CN115624983A - 一种二维Ti3C2-MoS2纳米异质结的制备方法 - Google Patents

一种二维Ti3C2-MoS2纳米异质结的制备方法 Download PDF

Info

Publication number
CN115624983A
CN115624983A CN202211268939.7A CN202211268939A CN115624983A CN 115624983 A CN115624983 A CN 115624983A CN 202211268939 A CN202211268939 A CN 202211268939A CN 115624983 A CN115624983 A CN 115624983A
Authority
CN
China
Prior art keywords
nano
mos
dimensional
preparation
nanosheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211268939.7A
Other languages
English (en)
Inventor
刘杰
陈小梅
张晓戈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Sun Yat Sen University Shenzhen Campus
Original Assignee
Sun Yat Sen University
Sun Yat Sen University Shenzhen Campus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University, Sun Yat Sen University Shenzhen Campus filed Critical Sun Yat Sen University
Priority to CN202211268939.7A priority Critical patent/CN115624983A/zh
Publication of CN115624983A publication Critical patent/CN115624983A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种二维Ti3C2‑MoS2纳米异质结的制备方法,包括如下步骤:通过超声剥离法制备单层或少层二维Ti3C2纳米片,然后用二甲基亚砜和聚二烯丙基二甲基氯化铵处理Ti3C2纳米片,增加其层间距并使其带正电荷;最后通过水热法在Ti3C2纳米片上原位生长MoS2纳米片,即制备得到二维Ti3C2‑MoS2纳米异质结。本发明的制备方法简单,工艺参数易控制,成本低廉,所制备的二维Ti3C2‑MoS2纳米异质结尺寸均一,水分散性良好,物理及化学稳定性良好,可在单一波长激光照射下同时具备优异的光热和光动力性能,同时其生物相容性好,化学惰性高,加之其二维的比表面积较大,可以负载多种类型的药物,实现疾病的多效协同治疗,在肿瘤治疗等生物医学及能源开发等领域具有广泛的应用前景。

Description

一种二维Ti3C2-MoS2纳米异质结的制备方法
技术领域
本发明涉及纳米功能材料领域,具体地说,涉及一种Ti3C2-MoS2二维纳米异质结材料的制备技术。
背景技术
光热疗法(PTT)和光动力疗法(PDT)与传统化疗相比,具有低创伤、且不会产生放疗和化疗产生的毒副作用的优势,理论上能够实现对所有实体肿瘤进行治疗。
PTT是一种非侵入式的激光治疗方法,光敏剂通过靶向性识别技术选择性地富集在肿瘤区域,对肿瘤局部进行近红外光照后累积的光敏剂会把光能量转化为热。使肿瘤产生局部高温(大于42 ℃),特异性地“烧伤”肿瘤细胞,同时避免肿瘤部位周围健康组织细胞的损伤,达到治疗的目的。PDT是利用光动力效应进行治疗的一种新技术。这是一种有氧分子参与的伴随生物效应的光敏化反应。其过程是,特定波长的激光照射使组织吸收的光敏剂受到激发,激发态的光敏剂又把能量传递给周围的氧,使其生成性质活泼的活性氧,活性氧再与相邻的生物大分子发生氧化反应,从而产生细胞毒性作用,进而导致肿瘤细胞受损乃至死亡。PTT与PDT结合,通过光热协同增强光动力效果以提高肿瘤治疗效果。
MXenes是一类新型的二维纳米材料,可通过前驱体MAX相进行蚀刻处理得到,MAX相是一类三元层状化合物,其化学式可用Mn+1AnTx表示(n = 1~3),其中M代表过渡族金属,T指C或N,X指表面封端基团(如-O、-OH、-F、-Cl等),A代表III、IV主族元素。近年来,二维MXenes纳米材料因其独特的理化和生物学特性被广泛应用于生物医学等多功能纳米平台的构建。在已发现的MXenes材料中,Ti3C2因其成本低、性能好、光热和光动力性能优良而备受关注。然而,大量暴露的金属原子(如Ti原子)和较高的表面能使得Ti3C2材料在热力学上十分不稳定,易被氧化。此外,在制备Ti3C2纳米材料时,常用的水热、溶剂热或退火工艺会加剧Ti3C2的氧化。例如,在水热过程中,由于溶解氧的存在使Ti3C2容易被氧化形成TiO2纳米粒子,导致其结构和性能改变。而且在单一激发波长下,无法同时实现光热和光动力效应。为了提高Ti3C2的稳定性及光学性质,可对其进行元素掺杂或与其他材料进行复合,利用两者的协同作用来提高其稳定性,同时可提高其光催化活性。此外,Ti3C2 MXene具有金属性能,可与其他半导体形成肖特基异质结,并通过异质结界面捕获和转移光生电子,有效促进电子和空穴的分离。
近年来,MoS2作为一种紫外及可见光响应的二维金属材料,由于其较窄的禁带宽度(约1.8 eV)、比表面积大、化学稳定性好及制备方法简单等优点被广泛用于生物医学、晶体管、催化剂、润滑剂等领域的研究。同时纳米结构的MoS2因具有更大的比表面积,能进一步增强其在可见光下的催化活性。然而,由于紫外及可见光的组织穿透深度有限,光生载流子的快速复合导致其光催化活性效率低,限制了其在生物医学领域的应用和发展。
发明内容
针对上述问题,本发明提供了一种Ti3C2-MoS2二维纳米异质结的制备方法。本发明以二维MXenes材料Ti3C2纳米片为基体,在其表面原位生长MoS2形成Ti3C2-MoS2纳米异质结,该制备方法简单,参数易于控制,适合大规模生产,所制备的二维Ti3C2-MoS2纳米异质结尺寸均一、分散性良好,同时具备在单一激发波长照射下良好的光热和光动力性能,在光催化、疾病治疗、能源开发等领域具有良好的应用前景。
为了达到上述目的,本发明采用的技术方案为:
一种二维Ti3C2-MoS2纳米异质结的制备方法,包括如下步骤:通过超声剥离法制备单层或少层二维Ti3C2纳米片,然后用二甲基亚砜(DMSO)和聚二烯丙基二甲基氯化铵(PDDA)处理Ti3C2纳米片,增加其层间距并使其带正电荷;最后通过水热法在Ti3C2纳米片上原位生长MoS2纳米片,即制备得到二维Ti3C2-MoS2纳米异质结。
为了增大Ti3C2纳米片的层间隙和改变其表面电荷,使其带正电,用DMSO和PDDA对Ti3C2纳米片进行修饰。插层是改性粘土的一种重要方法,MXenes类材料从结构和性能上看属于“导电亲水粘土”,因此我们通过DMSO增加Ti3C2层间距,并利用原位生长的MoS2纳米片作为表面屏障来隔离溶解氧稳定Ti3C2材料。同时MoS2纳米片与Ti3C2纳米片可形成Ti3C2-MoS2异质结结构,实现光生载流子的快速分离,可以有效改善MoS2带隙小、光生电子与空穴易复合的问题,大大提高活性氧的产生效率。
作为优选的,在上述的Ti3C2-MoS2二维纳米异质结的制备方法中,具体包括下列步骤:
(1)Ti3C2纳米片的制备:取块状Ti3C2,加入25%四丙基氢氧化铵(TPAOH),室温下避光搅拌,置于超声清洗器中超声,产物分别用去离子水和乙醇洗涤多次除去溶剂四丙基氢氧化铵,冷冻干燥,即得Ti3C2纳米片;
(2)PDDA修饰的Ti3C2的制备:取Ti3C2纳米片加入到PDDA和DMSO的混合溶液中,搅拌,沉淀用去离子水-乙醇洗涤多次,离心收集产物,即得PDDA修饰的Ti3C2纳米片;
(3)Ti3C2-MoS2二维纳米异质结的制备:取上述制备的PDDA修饰的Ti3C2纳米片,置于去离子水中,超声分散均匀后,加入四硫钼酸铵,继续超声处理5~10 min,之后加入二甲基甲酰胺(DMF)中,将其转移至不锈钢高压反应釜中,于150~250℃的马弗炉反应8~24 h,沉淀离心,去离子水洗涤后,冷冻干燥,即得二维Ti3C2-MoS2纳米异质结。
作为优选的,在上述的Ti3C2-MoS2二维纳米异质结的制备方法中,步骤(1)中所述搅拌的时间为12~48 h,所述超声的时间为24~72 h。
作为优选的,在上述的Ti3C2-MoS2二维纳米异质结的制备方法中,步骤(2)所述DMSO 和PDDA 的混合溶液中DMSO与PDDA体积比范围为15~20:1;所述搅拌的时间为12~24h;所述洗涤的次数为3~6次,所述离心的速度为8000~13000 rpm/min,时间为10~30 min。
作为优选的,在上述的Ti3C2-MoS2二维纳米异质结的制备方法中,步骤(3)所述四硫钼酸铵与Ti3C2的质量比范围1:2~5:1;所述离心的速度为10000~13000 rpm/min,离心时间为10~30 min。
与现有技术相比,本发明具有如下有益效果:
(1)本发明用热溶剂法在Ti3C2纳米片表面原位生长MoS2纳米片,所制备的二维纳米异质结横向尺寸为50~200 nm,厚度为2~6 nm。二维Ti3C2与MoS2之间能形成较好的接触,且由于Ti3C2本身的金属特性,有利于光生电子快速向Ti3C2转移,因此有益于提高电子-空穴对的分离效率,提高载流子的转移速率,从而有利于提高其光催化性能。同时增强非辐射去激发过程,产生更多热量,提高其光热性能。
(2)本发明的制备方法简单,工艺参数易控制,成本低廉,所制备的二维Ti3C2-MoS2纳米异质结尺寸均一,水分散性良好,物理及化学稳定性良好,可在单一波长激光照射下同时具备优异的光热和光动力性能,同时其生物相容性好,化学惰性高,加之其二维的比表面积较大,可以负载多种类型的药物,实现疾病的多效协同治疗,在肿瘤治疗等生物医学及能源开发等领域具有广泛的应用前景。
附图说明
图1为实施例1的碳化钛(Ti3C2)纳米片的透射电镜图。
图2为实施例1的碳化钛-二硫化钼(Ti3C2-MoS2)纳米异质结的透射电镜图。
图3为实施例1的水、Ti3C2纳米片及Ti3C2-MoS2二维纳米异质的光热升温-时间变化图;
图4为实施例1的Ti3C2纳米片及Ti3C2-MoS2二维纳米异质的在808 nm激光照射下产生的活性氧对DPBF降解图。
具体实施方式
实施例1:二维Ti3C2-MoS2纳米异质结的制备
(1)Ti3C2纳米片的制备:首先用25%的四丙基氢氧化铵(TPAOH)溶液对块状Ti3C2粉末进行预处理。具体过程为:称50 mg块状Ti3C2,加入至10 mL的TPAOH,室温下避光搅拌24h,置于超声清洗器中超声48 h,产物分别用去离子水和乙醇洗涤3~5次除去溶剂TPAOH,冷冻干燥,即得少层的二维Ti3C2纳米片。
(2)PDDA修饰的Ti3C2的制备:为了增大Ti3C2纳米片的层间隙和改变其表面电荷,使其带正电,用DMSO和PDDA对Ti3C2纳米片进行修饰。称取Ti3C2纳米片10 mg加入到10 mL含有10% PDDA的DMSO溶液,搅拌24 h,沉淀用去离子水-乙醇洗涤3~5次,13000 rpm/min离心10 min,收集产物,即得PDDA修饰的Ti3C2纳米片。
(3)Ti3C2-MoS2二维纳米异质结的制备:称取10 mg上述制备的PDDA修饰的Ti3C2纳米片,置于10 mL去离子水中,超声5 h分散均匀后,加入10 mg四硫钼酸铵((NH4)2MoS4),继续超声处理10 min,之后加入15 mL的DMF中,将其转移至不锈钢高压反应釜中,于200℃的马弗炉反应20 h,沉淀离心,去离子水洗涤3~5次后,冷冻干燥24 h,即得Ti3C2-MoS2二维纳米异质结。
图1表明:本实施例步骤(1)得到的Ti3C2纳米片为二维平面结构,横向尺寸为100nm左右,尺寸均一,因此具有较大的比表面积。
图2表明:本实施例得到的Ti3C2-MoS2纳米异质结为二维结构,横向尺寸为120 nm左右,因此具有较大的比表面积。
图3表明:本实施例得到的Ti3C2-MoS2纳米异质结在808 nm激光照射下具有优异的光热性能,其光热性能高于单一Ti3C2的光热性能。
图4表明:本实施例得到的Ti3C2-MoS2纳米异质结在808 nm激光照射下也具有较好的光动力性能,其性能高于单一Ti3C2的光动力性能。
实施例2:二维Ti3C2-MoS2纳米异质结的制备
(1)Ti3C2纳米片的制备:称取25 mg块状Ti3C2,加入5 mL 25%的TPAOH,室温下避光搅拌24 h,置于超声清洗器中超声72 h,产物分别用去离子水和乙醇洗涤多次除去溶剂TPAOH,冷冻干燥,即得Ti3C2纳米片。
(2)PDDA修饰的Ti3C2的制备:为了增大Ti3C2纳米片的层间隙和改变其表面电荷,使其带正电,用DMSO和PDDA对Ti3C2纳米片进行修饰。称取Ti3C2纳米片5 mg加入到5 mL含有5% PDDA的DMSO溶液,搅拌12 h,沉淀用去离子水-乙醇洗涤3~5次,离心收集产物,即得PDDA修饰的Ti3C2纳米片。
(3)Ti3C2-MoS2二维纳米异质结的制备:称取10 mg上述制备的PDDA修饰的Ti3C2纳米片,置于10 mL去离子水中,超声5 h后分散均匀后,加入15 mg四硫钼酸铵((NH4)2MoS4),继续超声处理10 min,之后加入15 mL的DMF中,将其转移至不锈钢高压反应釜中,于200℃的马弗炉反应15 h,沉淀离心,去离子水洗涤后,冷冻干燥24 h,即得Ti3C2-MoS2二维纳米异质结。本实施例制备得到的Ti3C2-MoS2二维纳米异质结为深褐色粉末,在近红外激光照射下具有较好的光热和光动力性能。
实施例3:二维Ti3C2-MoS2纳米异质结的制备
(1)Ti3C2纳米片的制备:称取40 mg块状Ti3C2,加入8 mL 25%的TPAOH,室温下避光搅拌48 h,置于超声清洗器中超声72 h,产物分别用去离子水和乙醇洗涤多次除去溶剂TPAOH,冷冻干燥,即得Ti3C2纳米片。
(2)PDDA修饰的Ti3C2的制备:为了增大Ti3C2纳米片的层间隙和改变其表面电荷,使其带正电,用DMSO和PDDA对Ti3C2纳米片进行修饰。称取Ti3C2纳米片10 mg加入到10 mL含有5% PDDA的DMSO溶液,搅拌24 h,沉淀用去离子水-乙醇洗涤3~5次,离心收集产物,即得PDDA修饰的Ti3C2纳米片。
(3)Ti3C2-MoS2二维纳米异质结的制备:称取10 mg上述制备的PDDA修饰的Ti3C2纳米片,置于10 mL去离子水中,超声分散均匀后,加入20 mg四硫钼酸铵((NH4)2MoS4),继续超声处理10 min,之后加入20 mL的DMF中,将其转移至不锈钢高压反应釜中,于200℃的马弗炉反应24 h,沉淀离心,去离子水洗涤后,冷冻干燥24 h,即得Ti3C2-MoS2二维纳米异质结。本实施例制备得到的Ti3C2-MoS2二维纳米异质结为深褐色粉末,在近红外激光照射下具有较好的光热和光动力性能。

Claims (5)

1.一种二维Ti3C2-MoS2纳米异质结的制备方法,其特征在于包括如下步骤:通过超声剥离法制备单层或少层二维Ti3C2纳米片,然后用二甲基亚砜和聚二烯丙基二甲基氯化铵处理Ti3C2纳米片,增加其层间距并使其带正电荷;最后通过水热法在Ti3C2纳米片上原位生长MoS2纳米片,即制备得到二维Ti3C2-MoS2纳米异质结。
2.根据权利要求1所述的Ti3C2-MoS2二维纳米异质结的制备方法,其特征在于包括下列步骤:
(1)Ti3C2纳米片的制备:取块状Ti3C2,加入25%四丙基氢氧化铵,室温下避光搅拌,置于超声清洗器中超声,产物分别用去离子水和乙醇洗涤多次除去溶剂四丙基氢氧化铵,冷冻干燥,即得Ti3C2纳米片;
(2)PDDA修饰的Ti3C2的制备:取Ti3C2纳米片加入到PDDA和DMSO的混合溶液中,搅拌,沉淀用去离子水-乙醇洗涤多次,离心收集产物,即得PDDA修饰的Ti3C2纳米片;
(3)Ti3C2-MoS2二维纳米异质结的制备:取上述制备的PDDA修饰的Ti3C2纳米片,置于去离子水中,超声分散均匀后,加入四硫钼酸铵,继续超声处理5~10 min,之后加入二甲基甲酰胺(DMF)中,将其转移至不锈钢高压反应釜中,于150~250℃的马弗炉反应8~24 h,沉淀离心,去离子水洗涤后,冷冻干燥,即得二维Ti3C2-MoS2纳米异质结。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述搅拌的时间为12~48h,所述超声的时间为24~72 h。
4.根据权利要求2所述的制备方法,其特征在于步骤(2)中,所述DMSO 和PDDA 的混合溶液中DMSO与PDDA体积比范围为15~20:1;所述搅拌的时间为12~24 h;所述洗涤的次数为3~6次,所述离心的速度为8000~13000 rpm/min,时间为10~30 min。
5.根据权利要求2所述的制备方法,其特征在于步骤(3)中,
所述四硫钼酸铵与Ti3C2的质量比范围1:2~5:1;所述离心的速度为10000~13000 rpm/min,离心时间为10~30 min。
CN202211268939.7A 2022-10-17 2022-10-17 一种二维Ti3C2-MoS2纳米异质结的制备方法 Pending CN115624983A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211268939.7A CN115624983A (zh) 2022-10-17 2022-10-17 一种二维Ti3C2-MoS2纳米异质结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211268939.7A CN115624983A (zh) 2022-10-17 2022-10-17 一种二维Ti3C2-MoS2纳米异质结的制备方法

Publications (1)

Publication Number Publication Date
CN115624983A true CN115624983A (zh) 2023-01-20

Family

ID=84904357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211268939.7A Pending CN115624983A (zh) 2022-10-17 2022-10-17 一种二维Ti3C2-MoS2纳米异质结的制备方法

Country Status (1)

Country Link
CN (1) CN115624983A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328803A (zh) * 2023-03-11 2023-06-27 中南民族大学 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109794274A (zh) * 2019-01-24 2019-05-24 山东科技大学 一种碳化钛片层/硫化钼纳米片/二氧化钛纳米片复合材料及其制备方法
US20190344222A1 (en) * 2017-05-12 2019-11-14 Dalian University Of Technology An mxene based compositing nanofiltration membrane and corresponding preparation method
CN111777069A (zh) * 2020-07-20 2020-10-16 桂林电子科技大学 一种结构稳定的MXene复合材料及其制备方法和应用
CN112054199A (zh) * 2020-09-02 2020-12-08 山东大学 一种用于高性能钾离子电池的MoS2/Ti3C2 MXene复合材料的制备方法
CN113750233A (zh) * 2021-09-30 2021-12-07 景香香 一种纳米复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190344222A1 (en) * 2017-05-12 2019-11-14 Dalian University Of Technology An mxene based compositing nanofiltration membrane and corresponding preparation method
CN109794274A (zh) * 2019-01-24 2019-05-24 山东科技大学 一种碳化钛片层/硫化钼纳米片/二氧化钛纳米片复合材料及其制备方法
CN111777069A (zh) * 2020-07-20 2020-10-16 桂林电子科技大学 一种结构稳定的MXene复合材料及其制备方法和应用
CN112054199A (zh) * 2020-09-02 2020-12-08 山东大学 一种用于高性能钾离子电池的MoS2/Ti3C2 MXene复合材料的制备方法
CN113750233A (zh) * 2021-09-30 2021-12-07 景香香 一种纳米复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XITAO LI ET AL.: ""Edge-oriented, high-percentage 1T′-phase MoS2 nanosheets stabilize Ti3C2 MXene for efficient electrocatalytic hydrogen evolution"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 284, pages 119708 - 197 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328803A (zh) * 2023-03-11 2023-06-27 中南民族大学 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用
CN116328803B (zh) * 2023-03-11 2024-05-10 中南民族大学 一种CdS@Ti3C2 MXene-MoS2三元复合催化剂的制备方法和应用

Similar Documents

Publication Publication Date Title
Li et al. The development of carbon dots: From the perspective of materials chemistry
Kong et al. Graphitic carbon nitride-based materials for photocatalytic antibacterial application
Kadian et al. Recent advancements in synthesis and property control of graphene quantum dots for biomedical and optoelectronic applications
Ran et al. Assembly-synthesis of puff pastry-like g-C3N4/CdS heterostructure as S-junctions for efficient photocatalytic water splitting
Yu et al. Carbon dots based photoinduced reactions: Advances and perspective
CN113663704B (zh) 一种硫化铟锌/石墨相氮化碳复合材料及其制备和应用
Zhai et al. Nanodots derived from layered materials: synthesis and applications
KR101954792B1 (ko) 단일 수열합성법을 이용한 금속 담지 이산화티타늄/그래핀 복합체의 제조방법 및 이에 의해 제조된 이산화티타늄/그래핀 복합체
CN109772404B (zh) 一种高催化活性的氮化碳蓬松微球的制备方法
CN111495401A (zh) 一种氧缺陷的一水合三氧化钨/碳化钛纳米复合材料的制备方法
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN113000056A (zh) 一种基于MXene掺杂的复合材料及其制备方法
CN109225298B (zh) 一种具有高可见光活性的MnISCN纳米复合材料及其制备方法和应用
Zhang et al. Enhanced photocatalytic activities of CdS-BiOCl/PAN composites towards photocatalytic hydrogen evolution
CN113000061B (zh) 一种带状石墨氮化碳纳米片的制备方法
CN111921550A (zh) 一种MXene/二氧化钛纳米管复合材料光催化剂及其制备方法
CN110538649A (zh) 一种在可见光照射下具有优异光催化性能的氧化锌基复合光催化剂
CN115624983A (zh) 一种二维Ti3C2-MoS2纳米异质结的制备方法
CN111185210A (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN114288406B (zh) 一种Zn-MOF@Ti3C2Tx杂化材料及其制备方法、应用
CN111790432A (zh) 碳化镍/氮化碳纳米片光催化材料及制备方法和应用
CN114260026A (zh) 一种表面拉电子基团修饰的超薄石墨相氮化碳纳米片光催化材料及其制备方法和应用
CN114653381A (zh) 一种ZnIn2S4纳米片包裹BiVO4微米棒核壳异质结催化剂的制备方法及其应用
CN108014850B (zh) 一种四羧基苯基卟啉超分子光催化剂的制备方法及其应用
Wang et al. Rational design of a hollow multilayer heterogeneous organic framework for photochemical applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination