CN116298906A - 电池容量的预测模型训练方法、预测方法、装置及介质 - Google Patents
电池容量的预测模型训练方法、预测方法、装置及介质 Download PDFInfo
- Publication number
- CN116298906A CN116298906A CN202310102848.4A CN202310102848A CN116298906A CN 116298906 A CN116298906 A CN 116298906A CN 202310102848 A CN202310102848 A CN 202310102848A CN 116298906 A CN116298906 A CN 116298906A
- Authority
- CN
- China
- Prior art keywords
- battery capacity
- battery
- sample
- parameter
- parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 102
- 238000012549 training Methods 0.000 title claims abstract description 59
- 230000008569 process Effects 0.000 claims abstract description 53
- 238000003860 storage Methods 0.000 claims description 14
- 238000009413 insulation Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 8
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 5
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 18
- 238000012360 testing method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000000926 separation method Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000032683 aging Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310102848.4A CN116298906B (zh) | 2023-01-19 | 2023-01-19 | 电池容量的预测模型训练方法、预测方法、装置及介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310102848.4A CN116298906B (zh) | 2023-01-19 | 2023-01-19 | 电池容量的预测模型训练方法、预测方法、装置及介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116298906A true CN116298906A (zh) | 2023-06-23 |
CN116298906B CN116298906B (zh) | 2024-04-16 |
Family
ID=86819551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310102848.4A Active CN116298906B (zh) | 2023-01-19 | 2023-01-19 | 电池容量的预测模型训练方法、预测方法、装置及介质 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116298906B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116522153A (zh) * | 2023-07-05 | 2023-08-01 | 深圳海辰储能控制技术有限公司 | 锂电池容量预测方法、装置、计算机设备和存储介质 |
CN117148168A (zh) * | 2023-10-27 | 2023-12-01 | 宁德时代新能源科技股份有限公司 | 训练模型的方法、预测电池容量的方法、装置及介质 |
CN117151201A (zh) * | 2023-08-24 | 2023-12-01 | 广芯微电子(广州)股份有限公司 | 一种用于神经网络训练的电池组样本组织方法及装置 |
CN117995412A (zh) * | 2024-04-07 | 2024-05-07 | 粤港澳大湾区数字经济研究院(福田) | 一种未来发病概率的预测方法、装置、终端及存储介质 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157132A1 (ja) * | 2012-04-20 | 2013-10-24 | 日立ビークルエナジー株式会社 | 二次電池システム、二次電池の劣化状態判断方法 |
CN108896914A (zh) * | 2018-05-11 | 2018-11-27 | 浙江工业大学 | 一种锂电池健康状况的梯度提升树建模与预测方法 |
CN109507594A (zh) * | 2018-12-26 | 2019-03-22 | 中国人民解放军国防科技大学 | 锂电池容量估计的间接健康因子选取方法 |
CN111381170A (zh) * | 2020-05-15 | 2020-07-07 | 上海工程技术大学 | 基于大数据的电动汽车电池包健康状态预测方法及系统 |
CN113109715A (zh) * | 2021-03-29 | 2021-07-13 | 东华大学 | 基于特征选择和支持向量回归的电池健康状况预测方法 |
CN113158345A (zh) * | 2021-04-29 | 2021-07-23 | 浙江吉利控股集团有限公司 | 一种新能源车辆动力电池容量预测方法及系统 |
CN114578234A (zh) * | 2022-03-21 | 2022-06-03 | 首都师范大学 | 一种考虑因果性特征的锂离子电池退化与容量预测模型 |
KR20220075967A (ko) * | 2020-11-30 | 2022-06-08 | 중앙대학교 산학협력단 | 배터리 팩의 압력 변이 예측 및 관리를 위한 장치 및 방법 |
CN115114843A (zh) * | 2022-04-24 | 2022-09-27 | 腾讯科技(深圳)有限公司 | 一种电池容量的预测方法、相关装置、设备以及存储介质 |
CN115201684A (zh) * | 2022-07-11 | 2022-10-18 | 徐州市恒源电器有限公司 | 一种锂离子电池不同衰退模式下的寿命评估方法 |
CN115236519A (zh) * | 2022-07-07 | 2022-10-25 | 泉州装备制造研究所 | 基于隐马尔可夫模型的锂电池健康状态预测方法及装置 |
CN115270454A (zh) * | 2022-07-22 | 2022-11-01 | 中国人民解放军海军勤务学院 | 电池寿命预测方法及相关设备 |
CN115616414A (zh) * | 2022-11-09 | 2023-01-17 | 中国华能集团清洁能源技术研究院有限公司 | 储能锂电池剩余寿命长时间序列预测方法及装置 |
-
2023
- 2023-01-19 CN CN202310102848.4A patent/CN116298906B/zh active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157132A1 (ja) * | 2012-04-20 | 2013-10-24 | 日立ビークルエナジー株式会社 | 二次電池システム、二次電池の劣化状態判断方法 |
CN108896914A (zh) * | 2018-05-11 | 2018-11-27 | 浙江工业大学 | 一种锂电池健康状况的梯度提升树建模与预测方法 |
CN109507594A (zh) * | 2018-12-26 | 2019-03-22 | 中国人民解放军国防科技大学 | 锂电池容量估计的间接健康因子选取方法 |
CN111381170A (zh) * | 2020-05-15 | 2020-07-07 | 上海工程技术大学 | 基于大数据的电动汽车电池包健康状态预测方法及系统 |
KR20220075967A (ko) * | 2020-11-30 | 2022-06-08 | 중앙대학교 산학협력단 | 배터리 팩의 압력 변이 예측 및 관리를 위한 장치 및 방법 |
CN113109715A (zh) * | 2021-03-29 | 2021-07-13 | 东华大学 | 基于特征选择和支持向量回归的电池健康状况预测方法 |
CN113158345A (zh) * | 2021-04-29 | 2021-07-23 | 浙江吉利控股集团有限公司 | 一种新能源车辆动力电池容量预测方法及系统 |
CN114578234A (zh) * | 2022-03-21 | 2022-06-03 | 首都师范大学 | 一种考虑因果性特征的锂离子电池退化与容量预测模型 |
CN115114843A (zh) * | 2022-04-24 | 2022-09-27 | 腾讯科技(深圳)有限公司 | 一种电池容量的预测方法、相关装置、设备以及存储介质 |
CN115236519A (zh) * | 2022-07-07 | 2022-10-25 | 泉州装备制造研究所 | 基于隐马尔可夫模型的锂电池健康状态预测方法及装置 |
CN115201684A (zh) * | 2022-07-11 | 2022-10-18 | 徐州市恒源电器有限公司 | 一种锂离子电池不同衰退模式下的寿命评估方法 |
CN115270454A (zh) * | 2022-07-22 | 2022-11-01 | 中国人民解放军海军勤务学院 | 电池寿命预测方法及相关设备 |
CN115616414A (zh) * | 2022-11-09 | 2023-01-17 | 中国华能集团清洁能源技术研究院有限公司 | 储能锂电池剩余寿命长时间序列预测方法及装置 |
Non-Patent Citations (1)
Title |
---|
韩云飞,谢佳,蔡涛,程时杰: "结合高斯过程回归与特征选择的锂离子电池容量估计方法", 《储能科学与技术》, vol. 10, no. 4, pages 1432 - 1438 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116522153A (zh) * | 2023-07-05 | 2023-08-01 | 深圳海辰储能控制技术有限公司 | 锂电池容量预测方法、装置、计算机设备和存储介质 |
CN116522153B (zh) * | 2023-07-05 | 2023-12-26 | 深圳海辰储能控制技术有限公司 | 锂电池容量预测方法、装置、计算机设备和存储介质 |
CN117151201A (zh) * | 2023-08-24 | 2023-12-01 | 广芯微电子(广州)股份有限公司 | 一种用于神经网络训练的电池组样本组织方法及装置 |
CN117151201B (zh) * | 2023-08-24 | 2024-03-15 | 广芯微电子(广州)股份有限公司 | 一种用于神经网络训练的电池组样本组织方法及装置 |
CN117148168A (zh) * | 2023-10-27 | 2023-12-01 | 宁德时代新能源科技股份有限公司 | 训练模型的方法、预测电池容量的方法、装置及介质 |
CN117148168B (zh) * | 2023-10-27 | 2024-03-29 | 宁德时代新能源科技股份有限公司 | 训练模型的方法、预测电池容量的方法、装置及介质 |
CN117995412A (zh) * | 2024-04-07 | 2024-05-07 | 粤港澳大湾区数字经济研究院(福田) | 一种未来发病概率的预测方法、装置、终端及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116298906B (zh) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Life prediction of lithium-ion batteries based on stacked denoising autoencoders | |
CN116298906A (zh) | 电池容量的预测模型训练方法、预测方法、装置及介质 | |
Zhang et al. | State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network | |
CN113361197B (zh) | 一种锂电池剩余使用寿命预测方法及系统 | |
CN114861527A (zh) | 一种基于时间序列特征的锂电池寿命预测方法 | |
Wang et al. | A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries | |
CN111812515A (zh) | 基于XGboost模型的锂离子电池荷电状态估算 | |
CN111812519B (zh) | 一种电池参数辨识方法及系统 | |
CN114970332A (zh) | 基于混沌量子麻雀搜索算法的锂电池模型参数辨识方法 | |
CN108490365A (zh) | 一种估计电动汽车的动力电池的剩余寿命的方法 | |
Ansari et al. | Jellyfish optimized recurrent neural network for state of health estimation of lithium-ion batteries | |
CN114035098A (zh) | 一种融合未来工况信息和历史状态信息的锂电池健康状态预测方法 | |
CN117252112B (zh) | 用于训练驱动数据模型的方法及估算电池剩余寿命的方法 | |
CN118465591A (zh) | 一种基于并行混合神经网络的锂离子电池健康状态估算方法 | |
CN116400224A (zh) | 一种基于工作温度矫正的电池剩余使用寿命预测方法 | |
CN111983471A (zh) | 一种基于双卡尔曼滤波的锂离子动力电池安全度估算方法及估算装置 | |
CN115389954A (zh) | 一种电池容量的估算方法、电子设备及可读存储介质 | |
CN114415041A (zh) | 电池剩余容量估算方法、装置及终端设备 | |
CN117407795B (zh) | 一种电池安全预测方法、装置、电子设备及存储介质 | |
Song et al. | Capacity estimation method of lithium-ion batteries based on deep convolution neural network | |
CN113791351A (zh) | 基于迁移学习和差值概率分布的锂电池寿命预测方法 | |
CN118330469A (zh) | 基于时态图神经网络的锂离子电池健康状态估计方法 | |
Zhang et al. | A method for remaining discharge time prediction of lithium‐ion batteries under dynamic uncertainty | |
Zhang et al. | The early prediction of lithium-ion battery remaining useful life using a novel long short-term memory network | |
CN117368737A (zh) | 动力锂离子电池soc数模结合预测方法、装置、设备及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240913 Address after: 200120, 2nd Floor, No. 696 Caozhi Road, Xinchang Town, Pudong New Area, Shanghai Patentee after: Saiou Technology (Shanghai) Co.,Ltd. Country or region after: China Address before: 644005 No. 601, 6 / F, block d2-c, science and technology innovation center, No. 7, shaping Road, Guoxing Avenue, Lingang Economic Development Zone, Yibin City, Sichuan Province Patentee before: Sichuan new energy automobile Innovation Center Co.,Ltd. Country or region before: China Patentee before: Saiou Technology (Shanghai) Co.,Ltd. |
|
TR01 | Transfer of patent right |
Effective date of registration: 20250117 Address after: Room 22301-1894, Building 14, 498 Guoshoujing Road, China (Shanghai) Pilot Free Trade Zone, Pudong New Area, Shanghai, 201203 Patentee after: Shanghai Wei Zhi Di Intelligent Technology Co.,Ltd. Country or region after: China Address before: 200120, 2nd Floor, No. 696 Caozhi Road, Xinchang Town, Pudong New Area, Shanghai Patentee before: Saiou Technology (Shanghai) Co.,Ltd. Country or region before: China |