CN116286904B - 牛源化CRISPR/boCas13a基因编辑系统、方法及应用 - Google Patents

牛源化CRISPR/boCas13a基因编辑系统、方法及应用 Download PDF

Info

Publication number
CN116286904B
CN116286904B CN202310522486.4A CN202310522486A CN116286904B CN 116286904 B CN116286904 B CN 116286904B CN 202310522486 A CN202310522486 A CN 202310522486A CN 116286904 B CN116286904 B CN 116286904B
Authority
CN
China
Prior art keywords
bocas13a
bovine
gene editing
crispr
editing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310522486.4A
Other languages
English (en)
Other versions
CN116286904A (zh
Inventor
杨磊
郝振廷
白春玲
刘雪霏
苏广华
李光鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University
Original Assignee
Inner Mongolia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University filed Critical Inner Mongolia University
Priority to CN202310522486.4A priority Critical patent/CN116286904B/zh
Publication of CN116286904A publication Critical patent/CN116286904A/zh
Application granted granted Critical
Publication of CN116286904B publication Critical patent/CN116286904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种牛源化CRISPR/boCas13a基因编辑系统、方法及应用。一种牛源化CRISPR/boCas13a基因编辑系统,包括boCas13a蛋白和crRNA;编码所述boCas13a蛋白的核苷酸序列如SEQ ID NO.1所示。本发明通过密码子优化策略,对韦氏纤毛菌来源的Cas13a基因,根据牛细胞中的密码子编码偏好性进行全局优化,实现了韦氏纤毛菌来源的Cas13a基因在牛来源细胞中的高效基因编辑,为牛细胞中RNA编辑和转基因育种提供一种可靠的方法。

Description

牛源化CRISPR/boCas13a基因编辑系统、方法及应用
技术领域
本发明涉及基因工程技术领域,具体涉及一种牛源化CRISPR/boCas13a基因编辑系统、方法及应用。
背景技术
CRISPR-Cas系统是细菌抵御病毒入侵的一种免疫系统,经改造后,成为一种能够进行基因编辑的工具。其中最常用的是能够切割双链DNA的CRISPR-Cas9系统,可以针对几乎所有基因序列进行编辑。但在进行哺乳动物基因编辑的过程中,靶向切割DNA后,可能在很大程度上,会将突变后的基因遗传给后代,具有永久性和不可恢复性。与相对稳定遗传的DNA不同,RNA引起的改变是暂时的、非永久性的,CRISPR-Cas13系统具有RNA引导的RNA靶向性,是目前CRISPR-Cas家族中唯一仅靶向ssRNA的系统。在本实验室前期研究工作中发现,应用于牛细胞的CRISPR-Cas13编辑系统存在蛋白表达水平低、切割效率不足的问题。
在转基因研究过程中,常涉及到基因的异源表达,而异源物种的选择,是决定基因表达效率的重要因素。在真核生物中,共有61种三联体密码子编码20种氨基酸,每个氨基酸至少对应一种密码子,最多可以有一种氨基酸对应6种密码子,这种由多种密码子编码同一种氨基酸的密码子,称为同义密码子,同义密码子之间的差异主要在于第三位碱基的不同。在不同物种中,通常会出现对某些密码子的使用频率高于其他同义密码子的使用频率,这种现象称为密码子使用的偏好性。密码子优化是在DNA编码区进行偏好密码子的同义突变,来增加蛋白表达量。因此,在牛细胞中使用CRISPR/Cas13基因编辑系统时,需要对韦氏纤毛菌来源的Cas13a蛋白进行密码子偏好性优化,建立一套高效打靶的牛源性CRISPR/boCas13a系统,以为进一步研究基因组靶向修饰和转基因育种研究提供有效的技术手段。
发明内容
为此,本发明提供一种牛源化CRISPR/boCas13a基因编辑系统、方法及应用。
为了实现上述目的,本发明提供如下技术方案:
根据本发明的第一方面,提供一种牛源化CRISPR/boCas13a基因编辑系统,包括boCas13a蛋白和crRNA;编码所述boCas13a蛋白的核苷酸序列如SEQ ID NO.1所示。
进一步地,所述crRNA的序列如SEQ ID NO.4-10中的任一种。
根据本发明实施例的第二方面,提供利用如上所述的牛源化CRISPR/boCas13a基因编辑系统进行基因编辑方法,包括如下步骤:
(1)分别构建boCas13a表达载体和crRNA表达载体;
(2)将所述boCas13a表达载体和crRNA表达载体共转染牛源细胞;
(3)对牛源细胞靶基因的切割效率进行检测。
进一步地,将所述boCas13a基因序列构建在pLWCas13a载体上,获得boCas13a表达载体。
进一步地,所述靶基因为MSTN、FTO、CD44、ACADSB、PRNP、LDLR或HEBP1。
进一步地,采用Real-Time qPCR法进行切割效率检测。
根据本发明的第二方面,提供如上所述的牛源化CRISPR/boCas13a基因编辑系统在编辑哺乳动物RNA及转基因育种方面中的应用。
本发明的设计思路是:在哺乳动物育种中,由于CRISPR/Cas9基因编辑系统靶向切割DNA引起的不可逆性,迫切需求一套成熟的对牛来源的体细胞及胚胎细胞的RNA编辑操作系统。由于密码子偏好性,韦氏纤毛菌来源的Cas13a蛋白在牛细胞中基因编辑切割效率低,无法高效完成靶基因的切割,因此需要对韦氏纤毛菌来源的Cas13a蛋白基因进行牛细胞密码子偏好性优化,建立一套高效的牛源化CRISPR/boCas13a基因编辑系统。
本发明实施例具有如下优点:
本发明通过对韦氏纤毛菌来源的Cas13a基因进行牛细胞密码子偏好性优化,建立了一套高效牛源化CRISPR/boCas13a基因编辑系统,与原始CRISPR/LwCas13a基因编辑系统相比,牛源化CRISPR/boCas13a基因编辑系统的蛋白表达量提高4倍,切割效率提高5倍,为基因组靶向修饰和转基因育种研究提供有效的技术手段。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本发明提供的CRISPR/boCas13a基因编辑系统构建方法流程图;
图2为本发明提供的CRISPR/boCas13a基因编辑系统与CRISPR/LwCas13a基因编辑系统的Cas13蛋白表达水平对比图;
图3为本发明提供的CRISPR/boCas13a基因编辑系统与CRISPR/LwCas13a基因编辑系统切割靶基因后,各基因的mRNA表达量对比图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在以下实施例中,所用试验材料和试剂包括:
T4 DNA 连接酶购自Thermo公司;pLWCas13a载体和pLWcrRNA载体购自Addgene公司;PrimeSTAR GXL DNA Polymerase和In-Fusion Snap Assembly cloning kits购自Takara公司;DMEN培养基、Opti-MEM培养基和胎牛血清FBS购自Gibco公司;Lipofectamine3000购自Invitrogen公司。
未作具体说明的分子生物学试验方法,均按照《分子克隆实验指南》一书中描述的具体方法进行,或者按照试剂盒和产品说明书进行操作。
实施例1 构建牛源化CRISPR/boCas13a基因编辑系统
参见图1,牛源化CRISPR/boCas13a基因编辑系统的构建方法包括:
1. 根据已知LwCas13a蛋白的DNA序列,预测在牛源细胞中的DNA序列,包括以下步骤:
(1)通过https://www.novopro.cn/网站优化LwCas13a基因在牛源细胞中的DNA序列,优化后的boCas13a核苷酸序列如下,其中大写字母为优化的碱基:
atgaaagtTaccaaggtcgaTggcatcTCAcacaagaaAtacatcgaGgagggcaagctGgtTaaAtccacTTCcgaggaGaaccgAacGTCcgagCgGctgagTgagctCctcTCcatTcggctTgacatTtacatcaagaaTcccgaTaaTgcAtccgaggaGgagaacAggatTCgCCgGgagaacctCaagaagttTttCagcaacaaggtCctCcaTctgaaggacagcgtCctCtaCctgaagaaccgCaaGgaGaagaaTgcTgtgcaggacaagaaTtaCTCcgaagaggacatcagTgagtaTgacctgaaGaacaagaaTTCcttcAGTgtgctCaaAaagatActgctgaaTgaggaTgtCaactcAgaAgaGctggaGatctttAggaaggacgtggaGgccaagctCaacaagatcaacTCcctTaagtaTagcttTgaagaAaaTaaAgcAaactaccagaagatAaaTgagaacaaTgtggaaaaGgtTggAggcaagTCAaaAcggaaTatTatTtacgaTtactacCgCgagagcgcGaaAAggaaTgactacatAaacaacgtgcaggaagcTttcgaTaaActCtaCaagaaGgaAgaCatcgagaaGTtgttCttcTtgatTgaAaacTCAaagaaAcacgagaagtaCaagatccgAgagtaTtaCcacaaAatTatcggccgCaagaaTgacaaGgagaaTttcgccaaAatCatTtacgaGgagatccagaacgtgaacaaTatAaaagagctgattgaAaagatcccAgacatgtctgagctgaagaaGTCAcaAgtgttTtaTaagtactacctCgacaaagaAgaaTtgaaTgaTaagaatatCaagtaTgccttctgccacttcgtggaGatAgaAatgtcccaActCctCaaaaactacgtgtaTaagcggctgagTaacatcTCcaaTgaCaagatTaagAggatTttcgagtaTcagaaCctgaaaaaActTatcgaaaaTaaGctCctgaaTaaActggatacAtacgtCAgAaaTtgcggTaaAtacaaTtactaCctCcaGgtgggcgagatcgcTacctcAgacttCatTgcTcggaaTcgAcagaacgaggcGttTctgCgGaaTatcatcggAgtGagcTCTgtggcctaTttTagcctCagAaacatcctggaAacTgaAaaTgagaacggGatcaccggAAggatgAggggGaaAacagtgaagaacaataaAggcgaGgagaaAtatgtcAGcggAgaggtCgacaagatTtaTaatgagaacaagcagaacgaGgtgaaagaGaatTtgaaAatgttctacTGAtacgacttTaaTatggacaaTaaGaaTgaAatTgaAgaTttcttcgccaacatTgaTgaggccatTagcTCcatcCgCcacggcatcgtgcacttcaaTctggaGCtggaGggGaaggacatcttcgcTttTaaAaatatcgcccccTCTgagatAtccaaAaagatgtttcagaaTgaaatcaaTgaGaagaagctgaagctgaaaatcttTaagcagctgaacagcgcTaacgtgttcaactattaTgagaaAgatgtgatcatTaagtacctgaagaatacCaagttcaacttcgtcaaTaaGaaTatccccttcgtCcccTCTttcaccaagctgtacaaTaaAatCgaAgacctCAggaaCacGctCaagttCttCtggagcgtTcccaaggaCaaGgaagaGaaagaTgcccaAatctacTtgctTaagaaCatTtactaTggcgagttcctCaaTaagttcgtgaaaaactccaaggtCttctttaaaatcaccaaTgaGgtgatAaagatCaacaagcagcggaaccagaaaacTggacactacaagtatcagaagttTgagaacatcgagaaGacAgtgccTgtggaGtaTctCgccatcatccaAagcagGgagatgatcaacaaccaggaTaaagaggaaaagaaCacAtaTatcgactttatAcagcagatCttcctTaaAggcttTatcgactaTctCaacaagaaTaatctTaaAtatatcgagagTaacaaTaacaatgacaaTaacgacatcttTAGcaagatcaaAatcaaGaaggataaTaaGgaAaagtacgaTaagatcctgaaAaaTtatgagaagcacaatcgAaaTaaagaGatcccCcacgagatAaatgaAttTgtTcgGgagatTaaActgggcaagatActTaagtaTacGgagaaCctgaacatgttCtaTctgatcctCaaActCctgaaTcacaaGgagctgacTaacTtgaagggAagcctCgaGaagtaTcagtccgcAaaTaaGgaGgaGacAttcTCAgacgaACtCgaactgatTaaTctCctgaaTctggacaacaaTagGgtgacTgaAgaTttcgagctCgaagccaaTgaAatTggcaaAttcctggaTttTaaTgaGaaTaaGatTaaggaTAggaaGgagTtgaaaaagttcgacacTaacaaAatctaCttTgacggcgagaacatcatcaagcacAgAgccttctacaaCatcaagaaGtacggAatgctCaatTtgctggaGaagatAgcTgataaggcTaagtataagatcTCActgaaagaGctCaaGgaAtacagcaacaagaagaatgaAatAgaaaagaaTtaTaccatgcagcagaacctgcaTcggaaAtacgccagGcccaaAaaggaTgaaaaAttTaacgaTgaggactaTaaagagtatgaAaaggccatcggcaacatccagaagtacacccaTTTgaagaaTaaggtggaGttcaatgagctgaaTctgTtgcagggTctTctgTtgaagatATtgcaTAgActGgtCggGtacacTTCcatAtgggagagAgacTtgCgCttTAggctCaaAggcgaAttCcccgagaaccactaTatTgaggaaatCttcaatttcgaTaaTAgcaaAaatgtgaaAtaTaaGTCAggccaAatcgtggaGaagtatatcaaTttctaTaaGgaactgtaTaaAgacaatgtggaaaaAcggTCTatctaTtcAgacaagaaGgtgaagaaGctTaagcaggaaaaaaaAgacctgtaTatccgcaaTtaTatcgcGcacttcaactacatTccccacgccgaAattagcctgTtggaGgtcctTgaaaaTctgAggaagctgctgtcctaTgaccgcaagctgaaAaacgccatAatgaagtcAatTgtggaTatCctCaaagaGtaTggcttTgtggcAaccttcaagatcggcgcAgaTaagaagatcgaGatAcagaccctTgaGtcCgagaaAatTgtCcaTTtgaagaatctgaagaaGaagaaGctTatgacTgaTcgcaacagcgaAgaactCtgTgaactcgtCaaGgtcatgttTgagtacaaAgcTctggaa(SEQ ID NO.1)。
(2)将预测好的序列提交华大公司合成优化序列,扩增目的片段,并在两端添加同源臂,扩增引物如下:
Primer 1:5’-aggaaagtgggatccATGAAAGTTACCAAGGTCGATG-3’(SEQ ID NO.2)
Primer 2:5’-gcgctttttcttgggTTCCAGAGCTTTGTACT-3’(SEQ ID NO.3)
扩增体系和扩增程序见表1-2。
表1 扩增体系
表2 扩增程序
扩增产物纯化后,储存在-20˚C,待用。
(3)载体骨架线性化:扩大培养pLWCas13a菌种,按照说明书进行质粒提取,获得pLWCas13a质粒,之后进行酶切,使载体骨架线性化,酶切体系见表3。
表3 酶切体系
混合均匀,37˚C过夜反应,回收目的片段,储存在-20˚C,待用。
(4)根据In-Fusion试剂盒,将扩增产物同源重组到线性化的pLWCas13a载体质粒上,连接体系见表4。
表4 连接体系
50˚C连接15 min,转化感受态,挑菌,送至测序公司进行鉴定,获得优化后的pboCas13a-NES表达载体。
2. 靶基因的crRNA序列载体构建方法,包括以下步骤:
(1)挑选7个基因(MSTN、FTO、CD44、ACADSB、PRNP、LDLR和HEBP1)作为靶基因,分别合成各自的crRNA,克隆到pLWcrRNA载体中,靶基因的crRNA序列见表5。
表5 靶基因的crRNA序列
(2)在靶基因的crRNA的5’-端加上AATTG,3’-端加上C,用以形成粘性末端的序列,合成得到正向寡核苷酸序列;在靶基因的crRNA的互补序列5’-端加上GTACG序列、3’-端加上G,合成得到反向核苷酸序列;将合成的正向核苷酸序列和反向核苷酸序列退火、复性,形成具有粘性末端的双链寡核苷酸,程序见表6。
表6 退火程序
(3)将pLWcrRNA载体经EcoRI和Acc65I限制性内切酶酶切得到的线性化载体,酶切体系见表7。
表7 酶切体系
将靶基因与线性化载体进行连接,连接体系见表8。
表8 连接体系
16℃连接3 h后,在DH5α感受态细胞中进行转化,挑取单克隆,送测序,获得靶基因crRNA寡聚核苷酸的重组表达载体,将正确的阳性克隆摇菌,提取质粒。
3. 用上述步骤1获得的boCas13a-NES表达载体和步骤2获得的靶基因crRNA表达载体同时转染牛肌肉卫星干细胞,提取总RNA,利用Real-Time qPCR鉴定靶基因的敲除情况。
实施例2 牛源化CRISPR/boCas13a基因编辑系统切割效率检测
1. 牛源化CRISPR/boCas13a基因编辑系统中Cas13蛋白表达量鉴定方法为Western Blot鉴定,包括以下步骤:
(1)培养的细胞用PBS小心清洗2遍,每个样品中加入1 mL蛋白裂解液(990 μlRIPA+10 μl PMSF),吹打均匀后置于4℃,30min。
(2)4℃离心机12000 rpm离心30 min,上清即为蛋白样品,置于-80℃保存,随即进行免疫印迹操作检测,用提取的优化前后的总蛋白进行Cas13蛋白免疫印迹操作检测。
结果如图2,其中,左图(上)条带1-3为优化前的CRISPR/LwCas13a基因编辑系统的Cas13蛋白,条带4-6为优化后的CRISPR/boCas13a基因编辑系统的Cas13蛋白,ɑ-Tublin为内参蛋白;右图为CRISPR/boCas13a基因编辑系统(Optimized)与CRISPR/LwCas13a基因编辑系统(Mock)的cas13蛋白表达水平的量化统计对比图。结果显示,CRISPR/boCas13a基因编辑系统(Optimized)的蛋白表达量是CRISPR/LwCas13a基因编辑系统(Mock)的4倍。
2. 牛源化CRISPR/boCas13基因编辑系统切割效率检测方法为Real-Time qPCR鉴定,包括以下步骤:
(1)提取基因编辑型和野生型牛肌肉卫星细胞总RNA后,以1µg RNA为模板反转录为cDNA,以等量RNA进行Real-Time qPCR检测基因表达。
(2)设计Real-Time qPCR引物,各靶基因的Real-Time qPCR引物序列见表9。
表9 Real-Time qPCR引物序列
Real-Time qPCR反应体系及反应条件见表10和11。
表10 反应体系
表11 反应条件
RT-qPCR检测CRISPR/boCas13a基因编辑系统与CRISPR/LwCas13a基因编辑系统切割靶基因后,相关基因的mRNA表达量变化,表达量越低,则说明编辑系统的切割效率越高,不同靶基因的检测结果见图3。结果显示,优化后的CRISPR/boCas13基因编辑系统切割效率平均为CRISPR/LwCas13a基因编辑系统的5倍。
以上研究结果表明,CRISPR/boCas13a基因编辑系统是一套在牛细胞中通用且高效切割的基因编辑系统,为研究基因组靶向切割失活以及转基因育种研究提供了有效的技术手段。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 内蒙古大学
<120> 牛源化CRISPR/boCas13a基因编辑系统、方法及应用
<130> GG221085892A
<160> 26
<170> PatentIn version 3.5
<210> 1
<211> 3456
<212> DNA
<213> 人工序列
<400> 1
atgaaagtta ccaaggtcga tggcatctca cacaagaaat acatcgagga gggcaagctg60
gttaaatcca cttccgagga gaaccgaacg tccgagcggc tgagtgagct cctctccatt120
cggcttgaca tttacatcaa gaatcccgat aatgcatccg aggaggagaa caggattcgc180
cgggagaacc tcaagaagtt tttcagcaac aaggtcctcc atctgaagga cagcgtcctc240
tacctgaaga accgcaagga gaagaatgct gtgcaggaca agaattactc cgaagaggac300
atcagtgagt atgacctgaa gaacaagaat tccttcagtg tgctcaaaaa gatactgctg360
aatgaggatg tcaactcaga agagctggag atctttagga aggacgtgga ggccaagctc420
aacaagatca actcccttaa gtatagcttt gaagaaaata aagcaaacta ccagaagata480
aatgagaaca atgtggaaaa ggttggaggc aagtcaaaac ggaatattat ttacgattac540
taccgcgaga gcgcgaaaag gaatgactac ataaacaacg tgcaggaagc tttcgataaa600
ctctacaaga aggaagacat cgagaagttg ttcttcttga ttgaaaactc aaagaaacac660
gagaagtaca agatccgaga gtattaccac aaaattatcg gccgcaagaa tgacaaggag720
aatttcgcca aaatcattta cgaggagatc cagaacgtga acaatataaa agagctgatt780
gaaaagatcc cagacatgtc tgagctgaag aagtcacaag tgttttataa gtactacctc840
gacaaagaag aattgaatga taagaatatc aagtatgcct tctgccactt cgtggagata900
gaaatgtccc aactcctcaa aaactacgtg tataagcggc tgagtaacat ctccaatgac960
aagattaaga ggattttcga gtatcagaac ctgaaaaaac ttatcgaaaa taagctcctg1020
aataaactgg atacatacgt cagaaattgc ggtaaataca attactacct ccaggtgggc1080
gagatcgcta cctcagactt cattgctcgg aatcgacaga acgaggcgtt tctgcggaat1140
atcatcggag tgagctctgt ggcctatttt agcctcagaa acatcctgga aactgaaaat1200
gagaacggga tcaccggaag gatgaggggg aaaacagtga agaacaataa aggcgaggag1260
aaatatgtca gcggagaggt cgacaagatt tataatgaga acaagcagaa cgaggtgaaa1320
gagaatttga aaatgttcta ctgatacgac tttaatatgg acaataagaa tgaaattgaa1380
gatttcttcg ccaacattga tgaggccatt agctccatcc gccacggcat cgtgcacttc1440
aatctggagc tggaggggaa ggacatcttc gcttttaaaa atatcgcccc ctctgagata1500
tccaaaaaga tgtttcagaa tgaaatcaat gagaagaagc tgaagctgaa aatctttaag1560
cagctgaaca gcgctaacgt gttcaactat tatgagaaag atgtgatcat taagtacctg1620
aagaatacca agttcaactt cgtcaataag aatatcccct tcgtcccctc tttcaccaag1680
ctgtacaata aaatcgaaga cctcaggaac acgctcaagt tcttctggag cgttcccaag1740
gacaaggaag agaaagatgc ccaaatctac ttgcttaaga acatttacta tggcgagttc1800
ctcaataagt tcgtgaaaaa ctccaaggtc ttctttaaaa tcaccaatga ggtgataaag1860
atcaacaagc agcggaacca gaaaactgga cactacaagt atcagaagtt tgagaacatc1920
gagaagacag tgcctgtgga gtatctcgcc atcatccaaa gcagggagat gatcaacaac1980
caggataaag aggaaaagaa cacatatatc gactttatac agcagatctt ccttaaaggc2040
tttatcgact atctcaacaa gaataatctt aaatatatcg agagtaacaa taacaatgac2100
aataacgaca tctttagcaa gatcaaaatc aagaaggata ataaggaaaa gtacgataag2160
atcctgaaaa attatgagaa gcacaatcga aataaagaga tcccccacga gataaatgaa2220
tttgttcggg agattaaact gggcaagata cttaagtata cggagaacct gaacatgttc2280
tatctgatcc tcaaactcct gaatcacaag gagctgacta acttgaaggg aagcctcgag2340
aagtatcagt ccgcaaataa ggaggagaca ttctcagacg aactcgaact gattaatctc2400
ctgaatctgg acaacaatag ggtgactgaa gatttcgagc tcgaagccaa tgaaattggc2460
aaattcctgg attttaatga gaataagatt aaggatagga aggagttgaa aaagttcgac2520
actaacaaaa tctactttga cggcgagaac atcatcaagc acagagcctt ctacaacatc2580
aagaagtacg gaatgctcaa tttgctggag aagatagctg ataaggctaa gtataagatc2640
tcactgaaag agctcaagga atacagcaac aagaagaatg aaatagaaaa gaattatacc2700
atgcagcaga acctgcatcg gaaatacgcc aggcccaaaa aggatgaaaa atttaacgat2760
gaggactata aagagtatga aaaggccatc ggcaacatcc agaagtacac ccatttgaag2820
aataaggtgg agttcaatga gctgaatctg ttgcagggtc ttctgttgaa gatattgcat2880
agactggtcg ggtacacttc catatgggag agagacttgc gctttaggct caaaggcgaa2940
ttccccgaga accactatat tgaggaaatc ttcaatttcg ataatagcaa aaatgtgaaa3000
tataagtcag gccaaatcgt ggagaagtat atcaatttct ataaggaact gtataaagac3060
aatgtggaaa aacggtctat ctattcagac aagaaggtga agaagcttaa gcaggaaaaa3120
aaagacctgt atatccgcaa ttatatcgcg cacttcaact acattcccca cgccgaaatt3180
agcctgttgg aggtccttga aaatctgagg aagctgctgt cctatgaccg caagctgaaa3240
aacgccataa tgaagtcaat tgtggatatc ctcaaagagt atggctttgt ggcaaccttc3300
aagatcggcg cagataagaa gatcgagata cagacccttg agtccgagaa aattgtccat3360
ttgaagaatc tgaagaagaa gaagcttatg actgatcgca acagcgaaga actctgtgaa3420
ctcgtcaagg tcatgtttga gtacaaagct ctggaa3456
<210> 2
<211> 37
<212> DNA
<213> 人工序列
<400> 2
aggaaagtgg gatccatgaa agttaccaag gtcgatg 37
<210> 3
<211> 32
<212> DNA
<213> 人工序列
<400> 3
gcgctttttc ttgggttcca gagctttgta ct 32
<210> 4
<211> 28
<212> RNA
<213> 人工序列
<400> 4
cugcccaguc ugagagacaa cuugccac 28
<210> 5
<211> 28
<212> RNA
<213> 人工序列
<400> 5
cgucgggguc cgcuucaugc ugccguua 28
<210> 6
<211> 28
<212> RNA
<213> 人工序列
<400> 6
ggaaguuggg ugcaguuuuu auucgagg 28
<210> 7
<211> 28
<212> RNA
<213> 人工序列
<400> 7
gucccgacgg uacgccgaga gggacaau 28
<210> 8
<211> 28
<212> RNA
<213> 人工序列
<400> 8
ugucagcgac uggcaacuag ggcgggug 28
<210> 9
<211> 28
<212> RNA
<213> 人工序列
<400> 9
ucuggaaacc cgggcuucgc gcggcccg 28
<210> 10
<211> 28
<212> RNA
<213> 人工序列
<400> 10
auggugucgc cgugcugcuc aagacgcg 28
<210> 11
<211> 18
<212> DNA
<213> 人工序列
<400> 11
cagaaccagg agaagatg 18
<210> 12
<211> 18
<212> DNA
<213> 人工序列
<400> 12
ttagagggta acgacagc 18
<210> 13
<211> 18
<212> DNA
<213> 人工序列
<400> 13
gtcagcggtg gcagtgta 18
<210> 14
<211> 18
<212> DNA
<213> 人工序列
<400> 14
gtgttggtgg gtggcatt 18
<210> 15
<211> 18
<212> DNA
<213> 人工序列
<400> 15
ataagggact cggaatgg 18
<210> 16
<211> 20
<212> DNA
<213> 人工序列
<400> 16
tgcgtggaat agacagtgat 20
<210> 17
<211> 18
<212> DNA
<213> 人工序列
<400> 17
gcccaacggc atcactct 18
<210> 18
<211> 19
<212> DNA
<213> 人工序列
<400> 18
tcctccagca cggtcttcc 19
<210> 19
<211> 18
<212> DNA
<213> 人工序列
<400> 19
aagatgatgg agcgagtg 18
<210> 20
<211> 18
<212> DNA
<213> 人工序列
<400> 20
tggtaataag cctgggat 18
<210> 21
<211> 18
<212> DNA
<213> 人工序列
<400> 21
attgctgggc tgttcgtg 18
<210> 22
<211> 18
<212> DNA
<213> 人工序列
<400> 22
tgtgactggg caggtgga 18
<210> 23
<211> 18
<212> DNA
<213> 人工序列
<400> 23
cttggctttg attctcgc 18
<210> 24
<211> 18
<212> DNA
<213> 人工序列
<400> 24
gttccattcc cattgttg 18
<210> 25
<211> 18
<212> DNA
<213> 人工序列
<400> 25
agagcaagag aggcatcc 18
<210> 26
<211> 19
<212> DNA
<213> 人工序列
<400> 26
tcgttgtaga aggtgtggt 19

Claims (5)

1. 一种牛源化CRISPR/boCas13a基因编辑系统,其特征在于,包括boCas13a蛋白和crRNA;编码所述boCas13a蛋白的核苷酸序列如SEQ ID NO.1所示;所述crRNA的序列如SEQID NO.4-10中的任一种;所述牛源化CRISPR/boCas13a基因编辑系统的靶基因为MSTN、FTO、CD44、ACADSB、PRNP、LDLR或HEBP1。
2.利用权利要求1所述的牛源化CRISPR/boCas13a基因编辑系统进行基因编辑方法,其特征在于,包括如下步骤:
(1)分别构建boCas13a表达载体和crRNA表达载体;
(2)将所述boCas13a表达载体和crRNA表达载体共转染牛源细胞;
(3)对牛源细胞靶基因的切割效率进行检测。
3.根据权利要求2所述的基因编辑方法,其特征在于,将所述boCas13a基因序列构建在pLWCas13a载体上,获得pboCas13a表达载体。
4.根据权利要求2所述的基因编辑方法,其特征在于,
采用Real-Time qPCR法进行切割效率检测。
5.权利要求1所述的牛源化CRISPR/boCas13a基因编辑系统在编辑牛源细胞RNA中的应用。
CN202310522486.4A 2023-05-10 2023-05-10 牛源化CRISPR/boCas13a基因编辑系统、方法及应用 Active CN116286904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310522486.4A CN116286904B (zh) 2023-05-10 2023-05-10 牛源化CRISPR/boCas13a基因编辑系统、方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310522486.4A CN116286904B (zh) 2023-05-10 2023-05-10 牛源化CRISPR/boCas13a基因编辑系统、方法及应用

Publications (2)

Publication Number Publication Date
CN116286904A CN116286904A (zh) 2023-06-23
CN116286904B true CN116286904B (zh) 2023-08-01

Family

ID=86781732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310522486.4A Active CN116286904B (zh) 2023-05-10 2023-05-10 牛源化CRISPR/boCas13a基因编辑系统、方法及应用

Country Status (1)

Country Link
CN (1) CN116286904B (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104937B2 (en) * 2017-03-15 2021-08-31 The Broad Institute, Inc. CRISPR effector system based diagnostics
US11618928B2 (en) * 2017-04-12 2023-04-04 The Broad Institute, Inc. CRISPR effector system based diagnostics for malaria detection
CN107034221A (zh) * 2017-06-02 2017-08-11 内蒙古大学 一种能在小鼠体内表达的部分碱基缺失肌肉抑制素基因及应用
CN108048466B (zh) * 2017-12-21 2020-02-07 嘉兴市第一医院 CRISPR-Cas13a系统特异性靶向人RSPO2基因的crRNA及系统和应用
CN108546718B (zh) * 2018-05-16 2021-07-09 康春生 crRNA介导的CRISPR/Cas13a基因编辑系统在肿瘤细胞中的应用
CN109666684A (zh) * 2018-12-25 2019-04-23 北京化工大学 一种CRISPR/Cas12a基因编辑系统及其应用
CN111321234B (zh) * 2020-02-08 2023-10-03 天津科技大学 一种基于CRISPR-Cas13a系统检测微生物的方法及应用
CN111304249B (zh) * 2020-02-17 2022-11-08 东南大学 一种新型CRISPR Cas13a-gRNA表达载体及其应用
BR112022017070A2 (pt) * 2020-02-28 2022-11-16 Huigene Therapeutics Co Ltd Sistema crispr-cas tipo vi-e e tipo vi-f e usos do mesmo

Also Published As

Publication number Publication date
CN116286904A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP3523430B1 (en) Engineered nucleic acid-targeting nucleic acids
Ren et al. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters
AU2016274452B2 (en) Thermostable Cas9 nucleases
AU2015362784B2 (en) Fungal genome modification systems and methods of use
US11713471B2 (en) Class II, type V CRISPR systems
CN112266420B (zh) 一种植物高效胞嘧啶单碱基编辑器及其构建与应用
CN113717960A (zh) 一种新Cas9蛋白、CRISPR-Cas9基因组定向编辑载体及基因组编辑方法
CN116694603A (zh) 新型的Cas蛋白、Crispr-Cas系统及其在基因编辑领域中的用途
CN116286904B (zh) 牛源化CRISPR/boCas13a基因编辑系统、方法及应用
WO2023028348A1 (en) Enzymes with ruvc domains
Karcher et al. Faithful editing of a tomato-specific mRNA editing site in transgenic tobacco chloroplasts
CN115772523A (zh) 一种碱基编辑工具
CN116286905B (zh) 牛源化CRISPR/boCas9基因编辑系统、方法及应用
CN112481259B (zh) 两种甘薯U6基因启动子IbU6的克隆与应用
CN117866966B (zh) 一种槟榔u6启动子及其应用
Vilar et al. Advances in assembling gRNA/Cas9 constructs in genome editing of plants
EP4148129A1 (en) Directed evolution method based on primary and secondary replicon of gemini virus
CN116917487A (zh) 通过组合cpe和cre修饰进行协同启动子激活
CN118185927A (zh) 一种含BsmBI酶切位点的引物对及其应用
CN116083488A (zh) 基因编辑方法、基因编辑方法得到的细胞、基因编辑系统及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant