CN116286196A - 锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法 - Google Patents

锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法 Download PDF

Info

Publication number
CN116286196A
CN116286196A CN202310043366.6A CN202310043366A CN116286196A CN 116286196 A CN116286196 A CN 116286196A CN 202310043366 A CN202310043366 A CN 202310043366A CN 116286196 A CN116286196 A CN 116286196A
Authority
CN
China
Prior art keywords
catalyst
zirconium
ionic liquid
organic framework
acidic ionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310043366.6A
Other languages
English (en)
Other versions
CN116286196B (zh
Inventor
程军
毛昱翔
杨卫娟
刘建忠
周俊虎
岑可法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310043366.6A priority Critical patent/CN116286196B/zh
Publication of CN116286196A publication Critical patent/CN116286196A/zh
Application granted granted Critical
Publication of CN116286196B publication Critical patent/CN116286196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/52Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids oxygen-containing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/56Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

本发明涉及生物质能利用技术,旨在提供一种锆基金属有机骨架包裹酸性离子液体的催化剂制备方法。包括:(1)取八水合氧氯化锆、偏苯三酸和N‑磺酸丁基吡啶硫酸氢盐,溶于乙酸与去离子水的混合溶液中,在室温下搅拌均匀;(2)将混合物在80℃加热24h后,离心处理获得固体产物;依次用去离子水和乙醇清洗、干燥后,得到锆基金属有机骨架包裹酸性离子液体的催化剂。与现有固体酸催化剂相比,本发明制备的催化剂具有双酸性位点,制备工艺简单并且具有很好的稳定性和回收性。本发明的催化剂用于转化微藻油脂制产品油的效率高达96.0~98.2%,催化剂再生后的催化藻油转化效率仍能达到91~92%,催化剂循环使用寿命达到≥2500小时。

Description

锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法
技术领域
本发明关于生物质能利用技术,特别涉及一种锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法。
背景技术
生物柴油具有可再生、低毒、低污染排放、高生物降解性等优点,因有望成为化石燃料的重要替代品而受到广泛关注。生物柴油的主要成分是脂肪酸甲酯(FAME),由甘油三酯的酯交换反应或脂肪酸的酯化反应产生。微藻作为第三代生物柴油的原料,具有生长速度快、光合效率高、脂质含量高的优点。微藻油脂的主要成分是甘油三酯(TG)和少量游离脂肪酸(FFAs),它们可以通过酯交换和酯化反应转化为生物柴油。
常规的酸碱催化剂均能促进酯交换反应,其中碱催化剂对该反应具有较高的催化活性。但是对含有游离脂肪酸的油脂原料,由于与脂肪酸产生皂化反应,会导致碱性位点失活从而抑制酯化反应。因此,传统生物柴油生产工艺通常采用酸碱两步转化法,包括脂肪酸与酸性催化剂的酯化反应、以及甘油三酯与碱性催化剂的酯交换反应。然而传统两步方法工艺复杂,并且使用均相酸碱催化剂导致了后续处理存在许多困难。
离子液体由于具有可忽略的蒸汽压、优异的设计性能、良好的热稳定性和较高的溶解性等优点,被广泛用作环境友好型催化剂。功能化酸性离子液体能有效地将游离脂肪酸转化为生物柴油,然而离子液体也存在与均相催化剂相同的问题,如催化剂分离繁琐,可重复使用性差等,这些挑战限制了生物柴油的持续生产。
Jamil等人使用Cu-MOF和Ca-MOF作为组合催化剂生产制备生物柴油,获得了84.5%的生物柴油收率,然而该两步法工艺中的纯MOFs催化活性较弱并且无协同作用。Farooq等人通过浸渍法合成多相催化剂(Mo-Mn/γ-Al2O3-15wt.%MgO),利用废弃食用油进行酯交换反应得到生物柴油产率91.4%。Wang等人使用Ca-B(700)催化剂转化麻风树油得到生物柴油产率高达96%。Hu等人使用CunO-Bs/SBA-15固体催化剂促进甘油三酯的酯交换反应,在40℃时得到生物柴油产率达到97.5%。但是上述这些催化剂大多需要高温煅烧故制备过程复杂并且能耗高,其单一酸性质也限制了它们在游离脂肪酸含量高的油脂中的催化活性。
发明内容
本发明要解决的技术问题是,克服现有技术中的不足,提供一种锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法。
为解决上述技术问题,本发明的解决方案是:
提供一种锆基金属有机骨架包裹酸性离子液体的催化剂制备方法,包括下述步骤:
(1)取1.45~5.80g的八水合氧氯化锆、0.95~3.80g的偏苯三酸和0.15~0.60g的N-磺酸丁基吡啶硫酸氢盐,溶于6~24mL的乙酸与12~48mL的去离子水的混合溶液中,在室温下搅拌均匀;
(2)将步骤(1)得到的混合物在80℃加热24h后,离心处理获得固体产物;依次用去离子水和乙醇清洗、干燥后,得到锆基金属有机骨架包裹酸性离子液体的催化剂。
作为本发明的优选方案,所述步骤(1)中的搅拌速度为800~1000r/min,搅拌时间20~60min。
作为本发明的优选方案,所述步骤(2)中的干燥是指在60~100℃真空烘箱中干燥6~10h。
本发明进一步提供了前述方法制备获得的锆基金属有机骨架包裹酸性离子液体催化剂在催化转化藻油中的应用方法,包括下述步骤:
取锆基金属有机骨架包裹酸性离子液体的催化剂50~200mg,与50~200mg微藻油脂混合后置于反应釜内;再加入2~8mL甲醇,在200℃恒定温度反应2h;用20mL正己烷和20mL去离子水清洗反应产物,使用分液漏斗提取正己烷相,通过旋转蒸发器除去正己烷,得到成分为脂肪酸甲酯的产品油。
作为本发明的优选方案,所述脂肪酸甲酯的碳链长度为C16~C18。
本发明进一步提供了上述应用方法中的催化剂的再生方法,包括以下步骤:将反应后的催化剂依次用正己烷和乙醇清洗,干燥后得到再生的催化剂。
发明原理描述:
1、本发明中的催化剂以锆基金属有机骨架作为稳定性好的优良载体,其骨架中不饱和配位的锆具有较强的Lewis酸性,可以有效催化酯交换反应;离子液体能够释放质子具有Bronsted酸性位点,两者结合实现Lewis-Bronsted酸协同催化作用,高效转化微藻油脂中的甘油三酯和脂肪酸。图1为该催化剂锆基金属有机骨架包裹酸性离子液体的结构示意图。
2、在藻油转化过程中:一方面,微藻油脂中脂肪酸成分的羰基与N-磺酸丁基吡啶硫酸氢盐的质子结合形成了碳正离子。然后碳正离子与甲醇发生亲核加成反应得到四面中间体,四面中间体最终脱去H2O生成脂肪酸甲酯的产品油,另外生成的H+得到回收用于后续反应。另一方面,微藻油脂中甘油三酯成分与金属有机骨架中的不饱和配位锆(路易斯酸)结合,在电子离域作用下甘油三酯中羰基的两个氧原子形成共振产生亲电碳原子,得到脂肪酸甲酯和甘油二酯;甘油二酯经过类似反应生成甘油单酯。最终三支链的甘油三酯转化为单链的脂肪酸甲酯。
与现有技术相比,本发明的有益效果是:
1、与现有文献报道的固体酸催化剂相比,本发明制备的锆基金属有机骨架包裹N-磺酸丁基吡啶硫酸氢盐离子液体的双功能催化剂具有双酸性位点(即Lewis-Bronsted酸性协同活性位),制备工艺简单并且具有很好的稳定性和回收性。
2、本发明的催化剂转化微藻油脂制产品油的效率高达96.0~98.2%,催化剂再生后的催化藻油转化效率仍能达到91~92%,催化剂循环使用寿命达到≥2500小时。
附图说明
图1为锆基金属有机骨架包裹酸性离子液体的催化剂结构示意图。
图2为锆基金属有机骨架包裹酸性离子液体的催化剂制备及转化藻油工艺流程图。
具体实施方式
微藻油脂的制备工艺属于现有技术,且有市售商品。本发明仅涉及微藻油脂的催化转化,不涉及微藻油脂本身的制备工艺。任何现有技术制备获得的微藻油脂均可用于本发明。本发明各实施例所用微藻油脂都来自烟台海融微藻养殖有限公司生产的微拟球藻,经过干燥研磨后用氯仿-甲醇的混合溶液萃取而得。
实施例中所述微藻油脂的转化效率,是指最终产物油(脂肪酸甲酯)质量与用作反应原料的微藻油脂质量的比值。
下面结合附图与具体实施方式对本发明作进一步详细描述。实施例可以使本专业的专业技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
取1.45g的八水合氧氯化锆、0.95g的偏苯三酸和0.15g的N-磺酸丁基吡啶硫酸氢盐,溶于6mL的乙酸和12mL的去离子水的混合溶液中,室温800r/min搅拌20min。然后将该混合物在80℃加热24h,通过离心获得固体产物,再经过去离子水和乙醇清洗,在真空烘箱中60℃干燥6h得到锆基金属有机骨架包裹酸性离子液体的催化剂。
取该催化剂50mg,与50mg微藻油脂混合后置于反应釜内,加入2mL甲醇,恒定温度200℃反应2h。用20mL正己烷和20mL去离子水清洗反应产物,使用分液漏斗提取正己烷相,通过旋转蒸发器除去正己烷,最终得到产品油的成分为脂肪酸甲酯,碳链长度为C16~C18。
经进一步的实验验证,该催化剂转化微藻油脂制产品油的效率高达98.2%,催化剂再生后的催化藻油转化效率仍能达到92%,催化剂循环使用寿命达到≥2500小时。
实施例2
取2.90g的八水合氧氯化锆、1.90g的偏苯三酸和0.30g的N-磺酸丁基吡啶硫酸氢盐,溶于12mL的乙酸和24mL的去离子水的混合溶液中,室温900r/min搅拌40min。然后将该混合物在80℃加热24h,通过离心获得固体产物,再经过去离子水和乙醇清洗,在真空烘箱中80℃干燥8h得到锆基金属有机骨架包裹酸性离子液体的催化剂。
取该催化剂100mg,与100mg微藻油脂混合后置于反应釜内,加入4mL甲醇,恒定温度200℃反应2h。用20mL正己烷和20mL去离子水清洗反应产物,使用分液漏斗提取正己烷相,通过旋转蒸发器除去正己烷,最终得到产品油的成分为脂肪酸甲酯,碳链长度为C16~C18。
经进一步的实验验证,该催化剂转化微藻油脂制产品油的效率高达96.7%,催化剂再生后的催化藻油转化效率仍能达到91.5%,催化剂循环使用寿命达到≥2500小时。
实施例3
取5.80g的八水合氧氯化锆、3.80g的偏苯三酸和0.60g的N-磺酸丁基吡啶硫酸氢盐,溶于24mL的乙酸和48mL的去离子水的混合溶液中,室温1000r/min搅拌60min。然后将该混合物在80℃加热24h,通过离心获得固体产物,再经过去离子水和乙醇清洗,在真空烘箱中100℃干燥10h得到锆基金属有机骨架包裹酸性离子液体的催化剂。
取该催化剂200mg,与200mg微藻油脂混合后置于反应釜内,加入8mL甲醇,恒定温度200℃反应2h。用20mL正己烷和20mL去离子水清洗反应产物,使用分液漏斗提取正己烷相,通过旋转蒸发器除去正己烷,最终得到产品油的成分为脂肪酸甲酯,碳链长度为C16~C18。
经进一步的实验验证,该催化剂转化微藻油脂制产品油的效率高达96.0%,催化剂再生后的催化藻油转化效率仍能达到91%,催化剂循环使用寿命达到≥2500小时。
对比例1
参照《Guanidine post-functionalized crystalline ZIF-90frameworks as apromising recyclable catalyst for the production of biodiesel via soybean oiltransesterification》论文记载的Xie等人的胍后修饰ZIF-90催化剂合成过程,制备得到ZIF-90-Gua催化剂,并将其作为催化剂用于微藻油脂的催化转化反应。反应过程的原料用量、反应条件参照本发明实施例1。
按照实施例1中相同的方法进行测试和再生,该催化剂使高酸值微藻油脂催化转化效率为86.4%,催化剂再生后循环使用达到新鲜催化剂转化效率为78.2%,催化剂循环使用寿命为1500小时。
对比例2
参照《One-step production of biodiesel from Jatropha oils with highacid value at low temperature by magnetic acid-base amphoteric nanoparticles》论文记载的Wang等人的酸碱两性纳米粒子合成过程,制备得到Zn8@Fe-C400催化剂,并将其作为催化剂用于微藻油脂的催化转化反应。反应过程的原料用量、反应条件参照本发明实施例1。
按照实施例1中相同的方法进行测试和再生,该催化剂使高酸值微藻油脂催化转化效率为92.1%,催化剂再生后循环使用达到新鲜催化剂转化效率为83.3%,催化剂循环使用寿命为2000小时。
根据上述实施例数据和对比例数据可以看出,本发明用于催化酸性微藻脂质转化制生物柴油过程中具有更高的生物柴油收率和更长的循环使用寿命。故本发明合成催化剂具有更高的催化转化效率以及更稳定的循环性能。
最后,需要注意的是,以上列举的仅是本发明的具体实施例。显然,本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (6)

1.一种锆基金属有机骨架包裹酸性离子液体的催化剂制备方法,其特征在于,包括下述步骤:
(1)取1.45~5.80g的八水合氧氯化锆、0.95~3.80g的偏苯三酸和0.15~0.60g的N-磺酸丁基吡啶硫酸氢盐,溶于6~24mL的乙酸与12~48mL的去离子水的混合溶液中,在室温下搅拌均匀;
(2)将步骤(1)得到的混合物在80℃加热24h后,离心处理获得固体产物;依次用去离子水和乙醇清洗、干燥后,得到锆基金属有机骨架包裹酸性离子液体的催化剂。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)中的搅拌速度为800~1000r/min,搅拌时间20~60min。
3.根据权利要求1所述的方法,其特征在于,所述步骤(2)中的干燥是指在60~100℃真空烘箱中干燥6~10h。
4.权利要求1所述方法制备获得的锆基金属有机骨架包裹酸性离子液体催化剂在催化转化藻油中的应用方法,其特征在于,包括下述步骤:
取锆基金属有机骨架包裹酸性离子液体的催化剂50~200mg,与50~200mg微藻油脂混合后置于反应釜内;再加入2~8mL甲醇,在200℃恒定温度反应2h;用20mL正己烷和20mL去离子水清洗反应产物,使用分液漏斗提取正己烷相,通过旋转蒸发器除去正己烷,得到成分为脂肪酸甲酯的产品油。
5.根据权利要求4所述的方法,其特征在于,所述脂肪酸甲酯的碳链长度为C16~C18。
6.权利要求4所述应用方法中的催化剂的再生方法,其特征在于,包括以下步骤:将反应后的催化剂依次用正己烷和乙醇清洗,干燥后得到再生的催化剂。
CN202310043366.6A 2023-01-29 2023-01-29 锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法 Active CN116286196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310043366.6A CN116286196B (zh) 2023-01-29 2023-01-29 锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310043366.6A CN116286196B (zh) 2023-01-29 2023-01-29 锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法

Publications (2)

Publication Number Publication Date
CN116286196A true CN116286196A (zh) 2023-06-23
CN116286196B CN116286196B (zh) 2024-03-05

Family

ID=86829531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310043366.6A Active CN116286196B (zh) 2023-01-29 2023-01-29 锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法

Country Status (1)

Country Link
CN (1) CN116286196B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871429A (ja) * 1994-09-06 1996-03-19 Matsumoto Yushi Seiyaku Co Ltd エステル化触媒およびエステルの製法
JP2013132632A (ja) * 2011-12-27 2013-07-08 Toei Sangyo Kk 金属酸化物触媒担持体、およびその製造方法
US20160244397A1 (en) * 2015-02-20 2016-08-25 Biosynthetic Technologies, Llc. Processes for preparing estolide base oils and biobased compounds that include ethyleneolysis
CN107446136A (zh) * 2017-06-21 2017-12-08 浙江大学 一种高稳定性纳米级锆基金属有机框架材料及其制备方法和应用
CN107597087A (zh) * 2017-09-07 2018-01-19 南京大学昆山创新研究院 ZrO2多晶泡沫陶瓷催化剂、其制备方法及其用途
CN110090667A (zh) * 2018-01-30 2019-08-06 南京大学昆山创新研究院 锆金属有机骨架UiO-66催化剂的制备方法及其应用
CN108114699B (zh) * 2017-12-22 2020-12-08 华东理工大学 一种孔径可调的多级孔金属有机骨架纳米材料的制备方法以及由此得到的纳米材料及其应用
CN114574288A (zh) * 2022-02-20 2022-06-03 浙江大学 分子筛原位生长二维超薄纳米片转化高酸值藻油的方法
WO2023278246A1 (en) * 2021-06-28 2023-01-05 ExxonMobil Technology and Engineering Company Metal organic frameworks having node defects and methods of making the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871429A (ja) * 1994-09-06 1996-03-19 Matsumoto Yushi Seiyaku Co Ltd エステル化触媒およびエステルの製法
JP2013132632A (ja) * 2011-12-27 2013-07-08 Toei Sangyo Kk 金属酸化物触媒担持体、およびその製造方法
US20160244397A1 (en) * 2015-02-20 2016-08-25 Biosynthetic Technologies, Llc. Processes for preparing estolide base oils and biobased compounds that include ethyleneolysis
CN107446136A (zh) * 2017-06-21 2017-12-08 浙江大学 一种高稳定性纳米级锆基金属有机框架材料及其制备方法和应用
CN107597087A (zh) * 2017-09-07 2018-01-19 南京大学昆山创新研究院 ZrO2多晶泡沫陶瓷催化剂、其制备方法及其用途
CN108114699B (zh) * 2017-12-22 2020-12-08 华东理工大学 一种孔径可调的多级孔金属有机骨架纳米材料的制备方法以及由此得到的纳米材料及其应用
CN110090667A (zh) * 2018-01-30 2019-08-06 南京大学昆山创新研究院 锆金属有机骨架UiO-66催化剂的制备方法及其应用
WO2023278246A1 (en) * 2021-06-28 2023-01-05 ExxonMobil Technology and Engineering Company Metal organic frameworks having node defects and methods of making the same
CN114574288A (zh) * 2022-02-20 2022-06-03 浙江大学 分子筛原位生长二维超薄纳米片转化高酸值藻油的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张泽等: "镍基金属有机骨架催化制藻基生物航油", 《工程热物理学报》, vol. 42, no. 2, pages 534 - 541 *
蒋平平等: "固体超强酸SO~(2-)_4/ZrO_2催化合成偏苯三酸三(2-乙基)己酯", 《精细化工》, vol. 13, no. 5, pages 36 - 39 *

Also Published As

Publication number Publication date
CN116286196B (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
Sangar et al. Methyl ester production from palm fatty acid distillate (PFAD) using sulfonated cow dung-derived carbon-based solid acid catalyst
Chen et al. Preparation of solid acid catalyst from glucose–starch mixture for biodiesel production
CN100569914C (zh) 一种利用高酸值油脂生产生物柴油的方法
ES2662743T3 (es) Proceso para preparar biodiésel con lipasa y deshidratación en línea separada
Leesing et al. Yeast-based biodiesel production using sulfonated carbon-based solid acid catalyst by an integrated biorefinery of durian peel waste
Joshi et al. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst
Bai et al. Process optimization of esterification for deacidification in waste cooking oil: RSM approach and for biodiesel production assisted with ultrasonic and solvent
Zhang et al. Functionalized organic–inorganic hybrid porous coordination polymer-based catalysts for biodiesel production via trans/esterification
Parida et al. Biomass wastes: a potential catalyst source for biodiesel production
CN101880603A (zh) 一种由高酸值油制备低凝点生物柴油的方法
Pandit et al. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production
Saputra et al. Waste materials from palm oil plant as exploratory catalysts for FAME biodiesel production
Parthiban et al. Nano sized heterogeneous acid catalyst from Ceiba pentandra stalks for production of biodiesel using extracted oil from Ceiba pentandra seeds
CN114574288B (zh) 分子筛原位生长二维超薄纳米片转化高酸值藻油的方法
CN116286196B (zh) 锆基金属有机骨架包裹酸性离子液体催化转化藻油的方法
CN101531916A (zh) 固体碱催化法制备生物柴油
CN1923961A (zh) 微波辐射改性固体碱催化剂转酯化制备生物柴油的方法
CN102154064B (zh) 生物柴油的制备方法
Abba et al. Effect of reaction time on the yield of biodiesel from Neem seed oil
CN115254143A (zh) 一种炭基固体酸催化剂的制备方法及其应用
CN101225324B (zh) 一种低酸催化油脂或脂肪酸一步制备生物柴油的方法
CN111054441B (zh) 硅钨酸壳包覆和核嵌入沸石咪唑骨架的制备方法及应用
CN101781587B (zh) 用动物油脂和鲜薯类制备生物柴油的方法
CN101418226B (zh) 一种n-杂环卡宾二氧化碳加合物催化制备生物柴油的方法
CN110560087B (zh) 一种腐殖质基磺化碳固体酸及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant