CN116334555A - 一种高寿命纳米涂层pcb铣刀及其制备方法 - Google Patents

一种高寿命纳米涂层pcb铣刀及其制备方法 Download PDF

Info

Publication number
CN116334555A
CN116334555A CN202310221415.0A CN202310221415A CN116334555A CN 116334555 A CN116334555 A CN 116334555A CN 202310221415 A CN202310221415 A CN 202310221415A CN 116334555 A CN116334555 A CN 116334555A
Authority
CN
China
Prior art keywords
milling cutter
pcb milling
coating
long
pcb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310221415.0A
Other languages
English (en)
Inventor
罗军
程文雅
陈小曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Casio Surface Technology Co ltd
Original Assignee
Zhuhai Casio Surface Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Casio Surface Technology Co ltd filed Critical Zhuhai Casio Surface Technology Co ltd
Priority to CN202310221415.0A priority Critical patent/CN116334555A/zh
Publication of CN116334555A publication Critical patent/CN116334555A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/64Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/88Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/24Titanium aluminium nitride (TiAlN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/24Hard, i.e. after being hardened
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于切削刀具涂层技术领域,本发明提供了一种高寿命纳米涂层PCB铣刀及其制备方法。该制备方法包括以下步骤:S1、采用阳极层气体离子源技术对PCB铣刀进行清洗处理;S2、对清洗处理后的PCB铣刀表面进行溅射活化;S3、对溅射活化后的PCB铣刀表面进行金属层沉积;S4、采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层;S5、将步骤S3~S4重复0~5次即得高寿命纳米涂层PCB铣刀。本发明所制备的高寿命纳米涂层PCB铣刀,涂层与PCB铣刀的结合力强,且涂层的韧性好,可以抵抗长期切削过程对PCB铣刀的损伤,保证涂层的完好性,提高了PCB铣刀的切削寿命。

Description

一种高寿命纳米涂层PCB铣刀及其制备方法
技术领域
本发明涉及切削刀具涂层技术领域,尤其涉及一种高寿命纳米涂层PCB铣刀及其制备方法。
背景技术
铣刀是用于铣削加工的、具有一个或多个刀齿的旋转刀具。工作时各刀齿依次间歇地切去工件的余量。铣刀主要用于台阶、沟槽、成形表面和切断工件等加工过程。PCB铣刀常用于铣削单面、双面或多层等印刷电路板材质,在高速切削这些基板过程中,对铣刀产生极大的损耗,通过表面镀膜处理,可以提高刀具的使用寿命及铣削精度。
目前,常见的刀具涂层包括陶瓷涂层和金刚石涂层。陶瓷涂层通常采用物理气相沉积技术在刀具表面制备TiN、TiAlN、CrAlN、TiAlSiN等,但该技术产生的等离子体能量高,还存在少数大颗粒的物质,使得涂层质量差,且易出现伤韧等情况;而磁控溅射技术原子存在着离化率低,涂层结合力差等技术问题。金刚石涂层通常采用化学气相沉积法进行制备,但该方法需要在高温下进行,并且还存在着成本高、成品率低、工艺稳定性差等技术问题。
因此,如何提供一种韧性好、强度高、结合力高的强化涂层成为了本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种高寿命纳米涂层PCB铣刀及其制备方法。本发明通过高脉冲磁过滤沉积技术在PCB铣刀表面制备结合力高且韧性好的耐切削涂层,从而提高PCB铣刀的切削寿命。有效解决了现有技术所制备的刀具涂层质量较差的技术问题。
为了达到上述目的,本发明采用如下技术方案:
本发明提供了一种高寿命纳米涂层PCB铣刀的制备方法,包括以下步骤:
S1、采用阳极层气体离子源技术对PCB铣刀进行清洗处理;
S2、对清洗处理后的PCB铣刀表面进行溅射活化;
S3、对溅射活化后的PCB铣刀表面进行金属层沉积;
S4、采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层;
S5、将步骤S3~S4重复0~5次即得高寿命纳米涂层PCB铣刀。
进一步的,所述阳极层气体离子源技术的电压为20~200V,氩气流量为50~120sccm,氢气流量为5~20sccm,功率为1~3kW,时间为5~20min。
进一步的,所述溅射活化的金属为Ti、Cr或Ni,电压为400~800V,占空比为3~10%,弧流为60~120A,时间为10~60s。
进一步的,所述金属层沉积的金属为Ti、Cr或Ni,电压为50~200V,占空比为40~60%,弧流为60~120A,沉积厚度为20~100nm。
进一步的,所述高脉冲磁控溅射技术所用的靶材为TiAl复合靶,其中Ti与Al的原子比为1:1。
进一步的,所述高脉冲磁控溅射技术的功率为1~15kW,氮气流量为10~80sccm,氩气流量20~120sccm,频率为10~500Hz,脉冲偏压为1~15kV,沉积厚度为0.1~5μm。
本发明还提供了上述制备方法所制备得到的高寿命纳米涂层PCB铣刀。
经由上述的技术方案可知,与现有技术相比,本发明的有益效果如下:
本发明所制备的高寿命纳米涂层PCB铣刀,涂层与PCB铣刀的结合力强,且涂层的韧性好,可以抵抗长期切削过程对PCB铣刀的损伤,保证涂层的完好性,提高了PCB铣刀的切削寿命。
附图说明
图1为实施例1所制备的高寿命纳米涂层PCB铣刀的涂层截面图;
图2为实施例1~3所制备的高寿命纳米涂层PCB铣刀和对比例1~2所制备的纳米涂层PCB铣刀的涂层硬度图;
图3为实施例1~3所制备的高寿命纳米涂层PCB铣刀和对比例1~2所制备的纳米涂层PCB铣刀的涂层结合力图。
具体实施方式
本发明提供了一种高寿命纳米涂层PCB铣刀的制备方法,包括以下步骤:
S1、采用阳极层气体离子源技术对PCB铣刀进行清洗处理;
S2、对清洗处理后的PCB铣刀表面进行溅射活化;
S3、对溅射活化后的PCB铣刀表面进行金属层沉积;
S4、采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层;
S5、将步骤S3~S4重复0~5次即得高寿命纳米涂层PCB铣刀。
在本发明中,采用阳极层气体离子源技术对PCB铣刀进行清洗处理,可以将铣刀表面的油污杂质清洗干净,并将PCB铣刀的表面氧化层还原。
在本发明中,所述阳极层气体离子源技术的电压为20~200V,优选为40~180V,进一步优选为60~120V;氩气流量为50~120sccm,优选为60~110sccm,进一步优选为80~100sccm;氢气流量为5~20sccm,优选为8~16sccm,进一步优选为10~14sccm;功率为1~3kW,优选为1.2~2.8kW,进一步优选为1.5~2.5kW;时间为5~20min,优选为8~18min,进一步优选为10~15min。
在本发明中,采用磁过滤沉积技术在PCB刀具表面进行溅射活化,可提高涂层与PCB刀具基体的结合力。
在本发明中,所述溅射活化的金属为Ti、Cr或Ni,优选为Ti或Cr,进一步优选为Ti;电压为400~800V,优选为450~700V,进一步优选为500~600V;占空比为3~10%,优选为4~8%,进一步优选为5~6%;弧流为60~120A,优选为80~110A,进一步优选为90~100A;时间为10~60s,优选为20~50s,进一步优选为30~40s。
在本发明中,所述金属层沉积的金属为Ti、Cr或Ni,优选为Ti或Cr,进一步优选为Ti;电压为50~200V,优选为80~160V,进一步优选为100~130V;占空比为40~60%,优选为45~55%,进一步优选为50%;弧流为60~120A,优选为80~110A,进一步优选为90~100A;沉积厚度为20~100nm,优选为40~80nm,进一步优选为50~60nm。
在本发明中,所述高脉冲磁控溅射技术所用的靶材为TiAl复合靶,其中Ti与Al的原子比为1:1。
在本发明中,所述高脉冲磁控溅射技术的功率为1~15kW,优选为3~12kW,进一步优选为5~10kW;氮气流量为10~80sccm,优选为20~60sccm,进一步优选为30~40sccm;氩气流量为20~120sccm,优选为40~100sccm,进一步优选为60~80sccm;频率为10~500Hz,优选为50~400Hz,进一步优选为200~300Hz;脉冲偏压为1~15kV,优选为3~12kV,进一步优选为5~10kV;沉积厚度为0.1~5μm,优选为1~4μm,进一步优选为2~3μm。
在本发明中,采用磁过滤沉积技术在PCB刀具表面进行金属层沉积,与功能层的交替沉积可实现纳米涂层的软-硬结合,可提高涂层结合力,释放内应力,增强韧性。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
S1:利用阳极层气体离子源技术在PCB铣刀进行清洗处理15min,阳极层气体离子源技术的制备电压50V,氩气的流速为80sccm,氢气的流速为10sccm,所使用的功率2kW;
S2:采用磁过滤沉积技术在PCB刀具表面进行溅射活化,溅射活化所使用的金属为Cr,溅射活化时的电压为600V,占空比为8%,弧流为100A,溅射活化的时间为20s;
S3:采用磁过滤沉积技术在溅射活化后的PCB铣刀表面进行金属层沉积,沉积金属为Cr,沉积电压为100V,占空比为50%,弧流为100A,沉积厚度为100nm;
S4:采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层,所使用的靶材为TiAl(原子比为1:1)复合靶,通入的氮气的流速为40sccm,氩气流速70sccm,所使用的功率为5kW,频率为50Hz,脉冲偏压为5kV,沉积厚度为5μm,即得高寿命纳米涂层PCB铣刀。
图1为本实施例所制备的高寿命纳米涂层PCB铣刀的涂层截面图,由图1可得,该涂层致密性高,且多层结构有效打断柱状晶生长结构,使涂层有更好的纳米晶结构。
实施例2
S1:利用阳极层气体离子源技术在PCB铣刀进行清洗处理10min,阳极层气体离子源技术的制备电压80V,氩气的流速为100sccm,氢气的流速为15sccm,所使用的功率1.5kW;
S2:采用磁过滤沉积技术在PCB刀具表面进行溅射活化,溅射活化所使用的金属为Ti,溅射活化时的电压为500V,占空比为10%,弧流为90A,溅射活化的时间为30s;
S3:采用磁过滤沉积技术在溅射活化后的PCB铣刀表面进行金属层沉积,沉积金属为Ti,沉积电压为90V,占空比为40%,弧流为110A,沉积厚度为120nm;
S4:采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层,所使用的靶材为TiAl(原子比为1:1)复合靶,通入的氮气的流速为50sccm,氩气流速为70sccm,所使用的功率为8kW,频率为70Hz,脉冲偏压为8kV,沉积厚度为3μm;
S5、将步骤S3~S4重复4次即得高寿命纳米涂层PCB铣刀。
实施例3
S1:利用阳极层气体离子源技术在PCB铣刀进行清洗处理15min,阳极层气体离子源技术的制备电压120V,氩气的流速为90sccm,氢气的流速为8sccm,所使用的功率2kW;
S2:采用磁过滤沉积技术在PCB刀具表面进行溅射活化,溅射活化所使用的金属为Ni,溅射活化时的电压为550V,占空比为10%,弧流为80A,溅射活化的时间为25s;
S3:采用磁过滤沉积技术在溅射活化后的PCB铣刀表面进行金属层沉积,沉积金属为Ni,沉积电压为95V,占空比为45%,弧流为90A,沉积厚度为110nm;
S4:采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层,所使用的靶材为TiAl(原子比为1:1)复合靶,通入的氮气的流速为45sccm,氩气流速70sccm,所使用的功率为7kW,频率为60Hz,脉冲偏压为7kV,沉积厚度为2μm;
S5、将步骤S3~S4重复5次即得高寿命纳米涂层PCB铣刀。
对比例1
S1:采用磁过滤沉积技术在PCB刀具表面进行溅射活化,溅射活化所使用的金属为Cr,溅射活化时的电压为600V,占空比为8%,弧流为100A,溅射活化的时间为20s;
S2:采用磁过滤沉积技术在溅射活化后的PCB铣刀表面进行金属层沉积,沉积金属为Cr,沉积电压为100V,占空比为50%,弧流为100A,沉积厚度为100nm;
S3:采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层,所使用的靶材为TiAl(原子比为1:1)复合靶,通入的氮气的流速为40sccm,氩气的流速70sccm,所使用的功率为5kW,频率为50Hz,脉冲偏压为5kV,沉积厚度为2μm;
S4、将步骤S2~S3重复5次得到纳米涂层PCB铣刀。
对比例2
S1:采用磁过滤沉积技术在PCB刀具表面进行溅射活化,溅射活化所使用的金属为Cr,溅射活化时的电压为600V,占空比为8%,弧流为100A,溅射活化的时间为20s;
S2:采用磁过滤沉积技术在溅射活化后的PCB铣刀表面进行金属层沉积,沉积金属为Cr,沉积电压为100V,占空比为50%,弧流为100A,沉积厚度为100nm;
S3:采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层,所使用的靶材为TiAl(原子比为1:1)复合靶,通入的氮气的流速为40sccm,氩气流量为70sccm,所使用的功率为5kW,频率为0,脉冲偏压为0,沉积厚度为2μm;
S4、将步骤S2~S3重复5次得到纳米涂层PCB铣刀。
图2为实施例1~3所制备的高寿命纳米涂层PCB铣刀和对比例1~2所制备的纳米涂层PCB铣刀的涂层硬度图。由图2可得,通过不过参数制备的涂层硬度有所不同,循环次数越多硬质层越薄,涂层的硬度略有降低,且无高压脉冲条件下制备的涂层硬度较高。
图3为实施例1~3所制备的高寿命纳米涂层PCB铣刀和对比例1~2所制备的纳米涂层PCB铣刀的涂层结合力图。由图3可得,涂层的层数越多,其结合力就越高,但无阳极层离子源处理的涂层结合力低。在相同制备条件下,高压脉冲技术制备的涂层结合力更高,原因是高压脉冲技术可以有效释放内应力从而提高膜基结合力。
为进一步表明本发明所制备的高寿命纳米涂层PCB铣刀具有更高的切削寿命,本发明对无涂层PCB铣刀、实施例1~3所制备的高寿命纳米涂层PCB铣刀和对比例1~2所制备的纳米涂层PCB铣刀的切削寿命进行了测试,测试结果见表1。
表1不同PCB铣刀的切削寿命测试结果
无涂层 实施例1 实施例2 实施例3 对比例1 对比例2
切削寿命 17米 22米 30米 35米 18米 20米
由表1可得,无涂层的PCB铣刀可连续铣板17米,通过涂层的制备,其铣板长度均有所增加,涂层层数越多,结合高脉冲偏压的作用,其韧性越好,铣板长度越长,而结合力差的涂层无明显提高寿命。在相同制备条件下,无高压脉冲制备的涂层,切削寿命更低。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种高寿命纳米涂层PCB铣刀的制备方法,其特征在于,包括以下步骤:
S1、采用阳极层气体离子源技术对PCB铣刀进行清洗处理;
S2、对清洗处理后的PCB铣刀表面进行溅射活化;
S3、对溅射活化后的PCB铣刀表面进行金属层沉积;
S4、采用高脉冲磁控溅射技术在金属层沉积后的PCB铣刀表面形成硬质涂层;
S5、将步骤S3~S4重复0~5次即得高寿命纳米涂层PCB铣刀。
2.根据权利要求1所述的制备方法,其特征在于,所述阳极层气体离子源技术的电压为20~200V,氩气流量为50~120sccm,氢气流量为5~20sccm,功率为1~3kW,时间为5~20min。
3.根据权利要求2所述的制备方法,其特征在于,所述溅射活化的金属为Ti、Cr或Ni,电压为400~800V,占空比为3~10%,弧流为60~120A,时间为10~60s。
4.根据权利要求2或3所述的制备方法,其特征在于,所述金属层沉积的金属为Ti、Cr或Ni,电压为50~200V,占空比为40~60%,弧流为60~120A,沉积厚度为20~100nm。
5.根据权利要求4所述的制备方法,其特征在于,所述高脉冲磁控溅射技术所用的靶材为TiAl复合靶,其中Ti与Al的原子比为1:1。
6.根据权利要求1或5所述的制备方法,其特征在于,所述高脉冲磁控溅射技术的功率为1~15kW,氮气流量为10~80sccm,氩气流量20~120sccm,频率为10~500Hz,脉冲偏压为1~15kV,沉积厚度为0.1~5μm。
7.权利要求1~6任一项所述制备方法所制备得到的高寿命纳米涂层PCB铣刀。
CN202310221415.0A 2023-03-09 2023-03-09 一种高寿命纳米涂层pcb铣刀及其制备方法 Pending CN116334555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310221415.0A CN116334555A (zh) 2023-03-09 2023-03-09 一种高寿命纳米涂层pcb铣刀及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310221415.0A CN116334555A (zh) 2023-03-09 2023-03-09 一种高寿命纳米涂层pcb铣刀及其制备方法

Publications (1)

Publication Number Publication Date
CN116334555A true CN116334555A (zh) 2023-06-27

Family

ID=86875611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310221415.0A Pending CN116334555A (zh) 2023-03-09 2023-03-09 一种高寿命纳米涂层pcb铣刀及其制备方法

Country Status (1)

Country Link
CN (1) CN116334555A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116676557A (zh) * 2023-06-08 2023-09-01 广东省广新离子束科技有限公司 一种具有自润滑性dlc涂层的钻头及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116676557A (zh) * 2023-06-08 2023-09-01 广东省广新离子束科技有限公司 一种具有自润滑性dlc涂层的钻头及其制备方法

Similar Documents

Publication Publication Date Title
CN101501813B (zh) 表面修饰用方法和设备
CN101175867B (zh) 硬材料层
JP6854241B2 (ja) 多層pvdコーティングを有する切削工具
KR100586803B1 (ko) 칼날을 다이아몬드성 탄소로 코팅하는 방법
JP4607687B2 (ja) 非晶質炭素膜の成膜方法
JP6884495B2 (ja) イオン源強化のSi含有量及び結晶寸法が勾配変化するAlCrSiNコーティング
CN108165925B (zh) 一种低负偏压高能Ar+刻蚀清洗改善AlTiSiN涂层性能的方法
JP5933701B2 (ja) 硬質の炭素層のためのコーティング除去方法
WO2022241952A1 (zh) 一种纳米多层结构过渡金属氮化物涂层及其制备方法和应用
CN116334555A (zh) 一种高寿命纳米涂层pcb铣刀及其制备方法
RU2618292C2 (ru) Сверло с покрытием
US20230138439A1 (en) Razor blade and manufacturing method thereof
JP2013505358A (ja) 物体上にコーティングを堆積させるpvd法及びそれから製造された被覆物体
TWI655316B (zh) Tool composite coating, tool and tool composite coating preparation method
JPWO2013018768A1 (ja) 表面改質wc基超硬合金部材、硬質皮膜被覆wc基超硬合金部材、及びそれらの製造方法
CN111826616A (zh) 一种核燃料包壳涂层及其制备方法
KR101101742B1 (ko) 면도기 면도날의 박막 증착 방법
CN109136843A (zh) 一种无氢类金刚石薄膜及其制备方法与应用
CN102230156A (zh) 微型刀具上制备复合硬质涂层的方法及微型刀具
CN109023264A (zh) 一种高硬TiCN纳米复合薄膜及其制备方法、模具
JP6170039B2 (ja) 横回転アーク陰極を備えるグロー放電装置及び方法
WO2023190657A1 (ja) 電極および電気化学測定システム
CN112981325A (zh) 一种热防护涂层及其制备方法与应用
CN112689688A (zh) 一种钛合金和高温合金加工用的涂层刀具及其制备方法
CN101570849A (zh) 用二元蒸发源制备工模具硬质涂层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination