CN116287984A - 一种高疲劳性能冷加工成形用桥壳钢及其生产方法 - Google Patents
一种高疲劳性能冷加工成形用桥壳钢及其生产方法 Download PDFInfo
- Publication number
- CN116287984A CN116287984A CN202310155503.5A CN202310155503A CN116287984A CN 116287984 A CN116287984 A CN 116287984A CN 202310155503 A CN202310155503 A CN 202310155503A CN 116287984 A CN116287984 A CN 116287984A
- Authority
- CN
- China
- Prior art keywords
- percent
- axle housing
- steel
- housing steel
- high fatigue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/74—Temperature control, e.g. by cooling or heating the rolls or the product
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0006—Adding metallic additives
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
- C21C7/0645—Agents used for dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0405—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明属于桥壳钢加工技术领域,公开了一种高疲劳性能冷加工成形用桥壳钢及其生产方法。钢的化学成分及重量百分比含量为:C:0.05~0.1%,Si:0.6~1%,Mn:1.2~1.7%,P≤0.02%,S≤0.005%,Als:0.02~0.06%,Ti:0.05~0.1%,RE:0.001~0.003%,其余为Fe及杂质。本发明采用经济的C‑Si‑Mn‑Ti‑RE元素体系,充分利用Si、RE等元素对钢的疲劳性能的有益作用,并通过Si、Mn元素的固溶强化与Ti的析出强化相结合的双重强化机制,在保证钢的高强度、冷成形性能的同时使其具备优良的焊接、疲劳性能,满足桥壳钢的全部使用需求。
Description
技术领域
本发明属于桥壳钢加工技术领域,具体涉及一种高疲劳性能冷加工成形用桥壳钢及其生产方法。
背景技术
汽车桥壳钢作为商业用汽车三大总成之一底盘系统的重要组成部分,目前钢板用量占整体汽车钢板用量的4%左右,驱动桥壳应具有足够的强度和刚度,同时还应具有良好的韧性以及疲劳寿命。载重汽车车桥大多采用钢板经冷冲压或热冲压成形后焊接处理,因此要求钢板具有良好冲压成形性能的同时还需要具有良好的焊接性能与疲劳性能。目前国际标准的桥壳钢强度最高到Q460级别,无更高牌号技术标准。
中国专利CN104213019A公开了一种600MPa级汽车桥壳钢及其生产方法,其成分组成为:C:0.21%-0.26%;Si:0.51%-0.6%;Mn:1.1%-1.5%;Al:0.01%-0.06%;P:≤0.02%;S:≤0.01%;V:0.05%-0.06%;N:0.012%-0.016%;其余为Fe及不可避免杂质,其中,V:N≤5:1,通过控制V和N元素的含量的同时,控轧控冷,最终获得600MPa级汽车桥壳用热轧带钢,但该方法设计中:C含量偏高,焊接性能较差;V含量高,生产成本高,且未涉及钢的疲劳性能参数设计。
中国专利CN114015934A公开了一种600MPa级热连轧双相组织桥壳钢及生产方法,其组分及重量百分比含量为:C:0.06~0.10%,Si:0.05~0.20%,Mn:1.30~1.60%,P≤0.015%,S≤0.005%,Als:0.02~0.06%,Nb:0.035~0.050%,该发明既保证抗拉强度在600MPa级,且碳含量低,焊接性能优良,性能稳定,但该方法设计采用C-Mn-Nb成分设计强化,由于含Nb合金,成本较高,并且也未涉及钢的疲劳性能参数设计。
综上所述,现有抗拉强度达到600MPa的桥壳钢均存在碳当量较高、生产成本较高、冷成形性能不良等技术难题,并且无钢材疲劳性能的优化方案,无法适用于更高端汽车轻量化的需求。
发明内容
本发明所要解决的技术问题是针对现有技术存在的不足,提供一种高疲劳性能冷加工成形用桥壳钢及其生产方法,采用经济的C-Si-Mn-Ti-RE元素体系,充分利用Si、RE等元素对钢的疲劳性能的有益作用,并通过Si、Mn元素的固溶强化与Ti的析出强化相结合的双重强化机制,在保证钢的高强度、冷成形性能的同时使其具备优良的焊接、疲劳性能,满足桥壳钢的全部使用需求。
为解决本发明所提出的技术问题,本发明提供一种高疲劳性能冷加工成形用桥壳钢,其化学成分及重量百分比含量为:C:0.05~0.1%,Si:0.6~1%,Mn:1.2~1.7%,P≤0.02%,S≤0.005%,Als:0.02~0.06%,Ti:0.05~0.1%,RE:0.001~0.003%,其余为Fe及杂质。
优选地,所述高疲劳性能冷加工成形用桥壳钢,其化学成分及重量百分比含量为:C:0.061~0.092%,Si:0.61~0.93%,Mn:1.311~1.633%,P≤0.02%,S≤0.005%,Als:0.02~0.056%,Ti:0.055~0.087%,RE:0.0011~0.0028%,其余为Fe及杂质。
上述方案中,所述高疲劳性能冷加工成形用桥壳钢的屈服强度Rel≥500MPa,抗拉强度Rm≥600MPa,伸长率A≥20%,冷弯性能D=a、180°合格,轴向疲劳强度下极限≥220MPa。
本发明还提供一种高疲劳性能冷加工成形用桥壳钢的生产方法,工艺流程包括转炉冶炼、RH处理、连铸成坯、铸坯加热、轧制、冷却和卷取。
上述方案中,所述RH处理采用轻处理模式,真空度为0.1~8.0KPa,总处理时间≥12min。
上述方案中,所述RH处理过程在完成合金成分加入后,加入稀土元素RE,RE的添加量为0.05~0.1Kg/t钢,加入RE后真空循环5min以上结束真空循环。
上述方案中,所述铸坯加热采用三段式加热制度,即第一加热段、第二加热段和均热段,其中,第二加热段和均热段的加热温度为1220~1280℃,均热时间≥40min,总在炉时间≥120min。
上述方案中,所述轧制包括粗轧和精轧;粗轧的出口温度为1020~1060℃;精轧的开轧温度为950~1050℃,轧制速度为2~5m/s,终轧温度为810~880℃。
上述方案中,所述冷却过程先以10~20℃/s的冷却速度冷却至680℃~750℃,再层流冷却至卷取温度。
上述方案中,所述卷取温度为560~640℃。
本发明各组分及其含量范围主要依据以下原理:
C:C能够在钢中起到固溶强化作用,当C含量控制在合理范围,钢在加热轧制冷却过程中,从奥氏体中向铁素体与渗碳体两相少量分解,能够形成具有不连续碳化物的韧性极佳的针状或板条状铁素体,有利于提高钢的疲劳寿命。综合考虑,适宜的C的含量为0.05~0.1%,优选为0.061~0.092%。
Si:Si对钢液有良好的脱氧作用,其质量分数在0.4%以上时以固溶体形态存在于铁素体或奥氏体中,可缩小奥氏体相区,提高铁素体和奥氏体的硬度和强度,其作用较锰、镍、铬、钨、铝、钒等更强,显著提高钢的弹性极限、屈服强度和屈强比,并提高疲劳强度。综合考虑,适宜的Si的含量为0.6~1%,优选为0.61~0.93%。
Mn:Mn是合金价格便宜的良好的脱氧剂和脱硫剂,锰和铁形成的固溶体,能有效提高钢中铁素体和奥氏体的硬度和强度;同时Mn又是碳化物形成元素,进入渗碳体中取代一部分铁原子,提高钢的强度和韧性,从而有利于提高疲劳强度。综合考虑,适宜的Mn的含量为1.2~1.7%,优选为1.311~1.633%。
Al:Al是脱氧元素,形成的AlN元素能有效地细化晶粒,含量在0.01%以下时脱氧不充分,超过0.07%时不利于焊接热影响区韧性。综合考虑,适宜的Als的含量为0.02~0.06%,优选为0.02~0.056%。
Ti:Ti在钢的凝固过程中能与N结合生成稳定的TiN,TiN析出相比Nb、V的碳氮化物更稳定,形成的碳氮化物在基体中沉淀,钉扎在奥氏体的晶界,阻碍奥氏体晶粒长大从而细化奥氏体晶粒。当Ti以固溶态存在于铁素体之中时,其强化作用高于Al、Mn、Ni、Mo等,Ti的质量分数在0.03%~0.1%之间时可使屈服强度提高,增强钢的疲劳强度。综合考虑,适宜的Ti的含量为0.05~0.1%,优选为0.055~0.087%。
RE:RE有极强的脱硫、脱氧和变质夹杂物的作用,钢中加入的稀土元素首先与氧化合,使原来的Al2O3转变为稀土铝酸盐夹杂(REAl11O18或REAlO3),它与MnS复合或者呈细小微粒分布在钢中,这些变质硫化物在轧制时不变形成球形或破碎成小块,横纵向长度基本相等,从而显著提高钢的疲劳寿命;同时RE还会细化晶粒度、强化基体以及减小珠光体片间距,提高钢的疲劳强度。但这些作用的体现与其加入工艺密切相关,如果加入不当,钢中夹杂物的数量不但不会减少,而且会增加。综合考虑,适宜的RE的含量为0.001~0.003%,优选为0.0011~0.0028%。
P、S:钢中P易偏析降低钢的韧性和焊接性能,S易形成塑性硫化物产生分层缺陷,S高于0.005%会显著降低RE元素的夹杂物变性效果,综合考虑,P≤0.02%,S≤0.005%。
本发明制造方法主要工艺参数的技术构思如下:
本发明对RH处理过程中模式参数的选择,以及RE元素的添加时机、添加量和真空循环时长的控制,是为了在稀土元素加入后,尽量减少钢中夹杂物的数量,保证钢质的疲劳性能优良。将铸坯加热过程的第二加热段和均热段的加热温度控制为1220~1280℃,是因为奥氏体晶粒加热到1280℃以上会明显粗大,而低于1220℃不能保证板坯芯部温度与表面一致。将粗轧的出口温度控制为1020~1060℃,是为了细化奥氏体晶粒,在再结晶温度区粗轧。对精轧参数的控制,是为了适应精轧设备,降低轧辊负荷,保证塑性均匀变形,降低轧后钢板内应力。对冷却程序的控制,是为了在冷却前段得到细化的铁素体软相组织,并在层流冷却卷取阶段析出Ti元素得到晶粒强化的作用。
与现有技术相比,本发明的有益效果为:
1)本发明采用经济的C-Si-Mn-Ti-RE元素体系,充分利用Si、RE等元素对钢的疲劳性能的有益作用,并通过Si、Mn元素的固溶强化与Ti的析出强化相结合的双重强化机制,在保证钢的高强度、冷成形性能的同时使其具备优良的焊接、疲劳性能,获得的桥壳钢的屈服强度Rel≥500MPa,抗拉强度Rm≥600MPa,伸长率A≥20%,冷弯性能D=a、180°合格,轴向疲劳强度下极限≥220MPa,满足冷加工成形桥壳钢的全部使用需求,尤其是疲劳性能优于同级别强度热轧桥壳钢。
2)本发明创新性的通过对RH处理过程中模式参数的选择,以及RE元素的添加时机、添加量和真空循环时长的控制,保证了最终钢中RE的含量及其夹杂物水平不会降低钢的疲劳性能,工艺简单,成本低廉,在现有的生产条件下即可进行改进生产。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1-10
实施例1-10中高疲劳性能冷加工成形用桥壳钢的化学成分及重量百分比含量见表1。
表1
实施例1-10中高疲劳性能冷加工成形用桥壳钢的生产方法,工艺流程包括转炉冶炼、RH处理、连铸成坯、铸坯加热、轧制、冷却和卷取。
其中,RH处理采用轻处理模式,RH处理采用轻处理模式,真空度为0.1~8.0KPa,总处理时间≥12min;RH处理过程在完成合金成分加入后,加入稀土元素RE,RE的添加量为0.05~0.1Kg/t钢,加入RE后真空循环5min以上结束真空循环;主要参数见表2。
表2
其中,铸坯加热采用三段式加热制度,即第一加热段、第二加热段和均热段,其中,第二加热段和均热段的加热温度为1220~1280℃,均热时间≥40min,总在炉时间≥120min;主要参数见表3。
表3
其中,轧制包括粗轧和精轧;粗轧的出口温度为1020~1060℃;精轧的开轧温度为950~1050℃,轧制速度为2~5m/s,终轧温度为810~880℃;主要参数见表4。
表4
其中,冷却过程先以10~20℃/s的冷却速度冷却至680℃~750℃,再层流冷却至卷取温度;卷取温度为560~640℃;主要参数见表5。
表5
根据GB/T228、GB/T232和GBT26077国家标准,测试实施例1-10和对比例1-2中钢的各项性能,其中,轴向疲劳强度下极限为应力比R=0.15,给定循环1.0×107周次下,置信度95%,失效概率10%情况下测得。测试结果见表6。
表6
从表6可以看出,实施例1-10获得的桥壳钢的屈服强度Rel≥500MPa,抗拉强度Rm≥600MPa,伸长率A≥20%,冷弯性能D=a、180°合格,轴向疲劳强度下极限≥220MPa,满足冷加工成形桥壳钢的全部使用需求。对比例1中的钢强度较高,但伸长率、冷弯性能、轴向疲劳强度下极限强度均低于实施例;对比例2中的钢碳含量高,导致屈服强度低,伸长率与实施例相当,但冷弯性能、轴向疲劳强度下极限强度均低于实施例。
上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举,而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。
Claims (9)
1.一种高疲劳性能冷加工成形用桥壳钢,其特征在于,其化学成分及重量百分比含量为:C:0.05~0.1%,Si:0.6~1%,Mn:1.2~1.7%,P≤0.02%,S≤0.005%,Als:0.02~0.06%,Ti:0.05~0.1%,RE:0.001~0.003%,其余为Fe及杂质。
2.根据权利要求1所述的高疲劳性能冷加工成形用桥壳钢,其特征在于,其化学成分及重量百分比含量为:C:0.061~0.092%,Si:0.61~0.93%,Mn:1.311~1.633%,P≤0.02%,S≤0.005%,Als:0.02~0.056%,Ti:0.055~0.087%,RE:0.0011~0.0028%,其余为Fe及杂质。
3.根据权利要求1所述的高疲劳性能冷加工成形用桥壳钢,其特征在于,所述桥壳钢的屈服强度Rel≥500MPa,抗拉强度Rm≥600MPa,伸长率A≥20%,冷弯性能D=a、180°合格,轴向疲劳强度下极限≥220MPa。
4.一种如权利要求1-3任一项所述的高疲劳性能冷加工成形用桥壳钢的生产方法,工艺流程包括转炉冶炼、RH处理、连铸成坯、铸坯加热、轧制、冷却和卷取,其特征在于,所述RH处理采用轻处理模式,真空度为0.1~8.0KPa,总处理时间≥12min。
5.一种权利要求4所述的高疲劳性能冷加工成形用桥壳钢的生产方法,其特征在于,所述RH处理过程在完成合金成分加入后,加入稀土元素RE,RE的添加量为0.05~0.1Kg/t钢,加入RE后真空循环5min以上结束真空循环。
6.一种权利要求4所述的高疲劳性能冷加工成形用桥壳钢的生产方法,其特征在于,所述铸坯加热采用三段式加热制度,其中第二加热段和均热段的加热温度为1220~1280℃,均热时间≥40min,总在炉时间≥120min。
7.一种权利要求4所述的高疲劳性能冷加工成形用桥壳钢的生产方法,其特征在于,所述轧制包括粗轧和精轧;粗轧的出口温度为1020~1060℃;精轧的开轧温度为950~1050℃,轧制速度为2~5m/s,终轧温度为810~880℃。
8.一种权利要求4所述的高疲劳性能冷加工成形用桥壳钢的生产方法,其特征在于,所述冷却过程先以10~20℃/s的冷却速度冷却至680℃~750℃,再层流冷却至卷取温度。
9.一种权利要求4所述的高疲劳性能冷加工成形用桥壳钢的生产方法,其特征在于,所述卷取温度为560~640℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310155503.5A CN116287984B (zh) | 2023-02-23 | 2023-02-23 | 一种高疲劳性能冷加工成形用桥壳钢及其生产方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310155503.5A CN116287984B (zh) | 2023-02-23 | 2023-02-23 | 一种高疲劳性能冷加工成形用桥壳钢及其生产方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116287984A true CN116287984A (zh) | 2023-06-23 |
CN116287984B CN116287984B (zh) | 2025-04-08 |
Family
ID=86797039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310155503.5A Active CN116287984B (zh) | 2023-02-23 | 2023-02-23 | 一种高疲劳性能冷加工成形用桥壳钢及其生产方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116287984B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0390468A1 (en) * | 1989-03-27 | 1990-10-03 | Crs Holdings, Inc. | High-strength, high-fracture-toughness structural alloy |
CN101851732A (zh) * | 2009-03-31 | 2010-10-06 | 株式会社神户制钢所 | 弯曲加工性优异的高强度冷轧钢板 |
CN102383034A (zh) * | 2011-11-07 | 2012-03-21 | 武汉钢铁(集团)公司 | 13吨级车桥桥壳用钢及其生产方法 |
CN111455278A (zh) * | 2020-05-19 | 2020-07-28 | 武汉钢铁有限公司 | 低温韧性优异的800MPa级冷成型用厚规格热轧高强钢板卷及其制造方法 |
-
2023
- 2023-02-23 CN CN202310155503.5A patent/CN116287984B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0390468A1 (en) * | 1989-03-27 | 1990-10-03 | Crs Holdings, Inc. | High-strength, high-fracture-toughness structural alloy |
CN101851732A (zh) * | 2009-03-31 | 2010-10-06 | 株式会社神户制钢所 | 弯曲加工性优异的高强度冷轧钢板 |
CN102383034A (zh) * | 2011-11-07 | 2012-03-21 | 武汉钢铁(集团)公司 | 13吨级车桥桥壳用钢及其生产方法 |
CN111455278A (zh) * | 2020-05-19 | 2020-07-28 | 武汉钢铁有限公司 | 低温韧性优异的800MPa级冷成型用厚规格热轧高强钢板卷及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116287984B (zh) | 2025-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113416890B (zh) | 高扩孔高塑性980MPa级冷轧连退钢板及其制备方法 | |
CN100507055C (zh) | 屈服强度700MPa级耐大气腐蚀钢及其制造方法 | |
CN101008066B (zh) | 抗拉强度高于1000MPa的热轧马氏体钢板及其制造方法 | |
CN110079740B (zh) | 一种高韧性热轧530MPa级汽车冷冲压桥壳钢板及其制造方法 | |
WO2022042731A1 (zh) | 一种980MPa级贝氏体高扩孔钢及其制造方法 | |
CN114107792A (zh) | 一种780MPa级高表面超高扩孔钢及其制造方法 | |
KR20230059806A (ko) | 980 MPa급 풀-베이나이트형의 구멍 확장성이 매우 높은 철강 및 이의 제조 방법 | |
CN111172466B (zh) | 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法 | |
CN110669914A (zh) | 一种冷冲压用高强汽车桥壳用钢及其生产方法 | |
US20230323500A1 (en) | 780 mpa-grade ultra-high reaming steel having high surface quality and high performance stability, and manufacturing method therefor | |
CN104745934A (zh) | 汽车大梁用热轧钢板及生产方法 | |
CN107829026B (zh) | 一种薄规格980MPa级双相钢及其加工方法 | |
CN108486482A (zh) | 综合性能优良的高屈服强度热轧酸洗钢板及其生产方法 | |
EP4541921A1 (en) | 1000mpa-grade high hole expansion hot-rolled complex phase steel plate and manufacturing method thereof | |
CN114836696B (zh) | 一种热冲压用390MPa级汽车桥壳用钢及其生产方法 | |
CN111270161A (zh) | 一种抗拉强度≥1000MPa的高延伸率热轧组织调控钢及生产方法 | |
CN114807780B (zh) | 一种热冲压用600MPa级汽车桥壳用钢及其生产方法 | |
CN116497266B (zh) | 一种热轧高强度高塑性钢及其制造方法 | |
CN116287984A (zh) | 一种高疲劳性能冷加工成形用桥壳钢及其生产方法 | |
CN115627423A (zh) | 一种1600MPa级的热轧卷板及其生产方法 | |
KR20230059807A (ko) | 980MPa급 초저탄소 마르텐사이트 + 잔류 오스테나이트형의 구멍 확장성이 매우 높은 철강 및 이의 제조 방법 | |
KR20230061413A (ko) | 고강도 저탄소의 구멍 확장성이 높은 마르텐사이트강 및 이의 제조 방법 | |
CN102409252A (zh) | 一种超高强度冷轧钢板及其制造方法 | |
CN115341130B (zh) | 制备高强塑积热轧冷成型汽车结构钢的方法 | |
CN114807777B (zh) | 一种热冲压用500MPa级汽车桥壳用钢及其生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |