具有相同位相(即调节经RSOA通道312放大后的光和外腔激光器的直接发光合路输出的光有相同位相)。另一路沿光波导309、波导位相控制区306、波导314进入RSOA通道312,先经历左行放大,在RSOA通道312的左端面301被反射,然后右行放大,耦合回到光波导314。放大后的光,经过1x2波导光学耦合器315后,一部分沿光波导316传输经过波导位相控制区317,在波导光学耦合器318处与光波导311传输过来的光合波,沿无源光子芯片308的右端出射。另一路光沿光波导309返回外腔半导体激光器,并在波导反馈滤波区307处,部分被波导反馈滤波区307反射回原路,另一部分光透过波导反馈滤波区307进入外腔半导体激光器301,302,304,305,307,并在RSOA通道302那里被增益放大,再沿光波导304传出;波导位相控制区306是用来保证这两部分光之间具有相同位相(即调节外腔半导体激光器和RSOA通道312之间的光放大的位相,相差360度的整数倍)。这部分光会继续经过波导光学耦合器310分光,部分沿光波导309传输到RSOA通道312进行放大,完成一个循环放大流程;另一部分经光波导311和波导光学耦合器318由无源光子芯片308的右端出射。
波导位相控制区305、306、317的光波导带有局部金属电极,金属电极用于改变其对应覆盖部分波导的折射率,通过改变光程来控制位相。通过金属电极发热改变温度,产生热-光效应而改变波导折射率;也可改变金属电极上的电流,通过电-光效应来进行改变波导折射率。
1x2波导光学耦合器310、315、318可以是固定分光比的分光耦合器,也可以是双端口的两个波导之间的分光比可以改变的可调分光耦合器。
波导反馈滤波区307可以是波导布拉格反射光栅,也可以是由多个环形共振器构成的反射反馈区。
当波导反馈滤波区307的反射波长可以调谐时,可以实现外腔半导体激光器在高功率输出下的波长调谐。
实施例4
如图5所示,本实施例包括一个有源RSOA芯片403和无源光子芯片406。有源RSOA芯片403含有反射式半导体光学放大器RSOA通道402、412,它的左端面401镀有光学高反射膜,右端面413镀有光学抗反射膜。有源RSOA芯片403可由常见的化合物半导体材料如III-V族InP系列制成,RSOA通道402、412在电流注入时通过电光转换产生宽带自发辐射光子。无源光子芯片406上有光波导,无源光子芯片406的左端面419和右端面420均镀有光学抗反射膜。光波导404和RSOA通道402对接耦合,光波导414和RSOA通道412对接耦合。光波导414通过波导光学耦合器415与光波导416、波导位相控制区417和波导滤波反馈区418相连接。光波导404、414在和RSOA通道402、412的对接耦合端口可以有波导模式转换器(opticalwaveguide taper)以保证它们和相应RSOA通道有最佳的光学耦合效率。
RSOA通道402、412的光波导和左端面401之间形成直角,以保证经左端面反射的光高效返回耦合。RSOA通道402、412的光波导和右端面413之间可以形成一定的角度以避免右端面413的反射光回传到ROSA通道402、412形成干扰。
RSOA通道412的发射出的光,沿光波导414经过波导光学耦合器415,分为两路:一路沿光波导416经波导位相控制区417传播至波导滤波反馈区418,在波导滤波反馈区418处,一部分光透过在波导滤波反馈区418沿光波导416继续向右传播,其余部分被波导滤波反馈区418反射沿原路返回至RSOA通道412。RSOA通道412的左端面401、RSOA通道412、光波导414、波导光学耦合器415、光波导416、波导位相控制区417及波导滤波反馈区418构成外腔半导体激光器,其中RSOA通道412做为外腔半导体激光器的增益并提供光子源。另一路光沿光波导407经1x2波导光学耦合器408耦合到光波导404,再传输进入RSOA通道402,先经历左行放大,在RSOA通道402的左端面401被反射,然后右行经历二次放大,耦合回到光波导404,经过波导相位控制区405至波导光学耦合器408时分再为两路,一路沿光波导407传输,传输到RSOA通道412进行增益放大,完成一个循环放大流程;波导相位控制区405是保证由RSOA通道402反射回的光到达RSOA通道412后和腔内激光具有相同位相(即调节外腔激光器和RSOA通道402之间的光传输的位相,相差360度的整数倍)。另一路沿光波导409经过波导相位控制区410在2x1波导光学耦合器411与外腔半导体激光器发出的沿光波导416传播的光合波,由无源光子芯片右端面420出射。波导位相控制区410保证合波后的光具有相同位相,即调节经RSOA通道412放大后的光和外腔半导体激光器的直接发光合路输出的位相。
波导反馈滤波区418可以是波导布拉格反射光栅,也可以是由多个环形共振器构成的反射反馈区。
波导位相控制区405、410、417的光波导带有局部金属电极,金属电极用于改变其对应覆盖部分波导的折射率,通过改变光程来控制位相。通过金属电极发热改变温度,产生热-光效应而改变波导折射率;也可改变金属电极上的电流,通过电-光效应来进行改变波导折射率。
1x2波导光学耦合器408、411、415可以是固定分光比的分光耦合器,也可以是双端口的两个波导之间的分光比可以改变的可调分光耦合器。
当波导反馈滤波区418的反射波长可以调谐时,可以实现外腔激光器在高功率输出下的波长调谐。
实施例5
如图6所示,本实施例包括一个有源RSOA芯片503和无源光子芯片507。有源RSOA芯片503含有反射式半导体光学放大器RSOA通道502、510,它的左端面501镀有光学高反射膜,右端面511镀有光学抗反射膜。有源RSOA芯片503可由常见的化合物半导体材料如III-V族InP系列制成,RSOA通道502、510在电流注入时通过电光转换产生宽带自发辐射光子。
无源光子芯片507上有光波导,无源光子芯片507的左端面512和右端面517镀有光学抗反射膜。光波导504和有源RSOA芯片的RSOA通道502对接耦合,光波导504上有波导位相控制区505和波导滤波反馈区506。RSOA通道502的左端面501、RSOA通道502、光波导504、波导位相控制区505及波导滤波反馈区506构成外腔半导体激光器,其中RSOA通道502做为外腔半导体激光器的增益并提供光子源。环形共振器508实现外腔半导体激光器和RSOA通道510之间的光传输耦合。
波导反馈滤波区506可以是波导布拉格反射光栅,也可以是由多个环形共振器构成的反射反馈区。
光波导513和RSOA通道510对接耦合。
光波导504、513和RSOA通道502、510的对接耦合端口可以有波导模式转换器(optical waveguide taper)以保证它们和相应RSOA通道有最佳的光学耦合效率。RSOA通道502、510的光波导和左端面501之间形成直角,以保证经左端面反射的光高效返回耦合。RSOA通道502、510的光波导和右端面511之间可以形成一定的角度以避免右端面511的反射光回传到ROSA通道502、510形成干扰。
外腔半导体激光器产生的光沿光波导504传输至环形共振器508时分为两路,一路通过环形共振器508沿光波导509右行传输到波导光学耦合器516,然后由无源光子芯片右端面517出射。另一路经环形共振器508耦合到光波导513左行,经过波导位相控制区514进入RSOA通道510,先经历左行放大,在RSOA通道510的左端面501被反射,然后右行经历二次放大,耦合回到光波导513。
放大后的光,经过环形共振器508后,一部分沿光波导右行传输经过波导位相控制器515,在2x1波导光学耦合器516处与光波导509传输过来的光合波,沿无源光子芯片508的右端面517出射;波导位相控制器515保证在2x1波导光学耦合器516合波的、来自光波导513、509的两束光具有相同位相。其它部分光经环形共振器508耦合沿光波导左行返回外腔半导体激光器,并在波导反馈滤波区506处,它部分被波导反馈滤波器506反射回原路,剩余部分光透过波导反馈滤波器506进入外腔半导体激光器,并在RSOA通道502那里被增益放大,再沿光波导504传出;波导位相控制器514是保证由RSOA通道510反射回的光到达RSOA通道502后和腔内激光具有相同位相(即相差360度的整数倍)。
在波导滤波反馈区506右行的光经过环形共振器508后:部分耦合到光波导513传输到RSOA通道510进行放大,完成一个循环放大流程;另一部分经光波导509和波导光学耦合器516由无源光子芯片507的右端面517出射。
波导位相控制区505、514、515的光波导带有局部金属电极,金属电极用于改变其对应覆盖部分波导的折射率,通过改变光程来控制位相。通过金属电极发热改变温度,产生热-光效应而改变波导折射率;也可改变金属电极上的电流,通过电-光效应来进行改变波导折射率。
2x1波导光学耦合器516可以是固定分光比的分光耦合器,也可以是双端口的两个光波导之间的分光比可以改变的可调分光耦合器。
如图7所示,经过环形共振器508在光波导504、509之间耦合的光谱曲线519,它的特点是有一系列中心波长位置不同但等波长间距的梳状共振峰。曲线520是波导滤波反馈区506的反射光谱。在本实施例中,波导滤波反馈区506光谱曲线520的反射峰5与环形共振器508的系列梳状共振峰的某一峰在中心波长位置重合,以保证外腔半导体激光器发出的光经环形共振器508耦合到RSOA通道510进行放大。
当波导反馈滤波区506和环形共振器508可以波长调谐时,可以实现外腔半导体激光器在高功率输出下的波长调谐。
实施例6
如图8所示,本实施例包括两个分立的有源RSOA芯片603、613和无源光子芯片609。有源RSOA芯片603、613分别含有反射式半导体光学放大器RSOA通道602、611,它们的左端面601、612镀有光学高反射膜,右端面604、614镀有光学抗反射膜。有源RSOA芯片603、613由常见的化合物半导体材料如III-V族InP系列制成,RSOA通道602、611在电流注入时通过电光转换产生宽带自发辐射光子。无源光子芯片609上有光波导,它的左端面615和右端面621均镀有光学抗反射膜。
光波导605和有源RSOA芯片603的RSOA通道602对接耦合,光波导616和RSOA芯片613的波导通道611对接耦合。光波导605连有波导位相控制区606和波导滤波反馈区607。有源RSOA芯片603的左端面601、RSOA通道602、光波导605、波导位相控制区606及波导滤波反馈区607构成外腔半导体激光器,其中RSOA通道602做为外腔激光的增益光源。环形共振器610实现外腔半导体激光器和放大器RSOA通道613之间的光传输滤波耦合。
光波导605、616和RSOA通道602、611的对接耦合端口可以有波导模式转换器(optical waveguide taper)以保证它们和相应RSOA通道有最佳的光学耦合效率。
RSOA通道602、611的光波导分别和左端面601、612之间形成直角,以保证经左端面反射的光高效返回耦合。RSOA通道602、611的光波分别和右端面604、614之间可以形成一定的角度以避免右端面604、614的反射光回传到ROSA通道602、611形成干扰。
波导反馈滤波区607可以是波导取样反射光栅(sampled grating),它的光谱特征是系列中心波长位置不同但几乎等波长间距的梳状反射峰626,如图9所示,经过环形共振器610两光波导之间的光学耦合的光谱曲线627,它的特点是有一系列中心波长位置不同但几乎等波长间距的梳状共振峰。在本实施例中,取样光栅和环形共振器的梳状峰的波长间距不同。当取样光栅和环形共振器其中之一波长可调谐时,可以保证它们会有梳妆峰在某一波长重叠。有源RSOA芯片613的左端面612(反射端面)、RSOA通道611、光波导616(部分)、波导位相控制区617、环形共振器610、波导滤波反馈区607、波导位相控制区606、光波导605(部分)、RSOA通道602及有源RSOA芯片603的左端面601(反射端面)构成了复合腔外腔半导体激光器,激光发生在取样光栅和环形共振器的梳状峰重叠的波长。当取样光栅和环形共振器都可波长可调谐时,该复合腔外腔半导体激光器的输出波长可以大范围调谐。RSOA通道602发出的光耦合入光波导605,传输至环形共振器610时分为两路,一路通过环形共振器610沿光波导622右行传输到波导光学耦合器619,然后由无源光子芯片右端面621出射。另一路经环形共振器610耦合到光波导616左行,该路光的波长经过波导位相控制区617进入RSOA通道611,先经历左行放大,在RSOA通道611的左端面612被反射,然后右行经历二次放大,耦合回到光波导616。
放大后的光,经过环形共振器610后,一部分沿光波导616右行传输经过波导位相控制器618,在2x1波导光学耦合器619处与光波导622传输过来的光合波,沿无源光子芯片609的右端面出射;波导位相控制区618保证在2x1波导光学耦合器合波的、来自两光波导的两束光具有相同位相。其它部分光经环形共振器610耦合沿光波导608左行返回外腔半导体激光器,并在波导反馈滤波区607处,它部分被波导反馈滤波区607反射回原路,剩余部分光透过波导反馈滤波区607进入外腔半导体激光器,并在RSOA通道602那里被增益放大,再沿光波导605传出;波导位相控制区606是保证由RSOA通道611反射回的光到达RSOA通道602后和腔内激光具有相同位相(即相差360度的整数倍)。
在波导反馈滤波区607右行的光经过环形共振器610后,部分耦合到光波导616传输到RSOA通道611进行放大,完成一个循环放大流程;另一部分经光波导620和波导光学耦合器619由无源光子芯片609的右端面621出射。
波导位相控制区606、617、618的光波导带有局部金属电极,金属电极用于改变其对应覆盖部分波导的折射率,通过改变光程来控制位相。通过金属电极发热改变温度,产生热-光效应而改变波导折射率;也可改变金属电极上的电流,通过电-光效应来进行改变波导折射率。
1x2波导光学耦合器619可以是固定分光比的分光耦合器,也可以是双端口的两个波导之间的分光比可以改变的可调分光耦合器。
ROSA通道602、ROSA通道611的自发辐射增益光谱曲线可以相同,也可以不同。例如,它们可以有相似的3dB带宽但是不同的中心波长,发射光谱有相当一部分重叠,如图10所示,这样,本实施例的复合腔激光器就可以实现平坦高功率输出下的大范围波长调谐。图10中,RSOA通道602的自发射光谱曲线628和RSOA通道611的自发射光谱曲线629,外腔半导体激光器发射的激光光谱曲线630。
本发明的实施方式不限于此,根据上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的等效修改、替换或变更,均可实现本发明目的。另外,本发明的图例均为示意图,并不代表真实的尺寸或数值。

Claims (7)

1.一种外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于:它由设有RSOA通道的有源RSOA芯片(303)与设有光波导的无源光子芯片(308)经RSOA通道和光波导耦合对接集成,所述有源RSOA芯片(303)与无源光子芯片(308)的耦合端面镀有光学抗反射膜,所述有源RSOA芯片(303)的另一端面镀有光学高反射膜,在所述无源光子芯片(308)的光波导上设有波导位相控制区、波导滤波反馈区(307)和波导光学耦合器,所述波导位相控制区和波导滤波反馈区(307)均设有用于改变光波导折射率的电极,所述RSOA通道包括用于光增益的增益RSOA通道(302)和用于光放大的放大RSOA通道(312),所述增益RSOA通道(302)和与之耦合光波导上的波导位相控制区和波导滤波反馈区(307)构成外腔半导体激光器,所述外腔半导体激光器发出的光经光波导传输并耦合到放大RSOA通道(312)进行放大,再由放大RSOA通道(312)的高反射膜反射耦合回到无源光子芯片(308)的光波导;
所述波导位相控制区包括第一波导位相控制区(305)、第二波导位相控制区(306)和第三波导位相控制区(317),所述波导光学耦合器包括第一波导光学耦合器(310)、第二波导光学耦合器(318)和第三波导光学耦合器(315),外腔半导体激光器产生的光沿光波导传输至第一波导光学耦合器(310)时分为两路,一路沿光波导传输到第二波导位相控制区(306)进入放大RSOA通道(312),先经历左行放大,在放大RSOA通道(312)的左端面被反射,然后右行放大,耦合沿光波导经过第三波导光学耦合器(315)后,一部分沿光波导传输经过第三波导位相控制区(317),在第二波导光学耦合器(318)处与光波导(311)传输过来的光合波,由无源光子芯片(308)右端出射;另一路光沿光波导返回外腔半导体激光器,并在波导反馈滤波区(307)处,部分被波导反馈滤波区(307)反射回原路,另一部分光透过波导反馈滤波区(307)进入外腔半导体激光器,并在增益RSOA通道(302)被增益放大,再沿光波导传出,继续经过第一波导光学耦合器(310)分光,部分沿光波导传输到放大RSOA通道(312)进行放大,完成一个循环放大流程;另一部分经光波导和第二波导光学耦合器(318)由无源光子芯片(308)的右端出射。
2.根据权利要求1所述的外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于:所述外腔半导体激光器的波导滤波反馈区(307)的波长可调,且所述波导滤波反馈区(307)是波导反射光栅或者是由多个环形共振器形成的等效反射反馈区。
3.根据权利要求2所述的外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于:所述波导反射光栅是波导取样反射光栅或波导超结构光栅。
4.根据权利要求1所述的外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于:所述无源光子芯片(308)的两个端面均镀有光学抗反射膜。
5.根据权利要求1所述的外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于:所述RSOA通道和光波导的对接耦合端口设有波导模式转换器。
6.根据权利要求1所述的外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于:所述RSOA通道的光波导和设有光学高反射膜的端面之间形成直角。
7.根据权利要求6所述的外腔半导体激光器及反射式半导体光学放大器的芯片集成,其特征在于:所述波导光学耦合器(310、318、315)是固定分光比的分光耦合器或者是双端口的两个波导之间的分光比可以改变的可调分光耦合器。
CN202310222030.6A 2022-06-07 2023-03-09 外腔半导体激光器及反射式半导体光学放大器的芯片集成 Active CN116345298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/088891 WO2023236662A1 (zh) 2022-06-07 2023-04-18 外腔半导体激光器及反射式半导体光学放大器的芯片集成

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210634136 2022-06-07
CN2022106341362 2022-06-07

Publications (2)

Publication Number Publication Date
CN116345298A CN116345298A (zh) 2023-06-27
CN116345298B true CN116345298B (zh) 2024-04-26

Family

ID=86875617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310222030.6A Active CN116345298B (zh) 2022-06-07 2023-03-09 外腔半导体激光器及反射式半导体光学放大器的芯片集成

Country Status (2)

Country Link
CN (1) CN116345298B (zh)
WO (1) WO2023236662A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354909A (zh) * 2011-09-20 2012-02-15 李若林 一种基于dbr的外腔式波长可调谐激光器
CN103457155A (zh) * 2013-07-26 2013-12-18 李若林 混合集成复合腔波长可调谐激光发射器
US9356419B1 (en) * 2015-04-09 2016-05-31 International Business Machines Corporation Temperature insensitive external cavity lasers on silicon
US9768587B1 (en) * 2016-11-02 2017-09-19 Oracle International Corporation Scalable fast tunable Si-assisted hybrid laser with redundancy
CN111342342A (zh) * 2020-02-20 2020-06-26 上海交通大学 集成迈克尔逊干涉仪-双程放大器的iii-v/硅基端面耦合外腔激光器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090122817A1 (en) * 2005-09-06 2009-05-14 Nec Corporation Variable-wavelength filter and variable-wavelength laser
CN101968559B (zh) * 2010-09-20 2012-02-29 四川马尔斯科技有限责任公司 多通道光收发器
WO2013114577A1 (ja) * 2012-01-31 2013-08-08 富士通株式会社 レーザ素子
JP6588851B2 (ja) * 2016-03-24 2019-10-09 日本電信電話株式会社 外部共振器型レーザ光源
US10530126B2 (en) * 2017-12-27 2020-01-07 Elenion Technologies, Llc External cavity laser
WO2020191086A1 (en) * 2019-03-18 2020-09-24 The Trustees Of Columbia University In The City Of New York Self-injection locking using resonator on silicon based chip
CN110323665B (zh) * 2019-06-27 2020-10-16 上海交通大学 波长可调直接调制硅基外腔激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354909A (zh) * 2011-09-20 2012-02-15 李若林 一种基于dbr的外腔式波长可调谐激光器
CN103457155A (zh) * 2013-07-26 2013-12-18 李若林 混合集成复合腔波长可调谐激光发射器
US9356419B1 (en) * 2015-04-09 2016-05-31 International Business Machines Corporation Temperature insensitive external cavity lasers on silicon
US9768587B1 (en) * 2016-11-02 2017-09-19 Oracle International Corporation Scalable fast tunable Si-assisted hybrid laser with redundancy
CN111342342A (zh) * 2020-02-20 2020-06-26 上海交通大学 集成迈克尔逊干涉仪-双程放大器的iii-v/硅基端面耦合外腔激光器

Also Published As

Publication number Publication date
CN116345298A (zh) 2023-06-27
WO2023236662A1 (zh) 2023-12-14

Similar Documents

Publication Publication Date Title
CN106785882B (zh) 一种高功率双端口输出的硅基可调谐外腔激光器
US8885675B2 (en) Wavelength variable laser device, and method and program for controlling the same
US8837548B2 (en) Semiconductor optical element
US20170353001A1 (en) Tunable laser
KR100916311B1 (ko) 이중 결합 링 공진기를 이용한 파장 가변 레이저 다이오드
US8422530B2 (en) Laser module
US7043097B2 (en) Traveling-wave optoelectronic wavelength converter
US20220263289A1 (en) Silicon photonics based tunable laser
US20200067276A1 (en) External cavity laser
US20230268718A1 (en) Silicon-based tunable filter, tunable laser and optical module
CN110459956B (zh) 一种窄线宽可调谐激光器
WO2007107187A1 (en) Integrated laser optical source with active and passive sections formed in distinct substrates
CN113937617B (zh) 一种多波长激光器
US20210288469A1 (en) Two-segment dbr laser and monolithically integrated array light source chip
CN102646926B (zh) 基于复合mzi及反射光栅的波长可调谐激光器
CN111342342B (zh) 集成迈克尔逊干涉仪-双程放大器的iii-v/硅基端面耦合外腔激光器
CN113809634A (zh) 一种基于铌酸锂光子波导的混合集成外腔可调谐激光器
JP6588851B2 (ja) 外部共振器型レーザ光源
WO2015085544A1 (zh) 一种激光器
CN116345298B (zh) 外腔半导体激光器及反射式半导体光学放大器的芯片集成
JP6484115B2 (ja) ハイブリッド集積型光送信器
CN116544780A (zh) 一种基于氮化硅外腔的高性能可调谐半导体激光器
CN106785885B (zh) 一种多通道干涉激光器与半导体光放大器的集成器件
WO2007107186A1 (en) Integrated laser optical source
Santana et al. Design of a 80-nm tunable hybrid III/V-on-silicon laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant