CN116328803A - 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用 - Google Patents

一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用 Download PDF

Info

Publication number
CN116328803A
CN116328803A CN202310230902.3A CN202310230902A CN116328803A CN 116328803 A CN116328803 A CN 116328803A CN 202310230902 A CN202310230902 A CN 202310230902A CN 116328803 A CN116328803 A CN 116328803A
Authority
CN
China
Prior art keywords
cds
mos
mxene
catalyst
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310230902.3A
Other languages
English (en)
Other versions
CN116328803B (zh
Inventor
李覃
伍超
黄蔚欣
刘焕敏
吕康乐
黄涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN202310230902.3A priority Critical patent/CN116328803B/zh
Publication of CN116328803A publication Critical patent/CN116328803A/zh
Application granted granted Critical
Publication of CN116328803B publication Critical patent/CN116328803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及催化剂制备技术领域,具体涉及一种CdS@Ti3C2 MXene‑MoS2三元复合催化剂及其制备方法和应用。通过原位生长法成功地制备了具有紧密接触界面的CdS、MoS2和Ti3C2 MXene三元复合材料,该复合材料表现出优异的光催化产氢活性和耐光腐蚀能力。实验表征和密度泛函理论(DFT)计算都很好地证明了CdS的光生空穴和电子可以分别及时迁移到Ti3C2和MoS2上。实验结果表明,优化后的样品产氢速率可达14.88 mmol·h‑1·g‑1,使用寿命可达78 h,且复合材料在光催化反应过程中保持了完整的组分与结构。本发明提出了Ti3C2 MXene和MoS2作为氧化还原双助催化剂对CdS的光催化性能和耐久性的协同作用,可以预期这将显著提高CdS的商业可用性,甚至促进其在工业中的应用。

Description

一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和 应用
技术领域
本发明涉及催化剂制备技术领域,具体涉及一种CdS@Ti3C2 MXene-MoS2三元复合催化剂及其制备方法和应用。
背景技术
化石燃料的快速消耗所造成的日益严重的环境污染和能源短缺已经成为人类社会的严重威胁。利用半导体材料捕获太阳能和光催化分解水生产绿色可持续的氢(H2)有望缓解这些危机[1-5]。一般来说,一种活性和稳定性优异的理想光催化剂需要满足以下要求:(ⅰ)光催化剂具有优异的光吸收性能,能够捕获太阳能;(ii)半导体产生的光生载流子能够有效地迁移和分离;(iii)光催化剂的能带结构适合将H2O还原为H2[6-9]。
纳米硫化镉(CdS)具有合适的带隙(2.4eV)、足够的负导带(CB)位置(-0.58eV)和优异的可见光吸收能力[10-12],满足上述(i)和(iii)要求,因此被认为是一种很有前景的产氢光催化剂。然而,CdS纳米颗粒在生长过程中发生的团聚,会导致电荷载流子的快速重组和表面活性位点数量的显著减少,而不能满足(ii)的要求[10-12]。更值得关注的是,纯CdS的光腐蚀敏感性通常导致H2生产效率低和光催化稳定性差[13-15]。CdS的这种光腐蚀过程背后的原因是光生空穴对CdS中晶格硫的氧化,同时伴随着光生电子将Cd2+还原为金属Cd[16]。结果是,CdS的纳米结构被严重破坏,大大降低了光催化性能和寿命。如何提高CdS基复合材料的光催化活性和防止光腐蚀是CdS基复合材料进一步开发和广泛应用的主要挑战。
为了解决上述问题,一种常见的策略是在CdS光催化剂上负载特定的助催化剂,以及时地将光产生的电荷从其表面转移[17-21]。例如,二硫化钼(MoS2)具有层状S-Mo-S结构,通过弱范德华相互作用堆叠在一起,其硫边可为质子还原提供丰富的活性位点,是一种极好的捕获光生电子的还原助催化剂[22-24]。此前,Han等人使用钼酸钠(Na2MoO4)和硫代乙酰胺(TAA)通过高温水热方法将MoS2引入CdS上[25]。Ma等利用钼酸铵((NH4)2MoO4)和S粉热分解生成MoS2,再加入额外的CdS,形成CdS/MoS2异质结构[26]。然而,这些制备MoS2/CdS复合材料的方法需要较恶劣的高温或高压条件,有时还会产生有毒的H2S气体,且存在制备过程繁琐、环境不友好和能耗高等问题[7,27,28]。构建MoS2基复合材料的另一种方法是通过半导体的光生电子将(NH4)2MoS4前驱体还原为MoS2([MoS4]2-+2e-→MoS2+2S2-)[7,29]。通过这种方法,光生电子能够直接还原钼盐,让MoS2与半导体紧密耦合,因而促进了界面电荷转移,缩短了从半导体到MoS2的电子转移距离。
另一种引人注目的光催化制氢助催化剂是二维(2D)碳化钛(Ti3C2)MXene[8,30,31]。自2011年通过刻蚀Ti3AlC2首次发现Ti3C2 MXene以来,Ti3C2 MXene因其独特的电学、光学和热力学性质在包括光催化在内的许多科学领域获得了广泛关注[32-37]。值得一提的是,在制备2D Ti3C2的过程中,刻蚀剂不可避免地会去除表面的一些Ti原子,形成Ti空位,这些空位富含电子,具有很强的还原能力,可以原位还原一些金属盐[38,39]。此外,有报道称Ti3C2 MXene可以作为空穴介质,使空穴从半导体流向自身[40,41]。然而,很少有人注意到Ti3C2 MXene和MoS2可以通过自还原方式耦合,协同增强CdS的光活性和光稳定性。
发明内容
针对上述现有技术中的不足,本发明的目的是提供一种CdS@Ti3C2 MXene-MoS2三元复合催化剂及其制备方法和应用。
本发明通过还原钛空位(VTi)直接还原钼酸盐(比如(NH4)2MoS4)为MoS2,实现MoS2在二维Ti3C2纳米片上原位修饰。同时,生成的S2-离子与加入的Cd2+反应使CdS在MoS2附近成核生长,剩余的Cd2+离子经微波水热处理与硫源(比如硫代乙酰胺TAA)反应形成外层CdS,最后成功制备了具有紧密接触界面的三元CdS@Ti3C2-MoS2(CTM)纳米复合催化剂。实验和理论计算结果综合证明,Ti3C2和MoS2的共催化改性不仅促进了CdS表面光生载流子的分离,而且在很大程度上成功地抑制了光腐蚀反应。
为实现上述目的,本发明采取的技术方案为:
一种CdS@Ti3C2 MXene-MoS2三元复合催化剂,所述催化剂为层状结构的复合材料,所述CdS均匀分散于由MoS2在二维Ti3C2纳米片上原位修饰形成的Ti3C2-MoS2复合物的表面,所述复合材料中Ti3C2-MoS2与CdS的理论质量比为0.25%-10%。
进一步的,所述复合材料中Ti3C2-MoS2与CdS的理论质量比为1.5%。
本发明还提供了上述CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法,具体包括以下步骤:
(1)利用二维Ti3C2 MXene的还原性Ti空位制备Ti3C2-MoS2复合材料
将二维Ti3C2纳米片分散在去离子水中,并充分搅拌以获得均匀的Ti3C2悬浮液,将钼酸盐溶解于去离子水中后,缓慢加入上述Ti3C2悬浊液中,室温下搅拌1-3h后,过滤,洗涤,最后经冻干处理得到Ti3C2-MoS2复合材料,即TMy,其中y为MoS2与Ti3C2的理论质量比,单位为%,即MoS2:Ti3C2理论质量比=y%;
(2)采用微波-水热法制备CdS@Ti3C2 MXene-MoS2复合物
将TMy分散于去离子水中得到悬浊液,向其中加入Cd(CH3COO)2·2H2O,室温搅拌30-180min,再向其中加入硫源,继续搅拌至均匀后,转移至微波水热反应釜,于130-200℃加热30-90min(优选在180℃下加热45min),待冷却至室温后,洗涤至滤液pH=7,然后干燥,获得CdS@Ti3C2 MXene-MoS2三元复合催化剂。
进一步的,所述钼酸盐为(NH4)2MoS4;所述硫源为硫代乙酰胺;
进一步的,所述y=0.5-15,更优选为9。
进一步的,所述步骤(2)中干燥的条件为在60℃下真空干燥12h。
进一步的,步骤(1)中所述二维Ti3C2纳米片为通过冻融法制备的二维超薄Ti3C2纳米片,具体参照以下文献进行:X.W.Huang,P.Y.Wu,AFacile,high-yield,and freeze-and-thaw-assisted approach to fabricate mxene with plentiful wrinkles and itsapplication in on-chip micro-supercapacitors,Adv.Funct.Mater.30(2020)1910048.
本发明还提供了上述CdS@Ti3C2 MXene-MoS2三元复合催化剂在光催化产氢上的应用,具体为将该催化剂应用于可见光下光催化水裂解制氢。
与现有技术相比,本发明的优点和有益效果如下:
本发明利用二维Ti3C2 MXene的还原性Ti空位制备了Ti3C2-MoS2复合材料,并进一步诱导其表面原位生长CdS,精心构建了具有紧密结合界面的三元CdS@Ti3C2-MoS2复合材料,即CdS@Ti3C2MXene-MoS2三元复合催化剂。将所制备的系列复合材料应用于可见光下光催化水裂解制氢。在所有样品中,C(TM9)1.5的产氢速率最高,为14.88mmol·h-1·g-1,是纯CdS的6.8倍。更重要的是,C(TM9)1.5制氢样品的寿命长达78h,其颜色和结构没有明显变化,这意味着通常发生在CdS上的光腐蚀被有效抑制。实验和理论结果综合说明了Ti3C2和MoS2分别在俘获空穴和电子方面发挥了重要作用。这种电荷转移途径不仅有效地阻止了光生空穴电子对的重组,使得更多的有效电子可以参与制氢反应,而且抑制了CdS上光腐蚀的出现,使CdS具有良好的光稳定性。氧化还原助催化剂的共修饰保证了光催化剂的催化活性和耐久性,这有助于弥补未来光催化技术和实际应用的转化差距。
附图说明
图1为本发明中所述CdS@Ti3C2 MXene-MoS2纳米复合材料的制备过程示意图;
图2(a)为实施例1中Ti3AlC2、Ti3C2和TM9样品的XRD图谱;图2(b)为实施例1中CdS、CT1.5和C(TM9)x样品的XRD谱图;
图3(a)和(b)分别为实施例1所制备TM9样品的拉曼光谱及其Mo 3d和(b)S 2p的高分辨率XPS光谱;
图4(a)和(b)分别为实施例1中Ti3C2和TM9样品的TEM图像;图4(c)和(d)分别为实施例1中CdS和C(TM9)1.5样品的FESEM图像;图4(e)和(f)分别为实施例1中C(TM9)1.5样品的TEM及其相应的HRTEM图像;图4(j)为实施例1中C(TM9)1.5样品的HAADF-STEM图像及其Ti、Mo、Cd和S原子的EDS映射图像。
图5(a)为实施例1制得CdS、CT1.5和C(TM9)1.5样品的DRS光谱和图5(b)实施例1制得CdS样品相应的Tauc图。
图6(a)为实施例1制得CdS、CT1.5和C(TM9)x样品光催化产氢速率的比较;图6(b)为实施例1制得CdS、CT1.5和C(TM9)1.5样品的循环活性测试结果;图6(c)和(d)分别为实施例1制得CdS、CT1.5和C(TM9)1.5样品的原始产H2溶液和光照4小时后的产H2溶液的照片;图6(e)为实施例1制得C(TM9)1.5样品的光催化产H2时间相关性曲线。
图7(a)为实施例1制得CdS、CT1.5和C(TM9)1.5样品在产氢4小时后的XRD谱图;图7(b)为实施例1制得C(TM9)1.5样品产氢4小时后的FESEM图像。
图8(a)和(b)为实施例1制得原始CdS、CT1.5和C(TM9)1.5的Cd 3d和S 2p的高分辨率XPS光谱;图8(c)和(d)为上述样品产氢H2反应4小时后的Cd 3d和S 2p的高分辨率XPS光谱;
图9(a)-(c)分别为实施例1制得原始CdS、CT1.5和C(TM9)1.5样品的稳态PL光谱、TPR图和EIS图;图9(d)为CdS和C(TM9)1.5样品的LSV曲线。
图10为Ti3C2和VTi-Ti3C2的(a,b)结构模型和(c,d)态密度;
图11(a,b)为CdS/VTi-Ti3C2和CdS/MoS2界面处的电子密度差
Figure BDA0004120428040000041
和(c,d)Bader电子转移数。
图12为CdS@Ti3C2 MXene-MoS2三元复合催化剂在光催化H2生成过程中的电荷转移机制,其中LA是指乳酸,作为牺牲剂。
具体实施方式
下面申请人将结合具体的实施例对本发明的技术方案加以详细说明,以便本领域的技术人员对本发明有更进一步的理解,但以下实施例不以任何方式解释为对本发明保护范围的限制。
以下实施例中:Ti3AlC2购自一一科技有限公司,纯度为98%,200目;所述室温均指20-25℃;
以下实施例所制备的复合光催化剂命名规则为:
制备的CdS@Ti3C2 MXene-MoS2三元复合催化剂命名为C(TMy)x,其中y表示MoS2(M)占Ti3C2(T)的理论质量比(单位为:%),x表示Ti3C2-MoS2(TM)占CdS(C)的理论质量比(单位为:%)。
实施例1一种CdS@Ti3C2 MXene-MoS2三元复合催化剂,由以下方法制备得到:
(一)制备二维超薄Ti3C2纳米片
根据前人报道的文献,采用冻融法合成了二维超薄Ti3C2纳米片[42]。具体地,将37mL 9M HCl水溶液与4mL 40wt%的HF溶液混合以形成均一的混酸溶液,接着在混酸溶液中加入1.6g LiF,室温下搅拌10分钟。然后在5分钟内小心缓慢地加入1g Ti3AlC2以避免局部过热。加完后将所得混合物置于35℃的油浴中,进行刻蚀反应24h,所得产物用去离子水冲洗至滤液pH=7,最后60℃下真空干燥12h得粉末。
取1.5g上述制备好的粉末均匀分散到100mL去离子水中,形成均匀的悬浮液。随后,将其放入冰箱(-20℃),直至完全冻结,然后在室温下自然解冻。重复5次上述冻融过程后,将解冻的悬浮液在冰浴中超声处理30min。最后,通过3500rpm离心30min,于-60℃、10Pa下冷冻干燥所得上清液,得到超薄2D Ti3C2纳米片,以下简称:Ti3C2
(二)制备Ti3C2-MoS2复合物
采用自还原法制备了Ti3C2-MoS2复合物。具体地,将6.2mg的Ti3C2分散在3mL去离子水中,并充分搅拌以获得均匀的Ti3C2悬浮液。同时,将0.9mg的(NH4)2MoS4溶解于25mL去离子水中,然后将所得溶液缓慢加入上述Ti3C2悬浊液中,室温下搅拌1h。反应完后,过滤,所得到的沉淀物用去离子水和乙醇交替洗涤,各3次。最后于-60℃、10Pa下冻干处理得到Ti3C2-MoS2复合材料(记为TM9),其中MoS2与Ti3C2的理论质量百分比为9%。
(三)制备CdS@Ti3C2-MoS2复合物
采用微波-水热法制备了CdS@Ti3C2-MoS2复合材料。在TM9悬浊液(25mL,溶剂为去离子水)中加入1.7192g的Cd(CH3COO)2·2H2O,室温搅拌30min,再向其中加入0.9692g的硫代乙酰胺TAA,继续搅拌30min。搅拌均匀后,转移至微波水热反应釜(100mL),于180℃加热45min(微波水热反应器工作条件:2450MHz,1000W,6MPa),待冷却至室温后,用去离子水和乙醇交替洗涤,直到滤液pH=7,然后在60℃下真空干燥12h,获得CdS@Ti3C2-MoS2复合材料,即CdS@Ti3C2 MXene-MoS2三元复合催化剂,命名为C(TM9)x(x=0.25,0.75和1.5),其中x为TM9与CdS的理论质量比(单位%,即TM9与CdS质量比为x%)。
为了进行比较,在相同的实验条件下,分别制备了不添加MoS2的二元CdS@Ti3C2(简称CT1.5,即Ti3C2与CdS的理论质量比为1.5%)、不添加Ti3C2的CdS@MoS2(简称CM0.14,即MoS2与CdS的理论质量比为0.14%)和不添加Ti3C2-MoS2的纯CdS,其中CdS@Ti3C2和纯CdS的制备方法为:将步骤(三)中,TM9悬浊液分别替换为Ti3C2悬浊液以及去离子水,CdS@MoS2的制备方法为:CdS分散于(NH4)2MoS4水溶液中,光照5min后,所得产物用去离子水洗涤至pH=7,然后在60℃下真空干燥12h。
检测例1
通过XRD、拉曼光谱、XPS和ICP-OES表征,全面分析了实施例1所制备样品的晶相和组分。首先,通过XRD图谱验证了Ti3C2和CdS的成功获得。如图2a所示,Ti3AlC2前体在9.7°、19.1°和39.1°处显示出其XRD衍射峰,分别对应于(002)、(004)和(104)晶面(JCPDS NO.52-0875)[43,44]。经HCl+HF+LiF混合物刻蚀后,在Ti3C2的XRD图谱中,Al层在39.1°处的最强峰明显消失,(002)晶面衍射峰从9.7°移至7.1°,证实了Ti3AlC2中Al层被成功刻蚀,形成了层间距较大的Ti3C2[42,45]。由于MoS2含量低且分布均匀,导致TM9样品的XRD图谱与Ti3C2样品差异不大[25]。结果表明,MoS2的生长对Ti3C2的结构没有影响。TM9样品中MoS2的存在将被拉曼光谱和XPS证明,将在后面讨论。对于CdS及其复合材料,XRD谱图主要衍射峰在24.9°、26.5°、28.2°、43.8°、47.7°和51.9°,分别属于六方CdS(JCPDS NO.41-1049)的(100)、(002)、(101)、(110)、(103)和(112)晶面(图2b)[46,47]。在二元CT1.5和三元C(TM9)x样品中,由于MoS2和Ti3C2含量低,未发现它们的衍射峰。
为了证实复合材料中MoS2的存在,通过拉曼光谱研究了纯Ti3C2和TM9的振动模式(图3a)。对于纯Ti3C2样品而言,204、291、448和592cm-1处的典型峰来自于非化学计量Ti3C2的ω1、ω2、ω3和ω4拉曼声子振动模式,1478和1598cm-1处的两个宽峰分别为Ti3C2中石墨碳的D带和G带[38,48]。与Ti3C2相比,TM9样品在382和405cm-1处出现了两个特征拉曼峰,分别属于MoS2 E2g 1和A1g的振动模式[26,49]。此外,利用XPS表征了TM9中MoS2的存在及其元素价态。在TM9样品的高分辨率XPS谱中,229.8和232.8eV为中心的两个典型峰分别归属于Mo4+的Mo 3d5/2和Mo 3d3/2(图3b),162.2eV和163.5eV为S2-的S 2p3/2和S 2p1/2的特征峰(图3c)[26,50]。上述结果证实了(NH4)2MoS4成功还原为MoS2并沉积在Ti3C2纳米片表面。
利用ICP-OES对复合材料中Ti3C2、MoS2和CdS的实际质量比进行了定量分析。在TM9样品中,MoS2的含量占Ti3C2的8.49wt%,接近理论值9%。进一步证明了MoS2可以通过自还原在Ti3C2表面生长,且没有明显的损失。在CT1.5样品中,Ti3C2与CdS的实际质量百分比为1.43%,也接近理论值1.5%。另一方面,在三元C(TM9)1.5复合材料中,Ti3C2和MoS2分别占CdS质量的0.95%和0.08%,略低于理论值1.5%和0.135%。这意味着大多数TM9纳米片在水热过程中成功地与CdS纳米颗粒结合,尽管一些CdS纳米颗粒不可避免地在溶液中非原位形成。
检测例2
用TEM、FESEM、HRTEM和HAADF-STEM对样品的形态结构进行了表征。如图4a所示,冻融法合成的Ti3C2为表面平整且光滑的超薄纳米片。沉积MoS2后,Ti3C2纳米片的表面变得粗糙,有致密的小片(图4b)。这些不规则的MoS2纳米颗粒直径在20~50nm左右。对于纯CdS样品,许多直径约为20-100nm的纳米颗粒相互严重团聚,形成花椰菜状聚集体(图4c)。相比之下,在C(TM9)1.5样品中,复合材料仍然呈现层状结构,CdS纳米颗粒的团聚现象似乎得到了有效的限制(图4d),这可以归因于Ti3C2作为良好的2D衬底的存在。C(TM9)1.5样品的TEM图像进一步显示,深色CdS颗粒分散在超薄Ti3C2表面(图4e)。其局部放大HRTEM图像(图4f)显示了0.34、0.23和0.36nm的晶格间距,分别归属为为CdS(002)、Ti3C2(103)和MoS2(004)晶面[36,38,51]。此外,通过HAADF-STEM图像以及Cd、S、Mo和Ti原子的EDS元素映射图像,进一步证实了三元C(TM9)1.5中Ti3C2、MoS2和CdS的紧密接触及其位置关系(图4j)。
检测例3
采用UV-vis DRS研究了助催化剂负载对CdS光吸收性能的影响。如图5a所示,纯CdS的吸收边位于560nm左右。将UV-vis DRS曲线转换为图5b所示的Tauc图,计算出CdS的带隙约为2.31eV。随着Ti3C2和MoS2的引入,CdS的吸收边位置基本不变,但可见光区域的光吸收能力明显提高,这可能会带来光热效应,在一定程度上促进光催化反应。
检测例4
本检测例通过在线痕量气体自动分析系统(Labsolar-6A,Beijing PerfectLight Technology Co.,Ltd.)检测样品的产氢效率,考察了样品的光催化性能。光源选用300W氙灯,带420nm截止滤光片。光催化反应的辐射面积约33cm2,灯泡距离反应溶液顶部9cm。在产氢反应前,将20mg光催化剂样品均匀分散在80mL乳酸(LA)水溶液(10v%)中。光催化反应过程中,每小时自动收集0.6mL的产气(H2)注入气相色谱(GC-2018,Shimazu,
Figure BDA0004120428040000071
分子筛柱,载气为N2)。
以乳酸LA为牺牲剂,在LA水溶液(10vol%)中测试了样品的可见光析氢反应(HER)活性,评估了样品的光催化性能。纯CdS、二元CT1.5、CM0.14和三元C(TM9)x样品在四小时辐照后平均产氢速率的比较如图6a所示。原始CdS的光活性最低,仅为2.18mmol·h-1·g-1。在CdS上负载Ti3C2和MoS2助催化剂,HER速率分别提高2.8倍(CT1.5样品为6.21mmol·h-1·g-1)和1.7倍(CM0.14样品为3.80mmol·h-1·g-1)。Ti3C2-MoS2共同改性进一步提高了三元样品的性能。其中,C(TM9)1.5样品的HER率最高,为14.88mmol·h-1·g-1,是纯CdS的6.8倍。显然,双助催化剂Ti3C2-MoS2的协同作用显著增强了CdS的光催化性能。然而,助催化剂负载量过高会导致活性下降。例如,C(TM9)10样品的产氢速率衰减为4.37mmol·h-1·g-1,甚至低于CT1.5样品。这是因为过多的Ti3C2-MoS2助催化剂,导致样品颜色较深,会产生“屏蔽效应”,这不仅阻碍CdS的光吸收,还会阻碍CdS表面的一些活性位点。
对于半导体光催化剂来说,光催化过程中的稳定性和光活性在未来的实际应用中同样重要。因此,以纯CdS和CT1.5为参考样品,对C(TM9)1.5样品进行循环活性实验,以评价其光稳定性。如图6b所示,在总辐照时间为12h的4个循环后,纯CdS的光活性明显下降了88.7%。当负载Ti3C2时,CT1.5样品的光活性下降速度略有减缓(下降了73.2%)。然而,当共同负载MoS2和Ti3C2时,C(TM9)1.5样品的光催化活性在4次循环后仅降低了7.6%。直接观察三个样品在制氢前后的溶液颜色变化,可以发现三个样品之间的差异更为明显。如图6c所示,在光催化反应开始前,所有原样品的悬浮液均呈现橙黄色。经过4小时的光照,CdS悬浮液变黑,CT1.5悬浮液变棕色,C(TM9)1.5悬浮液保持橙黄色(图6d)。结合循环活性测试结果和颜色变化可以推断,纯CdS的光腐蚀严重,活性下降最大,而Ti3C2的加入只是稍微缓解了这一过程。幸运的是,同时负载Ti3C2和MoS2几乎可以完全抑制CdS上光腐蚀的发生。随着反应时间的延长,C(TM9)1.5光催化剂甚至可以以恒定的速率生成H2长达78h(图6e),并在此期间悬浮液一直保持黄色。
为了阐明Ti3C2和MoS2负载后CdS上所发生的本质变化,解释样品呈现出不同的光腐蚀程度,故采用XRD、FESEM和XPS对这些样品在光照4小时前后的组分进行了研究。可以观察到,原始三种样品的XRD图谱没有明显差异(图2b)。然而,经过4小时的产氢反应后,金属Cd(JCPDS NO.05-0674)出现在纯CdS和CT1.5中,但没有出现在C(TM9)1.5样品中(图7a)。这反映了在纯CdS和CT1.5样品中,CdS表面晶格Cd2+在产氢过程中被还原为金属Cd,而在C(TM9)1.5样品上则没有发生这种情况。此外,通过对C(TM9)1.5样品在产H2反应4小时前后的形貌对比,分别如图4d和图7b所示,可以看出该三元复合光催化剂的层状结构在光催化反应过程中保持稳定。
此外,对光照4小时前后的样品进行了细致的Cd和S元素XPS分析。总体而言,CdS、CT1.5和C(TM9)1.5在光照前表现出相似的Cd和S XPS图谱。对于CdS,位于411.7eV和405.0eV的峰分别对应Cd 3d3/2和Cd 3d5/2(图8a),而处于162.5eV和161.4eV的峰分别对应S2p1/2和S 2p3/2(图8b)[26,52],上述证明了Cd和S元素处于Cd2+和S2-的化学状态。
经过4小时的光照,样品的XPS光谱出现了一些差异,如图8c和图8d所示。显然,CdS中可以发现Cd0的新特征峰(411.4和404.6eV)和S0的新特征峰(163.1和163.4eV),而CT1.5中只能发现Cd0的新特征峰。然而,C(TM9)1.5经光照后,其XPS光谱中均未发现金属Cd0和S0。光照后样品的XPS测试与XRD谱图分析结果(图2b和图7a)以及悬浮液颜色变化(图6c和图6d)相互之间吻合良好。由此可知,纯CdS的严重光腐蚀是由于表面晶格Cd2+和S2-分别还原氧化为Cd0和S0导致,而Ti3C2引入CdS后,因为只有Cd2+还原为Cd0,光腐蚀得到了一定程度的缓解。更重要的是,当Ti3C2和MoS2同步修饰时,C(TM9)1.5样品的成分和结构在光照后都保持稳定,这意味着CdS成功地避免了光腐蚀。
综上所述,在Ti3C2和MoS2助催化剂的协同辅助下,CdS的光催化活性和稳定性都得到了显著的提高。众所周知,光催化剂的性能主要取决于光激发电子-空穴对的产生、分离和转移效率。为此,对复合样品进行了一系列的光/电化学实验以及理论计算,以探讨其潜在的促进机制。
首先,通过PL发射光谱、TPR和EIS来确定载流子分离效率对提高光催化性能的重要贡献。其中,利用PL光谱(λEx=270nm)分析了不同样品中CdS光生载流子的复合效率。一般认为,当光诱导电子与空穴重新结合时,产生的能量以荧光的形式发射出去[53]。因此,较低的荧光强度意味着较低的电子-空穴对复合速率,这是制备优良光催化剂的理想光学特性。如图9a所示,CT1.5和C(TM9)1.5三个CdS样品在557nm处都有明显的PL发射峰,这归因于CdS的带边发射,该结果与DRS的测试结果一致(图5a)。与原始CdS和CT1.5相比,C(TM9)1.5复合材料的荧光强度最低。这是因为CdS与Ti3C2-MoS2之间的界面耦合有效地促进了CdS的电荷转移动力学,抑制了光生电荷的复合,从而使三元复合材料具有优异的电荷分离效率和光催化产氢效率。
TPR和EIS分析进一步证实了Ti3C2和MoS2作为双助催化剂能有效提高光生载流子的分离效率。从图9b可以看出,C(TM9)1.5样品的光电流密度比纯CdS样品明显变强,说明电子-空穴对的复合被成功抑制。因此,有足够的光生电子可以参与质子还原反应。此外,EISNyquist图中C(TM9)1.5的弧径是所有样品中最小的(图9c),这意味着其电阻值较低,更有利于电荷转移。基于上述分析,C(TM9)1.5复合材料在所有样品中表现出最低的电子空穴复合速率和最快的电荷分离和转移效率,故C(TM9)1.5具有最高的产氢性能。
反应过程中,光催化产氢活性也高度依赖于HER过电位。过电位越小,越有利于产氢。根据LSV测试结果,C(TM9)1.5的过电位(-0.51V vs.Ag/AgCl,pH=5.45)小于CdS的过电位(-0.64V vs.Ag/AgCl,pH=5.45),进一步证实C(TM9)1.5是一种适合产氢的光催化剂(图9d)[54,55]。
为了进一步确定CdS/Ti3C2和CdS/MoS2界面的电荷转移机制,基于密度泛函理论(DFT)进行了理论计算。首先,考虑到Ti3C2中存在Ti空位,故采用态密度(DOS)计算方法分析了Ti空位对Ti3C2电子结构的影响。图10a和图10b分别建立了纯Ti3C2和含Ti空位的Ti3C2(VTi-Ti3C2)的结构模型。通过去除Ti3C2表面层中的Ti原子,产生Ti空位,来建立VTi-Ti3C2模型。Ti3C2和VTi-Ti3C2的DOS在费米能级附近是连续的,说明它们具有良好的导电性(图10a和图10b)[38]。值得注意的是,与纯Ti3C2相比,VTi-Ti3C2在费米能级处表现出更高的DOS,这反映了Ti空位的存在有利于导电性[56]。
进一步利用电子密度差和Bader电荷分析分别阐明了电荷转移的方向和数量。如图11a和图11b所示,电荷再分配主要发生在CdS/MoS2和CdS/VTi-Ti3C2的界面附近,说明CdS与MoS2和Ti3C2紧密结合,相互之间存在较强的相互作用。黄色区域代表电荷积累,青色区域代表电荷消耗。此外,绘制了沿Z轴方向的平面平均电荷密度差,直接反映了电荷密度的变化。在CdS/VTi-Ti3C2界面,电子倾向于从VTi-Ti3C2转移到CdS,而在CdS/MoS2界面,电子倾向于从CdS转移到MoS2。另外,通过Bader电荷分析得到了具体的电荷转移数。如图11c和图11d所示,从Ti3C2向CdS和从CdS向MoS2转移的电子分别为3.90e和0.33e。理论计算结果表明,当Ti3C2加载到CdS上时,CdS上的光生空穴会迅速向Ti3C2转移,以缓解S2-氧化引起的光腐蚀,这很好地解释了被光照后的CT1.5样品XPS光谱中S0的缺失(图8d)。当Ti3C2和MoS2共同负载在CdS上时,光生空穴和电子分别转移到Ti3C2和MoS2上,这很好地说明了在光照C(TM9)1.5样品中没有观察到Cd0和S0的原因(图7和图8)。因此,共同负载Ti3C2-MoS2不仅能促进光生载流子的分离,还能有效地避免CdS光腐蚀以保证三元C(TM9)1.5复合材料优异的光催化性能和稳定性。
基于上述分析,提出了一种合理的电荷转移机制(图12)。在可见光照射下,CdS的光生电子和空穴分别还原质子(H+)生成H2和在其表面氧化LA。然而,纯CdS纳米颗粒倾向于相互团聚,使活性位点被遮挡,导致光生载流子的重组率过高。引入MoS2和Ti3C2后,CdS表面的光生空穴和电子分别迅速转移到Ti3C2和MoS2上,故空穴-电子对可以有效分离,提供更多的电荷参与后续的氧化还原反应。更重要的是,有效地避免了光腐蚀的发生,维持了催化剂的成分和结构的稳定。因此,在双助催化剂的协同作用下,三元CdS@Ti3C2-MoS2复合材料表现出优异的性能和突出的稳定性。
总之,本发明利用二维Ti3C2 MXene的还原性Ti空位制备了Ti3C2-MoS2复合材料,并进一步诱导其表面原位生长CdS,精心构建了具有紧密结合界面的三元CdS@Ti3C2-MoS2复合材料。将所制备的系列复合材料应用于可见光下光催化水裂解制氢。在所有样品中,C(TM9)1.5的产氢速率最高,为14.88mmol·h-1·g-1,是纯CdS的6.8倍。更重要的是,C(TM9)1.5制氢样品的寿命长达78h,其颜色和结构没有明显变化,这意味着通常发生在CdS上的光腐蚀被有效抑制。实验和理论结果综合说明了Ti3C2和MoS2分别在俘获空穴和电子方面发挥了重要作用。这种电荷转移途径不仅有效地阻止了光生空穴电子对的重组,使得更多的有效电子可以参与制氢反应,而且抑制了CdS上光腐蚀的出现,使CdS具有良好的光稳定性。氧化还原助催化剂的共修饰保证了光催化剂的催化活性和耐久性,这有助于弥补未来光催化技术和实际应用的转化差距。
以上理论计算的具体方法为:采用带有投影增强波的Vienna从头算模拟包(VASP)方法和广义梯度近似的Perdew-Burke-Ernzerhof公式进行密度泛函理论(DFT)计算。将截止能量设置为500eV,进行结构弛豫,直到能量和力收敛判别标准分别达到1×10-5eV和
Figure BDA0004120428040000101
此外,将真空层设置为/>
Figure BDA0004120428040000102
并采用Grimme的DFT-D3方法对van der Waals相互作用进行修正。
参考文献
[1]S.B.Wang,Y.Wang,S.L.Zhang,S.Q.Zang,X.W.D.Lou,Supporting ultrathinZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficientphotocatalytic H2 generation,Adv.Mater.,31(2019)1903404.
[2]G.Zuo,Y.Wang,W.L.Teo,A.Xie,Y.Guo,Y.Dai,W.Zhou,D.Jana,Q.Xian,W.Dong,Y.Zhao,Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene forphotocatalytic H2 evolution,Angew.Chem.Int.Ed.,59(2020)11287-11292.
[3]S.Wang,B.Y.Guan,X.Wang,X.W.D.Lou,Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogenevolution,J.Am.Chem.Soc.,140(2018)15145-15148.
[4]Y.Liu,W.Yang,Q.Chen,D.A.Cullen,Z.Xie,T.Lian,Pt particle sizeaffects both the charge separation and water reduction efficiencies of CdS-Ptnanorod photocatalysts for light driven H2 generation,J.Am.Chem.Soc.,144(2022)2705-2715.
[5]C.Chen,W.Q.Hou,Y.M.Xu,Significantly increased production of H2 onZnIn2S4 under visible light through co-deposited CoWO4 and Co3O4,Appl.Catal.BEnviron.,316(2022)121676.
[6]C.L.Tan,M.Y.Qi,Z.R.Tang,Y.J.Xu,Cocatalyst decorated ZnIn2S4composites for cooperative alcohol conversion and H2evolution,Appl.Catal.BEnviron.,298(2021)120541.
[7]K.Q.Lu,M.Y.Qi,Z.R.Tang,Y.J.Xu,Earth-abundant MoS2 and cobaltphosphate dual cocatalysts on 1D CdS nanowires for boosting photocatalytichydrogen production,Langmuir,35(2019)11056-11065.
[8]Y.Liu,Y.H.Li,X.Li,Q.Zhang,H.Yu,X.Peng,F.Peng,Regulating electron-hole separation to promote photocatalytic H2evolution activity ofnanoconfined Ru/MXene/TiO2 Catalysts,ACS Nano,14(2020)14181-14189.
[9]Y.J.Li,Y.Y.Liu,D.N.Xing,J.J.Wang,L.R.Zheng,Z.Y.Wang,P.Wang,Z.K.Zheng,H.F.Cheng,Y.Dai,B.B.Huang,2D/2Dheterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall water splitting,Appl.Catal.BEnviron.,285(2021)119855.
[10]J.X.Lv,Z.M.Zhang,J.Wang,X.L.Lu,W.Zhang,T.B.Lu,In situ synthesisof CdS/graphdiyne heterojunction for enhanced photocatalytic activity ofhydrogen production,ACS Appl.Mater.Interfaces,11(2019)2655-2661.
[11]Y.Yang,D.Zhang,Q.Xiang,Plasma-modified Ti3C2Tx/CdS hybrids withoxygen-containing groups for high-efficiency photocatalytic hydrogenproduction,Nanoscale,11(2019)18797-18805.
[12]Y.Zhao,C.Shao,Z.Lin,S.Jiang,S.Song,Low-energy facets on CdSallomorph junctions with optimal phase ratio to boost charge directionaltransfer for photocatalytic H2 fuel evolution,Small,16(2020)2000944.
[13]X.F.Ning,J.Li,B.J.Yang,W.L.Zhen,Z.Li,B.Tian,G.X.Lu,Inhibition ofphotocorrosion of CdS via assembling with thin film TiO2 and removing formedoxygen by artificial gill for visible light overall water splitting,Appl.Catal.B Environ.,212(2017)129-139.
[14]H.G.Yu,W.Zhong,X.Huang,P.Wang,J.G.Yu,Suspensible cubic-phase cdsnanocrystal photocatalyst:Facile synthesis and highly efficient H2-evolutionperformance in a sulfur-rich system,ACS Sustain.Chem.Eng.,6(2018)5513-5523.
[15]X.F.Ning,G.X.Lu,Photocorrosion inhibition of CdS-based catalystsfor photocatalytic overall water splitting,Nanoscale,12(2020)1213-1223.
[16]Y.Chen,W.Zhong,F.Chen,P.Wang,J.Fan,H.Yu,Photoinduced self-stability mechanism of CdS photocatalyst:The dependence of photocorrosion andH2-evolution performance,J.Mater.Sci.Technol.,121(2022)19-27.
[17]F.J.Chen,X.K.Jin,D.Z.Jia,Y.L.Cao,H.M.Duan,M.Q.Long,Efficienttreament of organic pollutants over CdS/graphene composites photocatalysts,Appl.Surf.Sci.,504(2020)144422.
[18]C.Bie,B.Zhu,L.Wang,H.Yu,C.Jiang,T.Chen,J.Yu,Abifunctional CdS/MoO2/MoS2 catalyst enhances photocatalytic H2evolution and pyruvic acidsynthesis,Angew.Chem.Int.Ed.,61(2022)202212045.
[19]B.T.Sun,P.Y.Qiu,Z.Q.Liang,Y.J.Xue,X.Zhang,L.Yang,H.Cui,J.Tian,Thefabrication of 1D/2D CdS nanorod@Ti3C2MXene composites for good photocatalyticactivity of hydrogen generation and ammonia synthesis,Chem.Eng.J.,406(2021)127177.
[20]X.Cheng,Y.Lu,Y.X.Liu,G.Tian,X.Y.Yang,One-pot synthesis ofhierarchical CdS/MoS2/rGO with enhanced(photo)electrocatalytic activities,Chem.Phys.Lett.,759(2020)138047.
[21]B.He,C.Bie,X.Fei,B.Cheng,J.Yu,W.Ho,A.A.Alghamdi,S.Wageh,Enhancement in the photocatalytic H2 productionactivity of CdS NRs by Ag2S andNiS dual cocatalysts,Appl.Catal.B Environ.,288(2021)119994.
[22]Z.Z.Liang,R.C.Shen,Y.H.Ng,P.Zhang,Q.J.Xiang,X.Li,Areview on 2DMoS2 cocatalysts in photocatalytic H2 production,J.Mater.Sci.Technol.,56(2020)89-121.
[23]L.X.Huang,B.Han,X.H.Huang,S.Liang,Z.Deng,W.Chen,M.Peng,H.Deng,Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogenevolution under visible light,J.Alloys Compd.,798(2019)553-559.
[24]Y.J.Li,L.Ding,Z.Q.Liang,Y.J.Xue,H.Z.Cui,J.Tian,Synergetic effectof defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhancedphotocatalytic H2 production activity of TiO2,Chem.Eng.J.,383(2020)123178.
[25]B.Han,S.Q.Liu,N.Zhang,Y.J.Xu,Z.R.Tang,One-dimensional CdS@MoS2core-shell nanowires for boosted photocatalytic hydrogen evolution undervisible light,Appl.Catal.B Environ.,202(2017)298-304.
[26]D.Ma,Q.F.Lu,E.Guo,F.Tao,M.Wei,CdS/MoS2 nanoparticles onnanoribbon heterostructures with boosted photocatalytic H2 evolution undervisible-light irradiation,ChemistrySelect,6(2021)2561-2568.
[27]S.Q.Zhang,X.Liu,C.B.Liu,S.L.Luo,L.L.Wang,T.Cai,Y.X.Zeng,J.L.Yuan,W.Y.Dong,Y.Pei,Y.T.Liu,MoS2 quantum dot growth induced by S vacancies in aZnIn2S4 monolayer:Atomic-level heterostructure for photocatalytic hydrogenproduction,ACS Nano,12(2018)751-758.
[28]Q.Liu,S.Wang,Q.Ren,T.Li,G.Tu,S.Zhong,Y.Zhao,S.Bai,Stacking designin photocatalysis:synergizing cocatalyst roles and anti-corrosion functionsof metallic MoS2 and graphene for remarkable hydrogen evolution over CdS,J.Mater.Chem.A,9(2021)1552-1562.
[29]H.Zhao,Y.M.Dong,P.P.Jiang,H.Y.Miao,G.L.Wang,J.Zhang,In situlight-assisted preparation of MoS2 on graphitic C3N4 nanosheets for enhancedphotocatalytic H2 production from water,J.Mater.Chem.A,3(2015)7375-7381.
[30]B.Wang,M.Y.Wang,F.Y.Liu,Q.Zhang,S.Yao,X.L.Liu,F.Huang,Ti3C2:Anideal co-catalyst?,Angew.Chem.Int.Ed.,59(2020)1914-1918.
[31]K.N.Li,S.S.Zhang,Y.H.Li,J.J.Fan,K.L.Lv,MXenes as noble-metal-alternative co-catalysts in photocatalysis,Chinese J.Catal.,42(2021)3-14.
[32]G.Zhao,Y.Sun,W.Zhou,X.Wang,K.Chang,G.Liu,H.Liu,T.Kako,J.Ye,Superior Photocatalytic H(2)Production with Cocatalytic Co/Ni SpeciesAnchored on Sulfide Semiconductor,Adv Mater,29(2017).
[33]D.Singh,V.Shukla,N.Khossossi,A.Ainane,R.Ahuja,Harnessing theunique properties of MXenes for advanced rechargeable batteries,J.Phys.-Energy,3(2020)012005.
[34]Y.Gao,C.Yan,H.Huang,T.Yang,G.Tian,D.Xiong,N.Chen,X.Chu,S.Zhong,W.Deng,Y.Fang,W.Yang,Microchannel-confined Mxene based flexiblepiezoresistive multifunctional micro-force sensor,Adv.Mater.,30(2020)1909603.
[35]F.Shahzad,M.Alhabeb,C.B.Hatter,B.Anasori,S.M.Hong,C.Min Koo,Y.Gogotsi,Electromagnetic interference shielding with 2D transition metalcarbides(MXenes),Science,353(2016)1137-1140.
[36]W.X.Huang,Z.P.Li,C.Wu,H.J.Zhang,J.Sun,Q.Li,Delaminating Ti3C2MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytichydrogen production,J.Mater.Sci.Technol.,120(2022)89-98.
[37]R.Xiao,C.X.Zhao,Z.Y.Zou,Z.Chen,L.Tian,H.Xu,H.Tang,Q.Liu,Z.Lin,X.Yang,In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottkyheterojunction toward enhanced photocatalytic hydrogen evolution,Appl.Catal.BEnviron.,268(2020)118382.
[38]Z.P.Li,W.X.Huang,J.X.Liu,K.L.Lv,Q.Li,Embedding CdS@Au intoultrathin Ti3-xC2Ty to build dual schottky barriers for photocatalytic H2production,ACS Catal.,11(2021)8510-8520.
[39]D.Zhao,Z.Chen,W.Yang,S.Liu,X.Zhang,Y.Yu,W.C.Cheong,L.Zheng,F.Ren,G.Ying,X.Cao,D.Wang,Q.Peng,G.Wang,C.Chen,MXene(Ti3C2)vacancy-confined single-atom catalyst for efficient functionalization of CO2,J.Am.Chem.Soc.,141(2019)4086-4093.
[40]C.Peng,P.Wei,X.Li,Y.Liu,Y.Cao,H.Wang,H.Yu,F.Peng,L.Zhang,B.Zhang,K.L.Lv,High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide,Nano Energy,53(2018)97-107.
[41]J.X.Yang,W.B.Yu,C.F.Li,W.D.Dong,L.Q.Jiang,N.Zhou,Z.P.Zhuang,J.Liu,Z.Y.Hu,H.Zhao,Y.Li,L.Chen,J.Hu,B.L.Su,PtO nanodots promoting Ti3C2 MXenein-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogenproduction,Chem.Eng.J.,420(2021)129695.
[42]X.W.Huang,P.Y.Wu,AFacile,high-yield,and freeze-and-thaw-assistedapproach to fabricate mxene with plentiful wrinklesand its application in on-chip micro-supercapacitors,Adv.Funct.Mater.,30(2020)1910048.
[43]T.S.Mathis,K.Maleski,A.Goad,A.Sarycheva,M.Anayee,A.C.Foucher,K.Hantanasirisakul,C.E.Shuck,E.A.Stach,Y.Gogotsi,Modified Max phase synthesisfor environmentally stable and highly conductiveTi3C2 MXene,ACS Nano,15(2021)6420-6429.
[44]J.Z.Zhang,N.Kong,S.Uzun,A.Levitt,S.Seyedin,P.A.Lynch,S.Qin,M.K.Han,W.R.Yang,J.Q.Liu,X.G.Wang,Y.Gogotsi,J.M.Razal,Scalable manufacturingof free-standing,strong Ti3C2Tx MXene films with outstanding conductivity,Adv.Mater.,32(2020)2001093.
[45]Y.Liao,J.Qian,G.Xie,Q.Han,W.Dang,Y.Wang,L.Lv,S.Zhao,L.Luo,W.Zhang,H.-Y.Jiang,J.Tang,2D-layered Ti3C2MXenes for promoted synthesis of NH3on P25 photocatalysts,Appl.Catal.B Environ.,273(2020)119054.
[46]X.Li,G.Yang,S.Li,N.Xiao,N.Li,Y.Gao,D.Lv,L.Ge,Novel dual co-catalysts decorated Au@HCS@PdS hybrids withspatially separated chargecarriers and enhanced photocatalytic hydrogen evolution activity,Chem.Eng.J.,379(2020)122350.
[47]D.Xiang,X.Hao,Z.Jin,Cu/CdS/MnOx Nanostructure-Based Photocatalystfor Photocatalytic Hydrogen Evolution,ACSApplied Nano Materials,4(2021)13848-13860.
[48]J.X.Low,L.Y.Zhang,T.Tong,B.Shen,J.Yu,TiO2/MXene Ti3C2 compositewith excellent photocatalytic CO2 reductionactivity,J.Catal.,361(2018)255-266.
[49]X.Wang,H.Li,H.Li,S.Lin,W.Ding,X.G.Zhu,Z.G.Sheng,H.Wang,X.B.Zhu,Y.P.Sun,2D/2D 1T-MoS2/Ti3C2 MXeneheterostructure with excellent supercapacitorperformance,Adv.Funct.Mater.,30(2020)1910302.
[50]K.X.Zhuge,Z.J.Chen,Y.Q.Yang,J.Wang,Y.Shi,Z.Li,In-suitphotodeposition of MoS2 onto CdS quantum dots for efficientphotocatalytic H2evolution,Appl.Surf.Sci.,539(2021)148234.
[51]J.Yang,Q.X.Zhu,Z.G.Xie,Y.J.Wang,J.K.Wang,Y.Peng,Y.Y.Fang,L.H.Deng,T.P.Xie,L.J.Xu,Enhancement mechanismof photocatalytic activity forMoS2/Ti3C2 schottky junction:experiment and DFT calculation,J.Alloys Compd.,887(2021).
[52]C.Deng,F.Ye,T.Wang,X.Ling,L.Peng,H.Yu,K.Ding,H.Hu,Q.Dong,H.Le,Y.Han,Developing hierarchical CdS/NiOhollow heterogeneous architectures forboosting photocatalytic hydrogen generation,Nano Res.,15(2021)2003-2012.
[53]Y.Chen,G.Tian,Z.Ren,K.Pan,Y.Shi,J.Wang,H.Fu,Hierarchical core-shell carbon nanofiber@ZnIn2S4 composites forenhanced hydrogen evolutionperformance,ACS Appl.Mater.Interfaces,6(2014)13841-13849.
[54]T.M.Di,L.Y.Zhang,B.Cheng,J.Yu,J.Fan,CdS nanosheets decorated withNi@graphene core-shell cocatalyst for superiorphotocatalytic H2 production,J.Mater.Sci.Technol.,56(2020)170-178.
[55]X.Q.Hao,Y.Hu,Z.W.Cui,J.Zhou,Y.Wang,Z.G.Zou,Self-constructed facetjunctions on hexagonal CdS single crystals withhigh photoactivity andphotostability for water splitting,Appl.Catal.B Environ.,244(2019)694-703.
[56]W.Wang,H.M.Feng,J.G.Liu,M.Zhang,S.Liu,C.Feng,S.G.Chen,Aphotocatalyst of cuprous oxide anchored MXenenanosheet for dramaticenhancement of synergistic antibacterial ability,Chem.Eng.J.,386(2020).

Claims (9)

1.一种CdS@Ti3C2 MXene-MoS2三元复合催化剂,所述催化剂为层状复合材料,所述CdS均匀分散于由MoS2在二维Ti3C2纳米片上原位修饰形成的Ti3C2-MoS2复合物的表面,所述复合材料中 Ti3C2-MoS2复合物与CdS的理论质量比为0.25%-10%。
2.权利要求1所述的CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法,具体包括以下步骤:
(1)利用二维Ti3C2 MXene的还原性Ti空位制备Ti3C2-MoS2复合材料
将二维Ti3C2纳米片分散在去离子水中,充分搅拌以获得均匀的Ti3C2悬浮液,将钼酸盐溶解于去离子水中后,缓慢加入上述Ti3C2悬浊液中,室温下搅拌1-3 h后,过滤,洗涤,最后经冻干处理得到Ti3C2-MoS2复合材料,即TMy,其中y为MoS2与Ti3C2的理论质量比,单位为%;
(2)采用微波-水热法制备CdS@Ti3C2 MXene-MoS2复合物
在TMy分散于去离子水中得到悬浊液,向其中加入Cd(CH3COO)2·2H2O,室温搅拌30-180min,再向其中加入硫源,继续搅拌至均匀后,转移至微波水热反应釜,于130-200 ℃加热30-90 min,待冷却至室温后,洗涤至滤液pH=7,然后干燥,获得CdS@Ti3C2 MXene-MoS2三元复合催化剂。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤(2)中干燥的条件为在60 ℃下真空干燥12 h。
4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述二维Ti3C2纳米片为通过冻融法制备的二维超薄Ti3C2纳米片。
5.根据权利要求2所述的制备方法,其特征在于,所述钼酸盐为(NH4)2MoS4,所述硫源为硫代乙酰胺。
6.根据权利要求2所述的制备方法,其特征在于,所述y = 0.5-15。
7.权利要求1所述的CdS@Ti3C2 MXene-MoS2三元复合催化剂在光催化产氢上的应用。
8.权利要求2-6任一项所述制备方法得到的CdS@Ti3C2 MXene-MoS2三元复合催化剂在光催化产氢上的应用。
9.根据权利要求7或8所述的应用,其特征在于,所述应用为将该催化剂应用于可见光下光催化水裂解制氢。
CN202310230902.3A 2023-03-11 2023-03-11 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用 Active CN116328803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310230902.3A CN116328803B (zh) 2023-03-11 2023-03-11 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310230902.3A CN116328803B (zh) 2023-03-11 2023-03-11 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN116328803A true CN116328803A (zh) 2023-06-27
CN116328803B CN116328803B (zh) 2024-05-10

Family

ID=86888764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310230902.3A Active CN116328803B (zh) 2023-03-11 2023-03-11 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN116328803B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630821A (zh) * 2015-02-12 2015-05-20 重庆市环境科学研究院 基于MoS2和Ag修饰硅纳米线阵列光电化学析氢电极及其应用
CN109046424A (zh) * 2018-08-09 2018-12-21 武汉科技大学 一种高效产氢的UiO-66-NH2/TiO2/Ti3C2复合光催化剂及其制备方法
CN110227525A (zh) * 2019-07-04 2019-09-13 清华大学深圳研究生院 一种二维光催化材料及其制备方法、以及其应用方法
CN111250122A (zh) * 2020-01-23 2020-06-09 福建工程学院 一种纳米贵金属修饰的Ag/MXene/TiO2复合材料及其制备方法
CN111569909A (zh) * 2020-05-08 2020-08-25 温州大学新材料与产业技术研究院 氧化/还原-双助催化剂复合的CdS基多元光催化复合材料的制备方法及其产氢应用
CN112892607A (zh) * 2021-01-15 2021-06-04 江苏大学 一种稳定的光催化分解水制氢的三元复合材料及其制备方法
CN114709379A (zh) * 2022-03-09 2022-07-05 宁波锋成先进能源材料研究院有限公司 一种三维褶皱结构Ti3C2 Mxene及其制备方法和应用
CN115624983A (zh) * 2022-10-17 2023-01-20 中山大学·深圳 一种二维Ti3C2-MoS2纳米异质结的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630821A (zh) * 2015-02-12 2015-05-20 重庆市环境科学研究院 基于MoS2和Ag修饰硅纳米线阵列光电化学析氢电极及其应用
CN109046424A (zh) * 2018-08-09 2018-12-21 武汉科技大学 一种高效产氢的UiO-66-NH2/TiO2/Ti3C2复合光催化剂及其制备方法
CN110227525A (zh) * 2019-07-04 2019-09-13 清华大学深圳研究生院 一种二维光催化材料及其制备方法、以及其应用方法
CN111250122A (zh) * 2020-01-23 2020-06-09 福建工程学院 一种纳米贵金属修饰的Ag/MXene/TiO2复合材料及其制备方法
CN111569909A (zh) * 2020-05-08 2020-08-25 温州大学新材料与产业技术研究院 氧化/还原-双助催化剂复合的CdS基多元光催化复合材料的制备方法及其产氢应用
CN112892607A (zh) * 2021-01-15 2021-06-04 江苏大学 一种稳定的光催化分解水制氢的三元复合材料及其制备方法
CN114709379A (zh) * 2022-03-09 2022-07-05 宁波锋成先进能源材料研究院有限公司 一种三维褶皱结构Ti3C2 Mxene及其制备方法和应用
CN115624983A (zh) * 2022-10-17 2023-01-20 中山大学·深圳 一种二维Ti3C2-MoS2纳米异质结的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIN SUN ET AL.: "Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-lightdriven photocatalytic activity", 《APPLIED SURFACE SCIENCE》, vol. 535, 1 August 2020 (2020-08-01), pages 1, XP086309215, DOI: 10.1016/j.apsusc.2020.147354 *
CHAO WU ET AL.: "Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 330, 17 March 2023 (2023-03-17), pages 1 - 11 *
XIANG LIU ET AL.: "Promoted charge separation on 3D interconnected Ti3C2/MoS2/CdS composite for enhanced photocatalytic H2 production", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》, vol. 47, no. 13, 19 January 2022 (2022-01-19), pages 8285, XP086952989, DOI: 10.1016/j.ijhydene.2021.12.180 *
黄蔚欣: "Ti3C2 MXene修饰金属硫化物高效可见光催化产氢活性", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 2, 15 February 2024 (2024-02-15), pages 015 - 232 *

Also Published As

Publication number Publication date
CN116328803B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
Wu et al. Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production
Hong et al. Recent progress of two-dimensional MXenes in photocatalytic applications: a review
You et al. State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review
Chen et al. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation
Lu et al. Metal–organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production
Liu et al. Recent advancements in gC 3 N 4-based photocatalysts for photocatalytic CO 2 reduction: a mini review
Xu et al. NH2-MIL-125 (Ti)/graphitic carbon nitride heterostructure decorated with NiPd co-catalysts for efficient photocatalytic hydrogen production
Mei et al. A Z-scheme Bi 2 MoO 6/CdSe-diethylenetriamine heterojunction for enhancing photocatalytic hydrogen production activity under visible light
CN109395777B (zh) 一种三元复合光催化剂BiOI@UIO-66(NH2)@g-C3N4的制备方法
Xia et al. Novel 2D Zn-porphyrin metal organic frameworks revived CdS for photocatalysis of hydrogen production
Bi et al. Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation
CN110124706B (zh) 碳化钛/硫化铟锌复合可见光催化剂的制备方法
CN113578297B (zh) 一种氧封端单层碳化钛复合二氧化钛光催化剂及其制备方法
Li et al. Nanoflower-like Ti3CN@ TiO2/CdS heterojunction photocatalyst for efficient photocatalytic water splitting
Cui et al. Construction of atomic-level charge transfer channel in Bi12O17Cl2/MXene heterojunctions for improved visible-light photocatalytic performance
Fu et al. One-pot sulfurized synthesis of ZnIn2S4/S, N-codoped carbon composites for solar light driven water splitting
CN113996323B (zh) 一种硫化铟锌复合可见光催化剂及其制备方法和应用
CN112827503A (zh) 一种2D/2D硫化铟锌/MXene光催化异质结产氢材料及其制备方法
WO2023222143A1 (zh) 一种Fe2O3-MXenes复合催化剂及其制备方法与应用
CN113751049B (zh) 一种碳化钛/氮化碳复合光催化剂的制备方法、产品及应用
Zhang et al. A CdS/MnS p–n heterojunction with a directional carrier diffusion path for efficient photocatalytic H 2 production
Xu et al. Al-doped CuS/Znln2S4 forming Schottky junction induced electron trap centers for photocatalytic overall water splitting
Arif et al. Design of earth-abundant Z-scheme gC 3 N 4/rGO/FeOOH ternary heterojunctions with excellent photocatalytic activity
CN115739123A (zh) 一种CdS/Znln2S4异质结光催化剂的制备方法及其应用
Liu et al. Efficient photocatalytic hydrogen production by Mn 0.05 Cd 0.95 S nanoparticles anchored on cubic NiSe 2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant