CN116268408A - 糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法 - Google Patents

糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法 Download PDF

Info

Publication number
CN116268408A
CN116268408A CN202211456986.4A CN202211456986A CN116268408A CN 116268408 A CN116268408 A CN 116268408A CN 202211456986 A CN202211456986 A CN 202211456986A CN 116268408 A CN116268408 A CN 116268408A
Authority
CN
China
Prior art keywords
linseed oil
casein
microcapsule
arabinogalactan
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211456986.4A
Other languages
English (en)
Other versions
CN116268408B (zh
Inventor
李春
刘丽波
张国芳
杨思琪
杜鹏
李艾黎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Agricultural University
Original Assignee
Northeast Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Agricultural University filed Critical Northeast Agricultural University
Priority to CN202211456986.4A priority Critical patent/CN116268408B/zh
Publication of CN116268408A publication Critical patent/CN116268408A/zh
Application granted granted Critical
Publication of CN116268408B publication Critical patent/CN116268408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • B01J13/043Drying and spraying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Mycology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法,芯材为亚麻籽油,壁材为酪蛋白‑阿拉伯半乳聚糖复合物。酪蛋白与阿拉伯半乳聚糖进行美拉德反应获得复合物具有良好的乳化性。将亚麻籽油与酪蛋白‑阿拉伯半乳聚糖复合物混合,利用高剪切均质机初步乳化后,再用高压均质机两次均质获得亚麻籽油乳液;将乳液进行喷雾干燥制得亚麻籽油微胶囊。本发明制备的亚麻籽油微胶囊结构完整、分散均匀、提高微胶囊载油量,提高亚麻籽油氧化稳定性,具有胃肠道缓控释放能力。此外将液体亚麻籽油制备成微胶囊粉末,为亚麻籽油的营养强化以及深加工提供科学依据,拓宽亚麻籽油在食品工业中的应用。

Description

糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法
技术领域
本发明涉及一种糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法,属于食品加工技术领域。
背景技术
亚麻籽油中90%以上是不饱和脂肪酸,其中α-亚麻酸比例最高,可达53%,是世界上α-亚麻酸含量最高的植物油。亚麻籽油中含有的α-亚麻酸经人体消化后可生成二十碳五烯酸和二十二碳六烯酸。ω-3和ω-6脂肪酸对细胞膜发育和许多生理前体分子的产生具有重要作用,它们参与控制炎症反应、血压和心血管疾病。但由于亚麻籽油中高含量的不饱和脂肪酸使其氧化稳定性低,易酸败引起异味,从而营养成分降低,影响产品货架期。同时它在水食品系统中缺乏混溶性,使亚麻籽油在食品工业中未得到充分利用。
微胶囊技术是采用天然或合成的高分子材料为壁材,将固体、液体或气体物质(如香料、脂肪、维生素、矿物质及生物活性物质等)包埋在一种半透性或密封囊膜内成为一种固体微粒产品的技术。对食品中营养素和添加剂进行微胶囊化能够减少外界环境因素(光、氧、pH、水)对包埋活性成分的影响,最大限度地保持食品组分原有的色香味、性能和生物活性,防止营养物质的破坏与损失。同时微胶囊具有缓控释放的特点,使某些肠道吸收成分通过胃后仍能保持活性。在食品工业生产中最常见的微胶囊化方法是喷雾干燥,使乳液在高温干燥介质中雾化,水分快速蒸发,从而快速形成壳层,瞬时包埋核心材料,这也使得微胶囊技术在食品工业中具有广阔的应用前景。对于微胶囊产品而言,壁材的理化性质是决定微胶囊包埋效率和芯材稳定性的关键因素。鉴于食品工业中亚麻籽油等脂溶性组分的敏感性、缺乏混溶性、易氧化等特性,开发具有良好两亲性能同时兼具一定的抗脂质氧化能力的新型微胶囊壁材是食品工业中迫切需要解决的问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种糖基化酪蛋白高载量包埋亚麻籽油微胶囊的制备方法,该法可以有效提高微胶囊载油量,提高亚麻籽油氧化稳定性,具有胃肠道缓控释放能力。
同时,本发明提供一种糖基化酪蛋白高载量包埋亚麻籽油微胶囊,该微胶囊粉末减少氧化的同时应用范围更广泛。
为解决上述技术问题,本发明采用的技术方案为:
糖基化酪蛋白高载量包埋亚麻籽油微胶囊的制备方法,包括以下步骤:
步骤一,将2g酪蛋白溶解在100mL磷酸盐缓冲溶液中,在40~50℃水浴中以400~700r/min的速度搅拌2h,在4℃下水合8~16h,获得酪蛋白蛋白溶液;
步骤二,将酪蛋白与阿拉伯半乳聚糖按质量比为3:1充分混合,90℃反应1h;反应结束后冰浴到室温,随后冷冻干燥制成酪蛋白-阿拉伯半乳聚糖复合物粉末;
步骤三,将酪蛋白-阿拉伯半乳聚糖复合物粉末溶于去离子水中配制成5%w/v溶液,按照酪蛋白-阿拉伯半乳聚糖复合物粉末与亚麻籽油质量比为1:1加入亚麻籽油;
步骤四,经过9000~10000rpm高速均质1~4min后,再采用高压均质机分别在30MPa和10MPa进行两次均质制成亚麻籽油乳液;
步骤五,将亚麻籽油乳液进行喷雾干燥制得亚麻籽油微胶囊,微胶囊进行密封低温避光保存。
步骤一中,磷酸盐缓冲溶液的浓度为0.01M,pH为7.0~7.2。
步骤二中,酪蛋白与阿拉伯半乳聚糖的反应pH为7~8。
步骤五中,喷雾干燥机进口温度为170℃、出口温度为130℃、进样速度为300~500mL/h。
阿拉伯半乳聚糖中,半乳糖和阿拉伯糖的摩尔比为6:1。
步骤五中,低温保存的温度为4℃冰箱保存。
本发明的制备方法获得的糖基化酪蛋白高载量包埋亚麻籽油微胶囊。
本发明具有以下有益效果:
酪蛋白被作为天然食品添加剂和营养补充剂广泛应用于食品工业领域,其在改善食品的结构性质的同时使食品更加营养健康。然而酪蛋白对于加工环境敏感,当pH下降时蛋白质溶解度降低,其水合性能下降,进而影响其乳化能力。仅由酪蛋白形成的油/水乳液是一种热力学不稳定的胶体体系,当发生乳液pH降低、温度升高等情况时,液滴外围的液膜层也会破裂,出现破乳分层现象。基于结构决定功能的原理,通过美拉德反应将多糖对蛋白质进行糖基化修饰,改善其部分功能性质使其更适用于微胶囊包埋。在糖基化产物中,蛋白质部分可以迅速吸附在油滴表面,多糖部分通过产生强烈的空间位阻作用,防止油滴聚集,提高乳化能力。阿拉伯半乳糖是一种高水溶性中性多糖,主要由半乳糖和阿拉伯糖(摩尔比6:1)组成。阿拉伯半乳聚糖具有水凝胶性质和多种生物活性,如免疫活性和抗肿瘤活性,也被国家卫生健康委员会批准为新资源食品。
酪蛋白具有较好的分散性和优良的表面活性,作为乳化剂可快速吸附到油/水界面,形成液膜保护层,防止油滴絮凝和聚集。此外,酪蛋白含有人体需要的多种氨基酸,也是乳中钙和磷的丰富来。同时酪蛋白来源广泛,约占乳蛋白的80%,易于工业化制备。此外阿拉伯半乳聚糖具有水凝胶性质和多种生物活性,如免疫活性和抗肿瘤活性。将酪蛋白与阿拉伯半乳聚糖进行美拉德反应获得酪蛋白-阿拉伯半乳聚糖复合物具有良好的乳化性,促进对亚麻籽油的乳化性,无需添加额外的乳化剂。微胶囊技术不仅可以将亚麻籽油与空气有效隔绝,将美拉德产物作为壁材,利用其抗氧化性可显著降低亚麻籽油氧化程度。此外,亚麻籽油液体油可应用范围较小,对储存、运输增加难度,制备成微胶囊粉末减少氧化的同时应用范围更广泛。
本发明提供了一种糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法,芯材为亚麻籽油,壁材为酪蛋白-阿拉伯半乳聚糖复合物。酪蛋白与阿拉伯半乳聚糖进行美拉德反应获得复合物具有良好的乳化性。将亚麻籽油与酪蛋白-阿拉伯半乳聚糖复合物混合,利用高剪切均质机初步乳化后,再用高压均质机两次均质获得亚麻籽油乳液;将乳液进行喷雾干燥制得亚麻籽油微胶囊。本发明制备的亚麻籽油微胶囊结构完整、分散均匀,载油量为50%、包埋率为83.44±1.38%。同时微胶囊具有胃肠道缓控释放的效果,经过模拟胃液2h消化后,亚麻籽油仅释放29.86±2.35%,再经过模拟肠液2h消化后,亚麻籽油释放83.12±2.49%。包埋可有效改善亚麻籽油的氧化稳定性,经过25℃储存28天后过氧化值仅为3.84±0.18meq/kg。此外将液体亚麻籽油制备成微胶囊粉末,为亚麻籽油的营养强化以及深加工提供科学依据,拓宽亚麻籽油在食品工业中的应用。
附图说明
图1为本发明两种糖基化酪蛋白对亚麻籽油的乳化能力对比图;
图2为本发明两种糖基化酪蛋白热稳定性对比图;
图3为本发明两种糖基化酪蛋白抗氧化能力对比图;
图4为本发明不同比例酪蛋白与阿拉伯半乳聚糖包埋亚麻籽油微胶囊微观结构;
图5为本发明两种糖基化酪蛋白对亚麻籽油的包埋率对比图;
图6为本发明两种糖基化酪蛋白包埋亚麻籽油微胶囊扫描电镜观察对比图;
图7为本发明两种糖基化酪蛋白包埋亚麻籽油微胶囊激光共聚焦观察对比图;
图8为本发明两种糖基化酪蛋白包埋亚麻籽油微胶囊模拟胃肠液消化对比图;
图9为本发明两种糖基化酪蛋白包埋亚麻籽油微胶囊25℃储存28天过氧化值变化对比图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
本发明包括如表1中的以下试剂:
表1试剂
试剂名称 生产厂家
酪蛋白 北京博奥拓达科技有限公司
阿拉伯半乳聚糖 上海源叶生物科技有限公司
亚麻籽油 北京格琳诺尔有限公司
其他化学试剂 国产分析纯
实施例1
将2g酪蛋白CA溶解在100mL、0.01M、pH为7.0的磷酸盐缓冲溶液(即PBS磷酸缓冲盐溶液)中,在45℃水浴以500r/min的速度搅拌2h,在4℃下水合12h,获得酪蛋白蛋白溶液。将酪蛋白CA与阿拉伯半乳聚糖AG按质量比为3:1充分混合,即将阿拉伯半乳聚糖加入至酪蛋白蛋白溶液中充分混合,90℃反应1h。反应结束后迅速冰浴到室温,随后冷冻干燥制成酪蛋白-阿拉伯半乳聚糖粉末CA-AG。
对比例1
将2g酪蛋白CA溶解在100mL磷酸盐缓冲溶液中,在45℃水浴以500r/min的速度搅拌2h,在4℃下水合12h,获得酪蛋白蛋白溶液。将酪蛋白CA与果胶CP按质量比为3:1充分混合,90℃反应1.5h。反应结束后迅速冰浴到室温,随后冷冻干燥制成酪蛋白-果胶粉末CA-CP。
1.两种糖基化酪蛋白乳化能力的测定
乳化性质包括乳化活性指数(EAI)和乳化稳定性指数(ESI)。将各种样品分别溶解在0.1M磷酸盐缓冲液(pH=7)中,浓度为5mg/mL,每个样品15mL和5mL亚麻籽油用高速均质机以10000rpm的速度均质1分钟。然后在0分钟和10分钟从瓶底提取各50μL乳剂,加入5mL0.1%(w/v)SDS溶液中充分混合。用紫外可见分光光度计在500nm(0.1% SDS溶液为空白)记录稀释乳剂的吸光度。
Figure BDA0003953701100000051
Figure BDA0003953701100000052
A0:均质0min的稀释乳剂在500nm处的吸光值;A10:均质10min的稀释乳剂在500nm处的吸光值;DF:稀释指数;
Figure BDA0003953701100000053
比色皿宽度(cm);θ:油相体积分数;C:蛋白浓度(g/mL)。
本对比例中,样品15mL,油5mL,油相体积分数为:5/(5+15)=0.25;蛋白浓度为测定酪蛋白-多糖乳化性时方法使用的浓度,确定为5mg/mL。
结果分析:如图1所示,其中,CA:酪蛋白;CA-CP:酪蛋白-果胶复合物;CA+CP:酪蛋白-果胶混合物;CA-AG:酪蛋白-阿拉伯半乳聚糖复合物;CA+CP:酪蛋白-阿拉伯半乳聚糖混合物。不同字母表示组间差异显著(P<0.05)。与酪蛋白和酪蛋白-果胶复合物相比,酪蛋白-阿拉伯半乳聚糖复合物的乳化能力显著提高,乳化活性达到27.63±0.57g/m2,乳化稳定性达到36.50±0.85min。这可能是由于蛋白质与亲水性多糖之间的共价作用提高了蛋白质的溶解度,增加了蛋白质在水溶液中的有效浓度和迁移率。此外,美拉德反应产物会增加体系的粘度,并在油滴周围形成更厚的大分子屏障,从而保护油滴不受空间斥力的聚集和聚结。此外阿拉伯半乳聚糖具有广泛的柔性分支表面,支链多糖提供更大的空间阻力,能够通过氢键与邻近的螺旋和多个多糖分子相互作用,防止油滴聚集。
2.两种糖基化酪蛋白热稳定性的测定
用DSC热分析仪研究糖基化对酪蛋白的影响。分别准确称量冻干糖基化蛋白样品(5mg),放入DSC铝盘中,用铝板密封。然后将铝盒以10℃/分钟的速度从50℃加热到120℃,并在整个过程中充满氮气。
结果分析:如图2所示,酪蛋白-阿拉伯半乳聚糖复合物比酪蛋白、酪蛋白-果胶复合物具有更高的热稳定性,热变性温度升高至90.5℃。这是由于糖基化作用引起酪蛋白吸收峰右移,蛋白质的热变性温度升高,阿拉伯半乳聚糖的支化结构存在较大的空间相互作用,从而有效地阻止或减缓了热诱导蛋白的聚集。
3.两种糖基化酪蛋白抗氧化能力的测定
DPPH自由基清除能力:将美拉德反应产物糖基化酪蛋白溶解在浓度为2、4、8、16mg/mL的0.1M磷酸盐缓冲液中。将2mL DPPH(0.1mM)与1mL蛋白溶液混合,静置20分钟,5000rpm离心10分钟,测量样品在517nm处溶液上清的吸光度Asample。用磷酸盐缓冲液代替蛋白质样品,以与空白相同的方式与DPPH溶解,测定吸光度Ablank。对照组采用相同的方法进行实验,只是用无水乙醇代替DPPH溶液,测定吸光度Acontrol
Figure BDA0003953701100000071
ABTS自由基清除能力:7mmol/L ABTS试剂与2.45mmol/L过硫酸钾溶液等量混合,静置12h,用磷酸缓冲液(5mmol/L,pH=7.4)稀释,在734nm处吸光度A0为0.7±0.02,A0为空白。将20μL样品(2、4、8、16mg/mL)加入2mL稀释ABTS溶液中,静置6min,测量样品在734nm处吸光度As
Figure BDA0003953701100000072
Fe2+清除能力:1mL浓度为2、4、8和16mg/mL的样品溶液与1.85mL蒸馏水和0.05mL2.0mM FeCl2混合。混合物在静置30秒后将混合物加入0.1mL5mM的菲洛嗪混合,静置10分钟。4000rpm离心5分钟,测量样品在562nm处的吸光度Asample。Ablank为空白。
Figure BDA0003953701100000073
结果分析:随着底物浓度的增加,抗氧化能力逐渐增强。当底物浓度为16mg/mL时,如图3所示,糖基化产物抗氧化能力显著高于混合物和酪蛋白,酪蛋白-果胶DPPH自由基清除能力为60.33%,酪蛋白-阿拉伯半乳聚糖为55.89%;酪蛋白-果胶ABTS自由基清除能力为56.96%,酪蛋白-阿拉伯半乳聚糖为51.63%,这是因为酪蛋白与果胶美拉德反应产生了更多的褐变产物,使清除自由基能力高于酪蛋白-阿拉伯半乳聚糖。在Fe2+清除能力方面,酪蛋白-果胶为71.10%,酪蛋白-阿拉伯半乳聚糖为66.01%,这是因为除了褐变产物外,阴离子性质的果胶也可以成为Fe2+螯合剂。
实施例2
将酪蛋白-阿拉伯半乳聚糖复合物(酪蛋白与多糖比例为3:1)溶于去离子水中配制成5%(w/v)溶液,按照酪蛋白-阿拉伯半乳聚糖复合物与亚麻籽油质量比为1:1加入亚麻籽油;经过9000rpm高速均质4min后,采用高压均质机分别在30MPa和10MPa进行两次均质制成亚麻籽油乳液。将亚麻籽油乳液进行喷雾干燥制得亚麻籽油微胶囊,喷雾干燥机进口温度为170℃、出口温度为130℃、进样速度500mL/h。制得的微胶囊进行密封低温避光保存。
1.扫描电子显微镜观察微观结构
亚麻籽油微胶囊样品通过双面胶贴在进样台上,均匀平铺压实,经过喷金处理,用钨灯丝扫描电镜观察微胶囊产品的表面结构和微观形态。
结果分析:将酪蛋白与阿拉伯半乳聚糖比例为3:1进行美拉德反应后制备亚麻籽油微胶囊,如图4.a所示,微胶囊颗粒较均匀,完整性较好且无明显裂纹。
对比例2
将酪蛋白-阿拉伯半乳聚糖复合物(酪蛋白与多糖比例为2:1)溶于去离子水中配制成5%(w/v)溶液,按照酪蛋白-阿拉伯半乳聚糖复合物与亚麻籽油质量比为1:1加入亚麻籽油;经过9000rpm高速均质4min后,采用高压均质机分别在30MPa和10MPa进行两次均质制成亚麻籽油乳液。将亚麻籽油乳液进行喷雾干燥制得亚麻籽油微胶囊,喷雾干燥机进口温度为170℃、出口温度为130℃、进样速度500mL/h。制得的微胶囊进行密封低温避光保存。
1.扫描电子显微镜观察微观结构
亚麻籽油微胶囊样品通过双面胶贴在进样台上,均匀平铺压实,经过喷金处理,用钨灯丝扫描电镜观察微胶囊产品的表面结构和微观形态。
结果分析:将酪蛋白与阿拉伯半乳聚糖比例为2:1进行美拉德反应后制备亚麻籽油微胶囊,如图4.b所示,微胶囊出现聚集现象。
对比例3
将酪蛋白-阿拉伯半乳聚糖复合物(酪蛋白与多糖比例为4:1)溶于去离子水中配制成5%(w/v)溶液,按照酪蛋白-阿拉伯半乳聚糖复合物与亚麻籽油质量比为1:1加入亚麻籽油;经过9000rpm高速均质4min后,采用高压均质机分别在30MPa和10MPa进行两次均质制成亚麻籽油乳液。将亚麻籽油乳液进行喷雾干燥制得亚麻籽油微胶囊,喷雾干燥机进口温度为170℃、出口温度为130℃、进样速度500mL/h。制得的微胶囊进行密封低温避光保存。
1.扫描电子显微镜观察微观结构
亚麻籽油微胶囊样品通过双面胶贴在进样台上,均匀平铺压实,经过喷金处理,用钨灯丝扫描电镜观察微胶囊产品的表面结构和微观形态。
结果分析:将酪蛋白与阿拉伯半乳聚糖比例为4:1进行美拉德反应后制备亚麻籽油微胶囊,如图4.c所示,微胶囊出现聚集现象,且部分微胶囊发生破碎。
对比例4
将酪蛋白-果胶复合物(酪蛋白与多糖比例为3:1)溶于去离子水中配制成5%(w/v)溶液,按照酪蛋白-阿拉伯半乳聚糖复合物与亚麻籽油质量比为1:1加入亚麻籽油;经过9000rpm高速均质4min后,采用高压均质机分别在30MPa和10MPa进行两次均质制成亚麻籽油乳液。将亚麻籽油乳液进行喷雾干燥制得亚麻籽油微胶囊,喷雾干燥机进口温度为170℃、出口温度为130℃、进样速度为500mL/h。制得的微胶囊进行密封低温避光保存。
1.糖基化酪蛋白微胶囊包埋率和基本性质测定
表面油测定:称量1g微胶囊放入锥形瓶中,用20mL正己烷轻微振动浸提30s,立即用过滤漏斗将滤液转移至恒重的锥形瓶m1中,然后用旋转蒸发仪蒸发至恒重m2
表面油含量=m2-m1
总油测定:称取1g微胶囊加入5mL 50℃温水中并振荡15min,将所得溶液用90mL正己烷/异丙醇(3:1)萃取两次,4000rpm离心15min。将澄清的有机相n1旋转蒸发至n2
总油含量=n2-n1
包埋率=(总油含量-表面油含量)/总油含量
微胶囊粒径:微胶囊与去离子水按1:100的比例稀释,在25℃下用Malvern3000激光粒度仪测量液滴的尺寸。
微胶囊水分含量:称取2g微胶囊在105℃热风干燥箱干燥2h,m0:干燥前称取微胶囊质量,m1:干燥2h后微胶囊质量。
水分含量=(m0-m1)/m0×100
微胶囊溶解度:称取微胶囊样品Wg于50mL烧杯中,微胶囊含水量为B,用38mL蒸馏水,分数次将样品溶解,并移入50mL离心管中,以4000r/min的速度离心10min,去除上清液后再加入蒸馏水,以4000r/min的速度离心10min,倾去上清液,用少量水将沉淀洗入已知质量的蒸发皿W1中,置于105℃烘箱中干燥至恒重W2
Figure BDA0003953701100000101
微胶囊灰分:根据GB5009.4-2010。
微胶囊酸价的测定:根据GB/T5009.37-2003。
表2糖基化酪蛋白包埋亚麻籽微胶囊的基本性质
性质 CA-AG微胶囊 CA-CP微胶囊
粒径(nm) 252.5±1.88 288.93±2.3
水分含量(%) 4.17±0.51 3.5±0.36
溶解度(%) 50.45±1.85 53.13±0.46
灰分(%) 2.38±0.17 2.73±0.25
酸价(mg/g) 2.18±0.09 2.71±0.12
结果:如图5所示,糖基化酪蛋白与亚麻籽油为1:1时包埋率达到最大,而此时微胶囊载油量达到50%,具有高载油的特征。酪蛋白-阿拉伯半乳聚糖微胶囊包埋率为83.44±1.38%,而酪蛋白-果胶微胶囊包埋率为77.06±0.98%,这是因为酪蛋白-阿拉伯半乳聚糖对亚麻籽油的乳化能力更高。两种糖基化酪蛋白包埋的亚麻籽油微胶囊基本性质如表2所示。
2.扫描电子显微镜观察微胶囊微观结构
亚麻籽油微胶囊样品通过双面胶贴在进样台上,均匀平铺压实,经过喷金处理,用钨灯丝扫描电镜观察微胶囊产品的表面结构和微观形态。
结果:如图6所示,与酪蛋白-果胶微胶囊相比,酪蛋白-阿拉伯半乳聚糖微胶囊颗粒较均匀,完整性较好且无明显裂纹,微胶囊表面出现凹陷,这是喷雾干燥制备微胶囊的普遍特性,喷雾干燥过程温度升高,导致微胶囊水分快速收缩从而出现凹陷。
3.激光共聚焦显微镜观察微胶囊微观结构
用异丙醇溶解1%尼罗蓝和0.1%尼罗红,然后用0.22μm滤网去除残渣。取200μL由CA-AG 3:1制备的微胶囊乳液,加800μL去离子水,加入45μL1%尼罗蓝和40μL 0.1%尼罗红混合均匀,15min后制片,全程避光,在552nm处激光观察微光结构。
结果:如图7所示,为酪蛋白-阿拉伯半乳聚糖包埋亚麻籽油的激光共聚焦显微镜图,在552nm激光处呈现绿色圆环包埋红色油滴,亚麻籽油集中在中间腔体部分,说明蛋白包埋油脂的微胶囊结构已形成。
4.微胶囊模拟体外胃肠液消化油脂释放率
配制模拟胃液(100mL):0.32g胃蛋白酶,0.2g NaCl,使用1M HCl将调节pH至2;配制模拟肠液(100mL):0.11g CaCl2,0.87g NaCl,0.5g胆盐,0.16g胰蛋白酶,用0.1mol/LNaOH调节pH=7。分别将1g CA-AG 3:1和1g CA-CP 3:1微胶囊与10mL模拟胃液混合,于37℃恒温模拟胃液消化,100r/min连续震荡2h;用1MNaOH调节pH至7使胃蛋白酶失活,加入10mL模拟肠液,于相同条件模拟肠消化2h。间隔0.5h取混合均匀的消化液,灭活消化液中的酶,随后将灭酶后的消化液转入分液漏斗中,加入25mL正己烷,混合萃取,重复三次后,合并有机相,旋蒸去除正己烷,测得消化后表面油含量。
消化油脂释放率=消化表面油含量/总油含量
结果:如图8所示,其中,CPM为酪蛋白-果胶微胶囊;AGM为酪蛋白-阿拉伯半乳聚糖微胶囊,酪蛋白-阿拉伯半乳聚糖微胶囊经过模拟胃液消化2h后亚麻籽油释放率29.86±2.35%,经过模拟肠液消化2h后亚麻籽油释放率为83.12±2.49%。微胶囊在模拟胃液消化的释放率较低,主要是因为蛋白在低pH(pH<3)条件下水解,导致微胶囊表面电荷损失,无法提供足够的静电排斥力,从而使微胶囊颗粒出现聚结。进入肠模拟消化液阶段亚麻籽油释放率显著增加,在碱性条件下,胰蛋白酶能渗透到微胶囊中深度水解壁材蛋白,并破坏蛋白和糖类化合物间的交联作用,导致壁材裂解和芯材释放,同时在进入模拟肠液消化阶段后聚集态颗粒也会缓慢解离、变小直至消失。
5.微胶囊25℃储存28天过氧化值的测定
过氧化值样品测定:制备5%浓度微胶囊复配乳状液,取1mL乳状液加入5mL异辛烷:异丙醇(2:1)混匀,5000rpm离心5min。取1mL上清液,分别加入20μL硫氰酸钾和氯化亚铁溶液,再加入甲醇:正丁醇(2:1)溶液定容至5mL,避光静置20min后测定510nm处吸收波长。
Fe3+标准曲线:分别取0、10、20、40、80和100μL的Fe3+标准工作液(4.948g FeSO4·7H2O溶于50mL去离子水中,加入100mL浓硫酸,溶解后加入20%高锰酸钾溶液,直至溶液红色褪色30s,定容至1L摇匀)于10mL试管中,加入20μL 3.94mol/L硫氰酸钾溶液,用甲醇:正丁醇(2:1)定容至5min,其余步骤同上。
Figure BDA0003953701100000121
A:510nm处吸光值;n:吸取上清液体积分数;k:Fe3+标准曲线斜率;m:样品中油脂质量。
结果分析:如图9所示,其中,FO为亚麻籽油;CPM为酪蛋白-果胶微胶囊;AGM为酪蛋白-阿拉伯半乳聚糖微胶囊,亚麻籽油初始过氧化值是1.06meq/kg,制成亚麻籽油微胶囊后过氧化值值有一定的上升,达到1.5meq/kg。主要原因是因为在制备亚麻籽油微胶囊的过程中,乳化均质以及干燥时乳状液都是暴露在空气中,发生了氧化反应。喷雾干燥过程中需要加热,致使亚麻籽油的氧化反应更加显著,因此,亚麻籽油微胶囊的初始过氧化值值高于亚麻籽油。但经过25℃常温储存28天,未包埋的亚麻籽油过氧化值达到14.7±0.51meq/kg,并表现出一定的哈喇味,油脂酸败比较严重。相比之下,亚麻籽油微胶囊的过氧化值的变化速率比较缓慢,酪蛋白-果胶微胶囊为3.82±0.07meq/kg,酪蛋白-阿拉伯半乳聚糖微胶囊为3.84±0.18meq/kg,虽然壁材酪蛋白-果胶复合物抗氧化能力显著高于酪蛋白-阿拉伯半乳聚糖复合物,但二者包埋亚麻籽油时,对亚麻籽油的保护作用无显著性差异,因此致密的壁材结构能有效的阻隔亚麻籽油与氧气直接接触,有效改善氧化稳定性。
实施例3
本实施例与实施例1的区别仅在于:步骤一中,水浴温度为40℃,搅拌速度为400r/min,水合时间为8h,磷酸盐缓冲溶液pH为7.2;
步骤二中,酪蛋白与阿拉伯半乳聚糖的反应pH为7;
步骤五中,喷雾干燥机的进样速度为300mL/h。
实施例4
本实施例与实施例1的区别仅在于:步骤一中,水浴温度为50℃,搅拌速度为700r/min,水合时间为16h,磷酸盐缓冲溶液pH为7.1;
步骤二中,酪蛋白与阿拉伯半乳聚糖的反应pH为8;
步骤五中,喷雾干燥机的进样速度为400mL/h。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.糖基化酪蛋白高载量包埋亚麻籽油微胶囊的制备方法,其特征在于,包括以下步骤:
步骤一,将2g酪蛋白溶解在100mL磷酸盐缓冲溶液中,在40~50℃水浴中以400~700r/min的速度搅拌2h,在4℃下水合8~16h,获得酪蛋白蛋白溶液;
步骤二,将酪蛋白与阿拉伯半乳聚糖按质量比为3:1充分混合,90℃反应1h;反应结束后冰浴到室温,随后冷冻干燥制成酪蛋白-阿拉伯半乳聚糖复合物粉末;
步骤三,将酪蛋白-阿拉伯半乳聚糖复合物粉末溶于去离子水中配制成5%w/v溶液,按照酪蛋白-阿拉伯半乳聚糖复合物粉末与亚麻籽油质量比为1:1加入亚麻籽油;
步骤四,经过9000~10000rpm高速均质1~4min后,再采用高压均质机分别在30MPa和10MPa进行两次均质制成亚麻籽油乳液;
步骤五,将亚麻籽油乳液进行喷雾干燥制得亚麻籽油微胶囊,微胶囊进行密封低温避光保存。
2.根据权利要求1所述的制备方法,其特征在于,步骤一中,磷酸盐缓冲溶液的浓度为0.01M,pH为7.0~7.2。
3.根据权利要求1所述的制备方法,其特征在于,步骤二中,酪蛋白与阿拉伯半乳聚糖的反应pH为7~8。
4.根据权利要求1所述的制备方法,其特征在于,步骤五中,喷雾干燥机进口温度为170℃、出口温度为130℃、进样速度为300~500mL/h。
5.根据权利要求1所述的制备方法,其特征在于,阿拉伯半乳聚糖中,半乳糖和阿拉伯糖的摩尔比为6:1。
6.根据权利要求1所述的制备方法,其特征在于,步骤五中,低温保存的温度为4℃冰箱保存。
7.根据权利要求1~6任意一项所述的制备方法获得的糖基化酪蛋白高载量包埋亚麻籽油微胶囊。
CN202211456986.4A 2022-11-21 2022-11-21 糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法 Active CN116268408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211456986.4A CN116268408B (zh) 2022-11-21 2022-11-21 糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211456986.4A CN116268408B (zh) 2022-11-21 2022-11-21 糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法

Publications (2)

Publication Number Publication Date
CN116268408A true CN116268408A (zh) 2023-06-23
CN116268408B CN116268408B (zh) 2023-10-24

Family

ID=86811859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211456986.4A Active CN116268408B (zh) 2022-11-21 2022-11-21 糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法

Country Status (1)

Country Link
CN (1) CN116268408B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422123A (zh) * 2000-04-04 2003-06-04 澳大利亚食品工业科学中心 食品成分的包封
CN1942239A (zh) * 2004-04-21 2007-04-04 纳幕尔杜邦公司 油的凝聚囊化法
CN103702573A (zh) * 2011-07-15 2014-04-02 雀巢产品技术援助有限公司 食品级蓝色包封物及其生产方法
CN111163859A (zh) * 2017-11-02 2020-05-15 三荣源有限公司 水溶性或水分散性微粒的制造方法、作为乳化功能替代物的用途或使用方法、乳化物的制造方法、食品的制造方法和包含乳化物的食品
CN114304689A (zh) * 2022-02-10 2022-04-12 宝得瑞(湖北)健康产业有限公司 一种不添加合成乳化剂的高载油微囊粉制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422123A (zh) * 2000-04-04 2003-06-04 澳大利亚食品工业科学中心 食品成分的包封
CN1942239A (zh) * 2004-04-21 2007-04-04 纳幕尔杜邦公司 油的凝聚囊化法
CN103702573A (zh) * 2011-07-15 2014-04-02 雀巢产品技术援助有限公司 食品级蓝色包封物及其生产方法
CN111163859A (zh) * 2017-11-02 2020-05-15 三荣源有限公司 水溶性或水分散性微粒的制造方法、作为乳化功能替代物的用途或使用方法、乳化物的制造方法、食品的制造方法和包含乳化物的食品
CN114304689A (zh) * 2022-02-10 2022-04-12 宝得瑞(湖北)健康产业有限公司 一种不添加合成乳化剂的高载油微囊粉制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈正军,等: "美拉德反应产物的制备及在混合油脂微胶囊中的应用", 食品工业科技, vol. 41, no. 19, pages 166 - 171 *

Also Published As

Publication number Publication date
CN116268408B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN107950684B (zh) 一种富含不饱和脂肪酸的油凝胶及其制备方法与应用
Ding et al. Fabrication and characterization of soybean oil bodies encapsulated in maltodextrin and chitosan-EGCG conjugates: An in vitro digestibility study
CN101574327B (zh) 密封的微胶囊凝聚体及其制备方法
CN105410934B (zh) 一种水溶性蛋白-植物甾醇纳米颗粒及制备与应用
Razavi et al. Fabrication of zein/alginate delivery system for nanofood model based on pumpkin
US20070104866A1 (en) Encapsulated emulsions and methods of preparation
Zhu et al. Lecithin alleviates protein flocculation and enhances fat digestion in a model of infant formula emulsion
CN107484985B (zh) 一种自乳化鱼油微胶囊及其生产工艺
Chen et al. Development of anti-photo and anti-thermal high internal phase emulsions stabilized by biomass lignin as a nutraceutical delivery system
Liao et al. Maillard conjugates of whey protein isolate–xylooligosaccharides for the microencapsulation of Lactobacillus rhamnosus: protective effects and stability during spray drying, storage and gastrointestinal digestion
CN114376230B (zh) 一种核桃油微胶囊及其制备方法
CN112956680B (zh) 一种仿植物油体核-壳型脂质体及其制备方法
CN109907121A (zh) 一种紫苏籽油微胶囊及其制备方法
CN114271499A (zh) 一种高包埋率的微胶囊粉末及其制备方法
CN113397156A (zh) 一种双重Pickering乳液及其制备方法
CN109953336A (zh) 一种高载量多甲氧基黄酮速溶微胶囊粉及其制备方法
Liu et al. Effects of pretreatment on the yield of peanut oil and protein extracted by aqueous enzymatic extraction and the characteristics of the emulsion
Cao et al. Physical properties and stability of filled hydrogel particles based on biopolymer phase separation: Influence of the ratio of protein to polysaccharide
Qi et al. The viability of complex coacervate encapsulated probiotics during simulated sequential gastrointestinal digestion affected by wall materials and drying methods
Gao et al. OSA improved the stability and applicability of emulsions prepared with enzymatically hydrolyzed pomelo peel insoluble fiber
CN116268408B (zh) 糖基化酪蛋白高载量包埋亚麻籽油微胶囊及其制备方法
Liu et al. Natural egg yolk emulsion as wall material to encapsulate DHA by two-stage homogenization: Emulsion stability, rheology analysis and powder properties
Kouamé et al. Development and characterization of omega-3-rich flaxseed oil microcapsules and evaluation of its stability and release behavior in probiotic millet yogurt
CN110839873B (zh) 壳聚糖与短直链淀粉制备多不饱和脂肪酸微胶囊的方法
CN115152888B (zh) 一种火麻蛋白皮克林颗粒及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant