CN116247369A - 一种半固态锂电池复合隔膜 - Google Patents

一种半固态锂电池复合隔膜 Download PDF

Info

Publication number
CN116247369A
CN116247369A CN202310020810.2A CN202310020810A CN116247369A CN 116247369 A CN116247369 A CN 116247369A CN 202310020810 A CN202310020810 A CN 202310020810A CN 116247369 A CN116247369 A CN 116247369A
Authority
CN
China
Prior art keywords
semi
lithium battery
solid lithium
pctfe
battery composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310020810.2A
Other languages
English (en)
Inventor
于忠波
贾明虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longdian Technology Guangdong Co ltd
Original Assignee
Longdian Technology Guangdong Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longdian Technology Guangdong Co ltd filed Critical Longdian Technology Guangdong Co ltd
Priority to CN202310020810.2A priority Critical patent/CN116247369A/zh
Publication of CN116247369A publication Critical patent/CN116247369A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种半固态锂电池复合隔膜,本半固态锂电池复合隔膜,通过将一定比例的ABS树脂和PCTFE干燥混合导入N,N‑二甲基甲酰胺溶液内溶解搅拌,再向搅拌液内加入Sb2O3纳米颗粒,并球磨处理,最后通过超声分散形成纺丝溶液,将制备好的纺丝溶液电纺成纳米纤维膜,工艺相对简单不复杂,使复合隔膜的综合性能最佳,表现出优异的离子电导率和电化学稳定性、吸液率、孔隙率、较为出色的力学性能以及优异的热稳定性,同时具有阻燃效果,大大提高了电池的安全性能。

Description

一种半固态锂电池复合隔膜
技术领域
本发明涉及锂电池隔膜技术领域,特别是涉及一种半固态锂电池复合隔膜。
背景技术
半固态锂电池是指任一侧电极不含液体电解质,另一侧电极含有液态电解质的电池,或单体中固体电解质质量或体积占单体中电解质总质量或总体积之比的一半,锂电池主要由正极、负极、隔膜和电解液四部分组成。
目前,传统的聚烯烃隔膜由于其较高的机械强度占据了锂电池的市场主导地位,但是聚烯烃隔膜也存在一些明显的缺点,如孔隙率底(小于50%),电解液的润湿性差,热稳定性差,易燃等,为克服这些缺点,人们用陶瓷粉末或其他热稳定性高的聚合物通过制备独特的复合隔膜结构改性聚烯烃隔膜,又如现有中国授权的公告号为CN110137421B的一种锂电池疏水复合膜和锂电池的发明,提供的锂电池疏水复合膜,厚度均匀、在空气中长期稳定,有效抑制锂枝晶,并具有强烈的疏水性能,有效的提高电池的安全性。
但是由于工艺复杂、成本高、且基体与改性剂之间的粘合力较弱,实际应用仍存在较多局限性。
发明内容
为了克服现有技术的不足,本发明提供一种具有相互连通的多孔结构、孔隙率高、透气性好、能吸收大量的电解液、阻燃性的半固态锂电池复合隔膜。
为解决上述技术问题,本发明提供如下技术方案:一种半固态锂电池复合隔膜,包括以下制备步骤:
(1)选用ABS树脂和PCTFE按照一定比例混合得到原料;
(2)将混合后的原料倒入并溶解于N,N-二甲基甲酰胺溶液中;
(3)通过机械搅拌得到均匀溶液;
(4)向搅拌得到的均匀溶液中添加Sb2O3纳米颗粒,并球磨处理;
(5)最后通过超声分散形成纺丝溶液,将制备好的纺丝溶液电纺成纳米纤维膜。
优选的,所述ABS树脂、PCTFE、N,N-二甲基甲酰胺溶液和Sb2O3纳米颗粒的质量比例为5:5:40:1。
优选的,所述ABS树脂和PCTFE在使用混合前放置设定温度为80℃的干燥箱内干燥24h。
优选的,所述机械搅拌的温度环境为60℃,搅拌时间为12h。
优选的,所述球磨处理的时间为3~4h。
优选的,所述超声分散的时间为0.5~1h。
优选的,所述高压静电纺丝时,环境温度不高于45℃,纺丝电压为13~17kV,推注速度为0.1~0.5mm/min,收集距离为20cm。
优选的,所述制备好的电纺纳米纤维膜在80℃真空下干燥24h。
优选的,所述Sb2O3纳米颗粒的4-6nm。
与现有技术相比,本发明能达到的有益效果是:
本发明通过将一定比例的ABS树脂和PCTFE干燥混合导入N,N-二甲基甲酰胺溶液内溶解搅拌,再向搅拌液内加入Sb2O3纳米颗粒,并球磨处理,最后通过超声分散形成纺丝溶液,将制备好的纺丝溶液电纺成纳米纤维膜,工艺相对简单不复杂,使复合隔膜的综合性能最佳,表现出优异的离子电导率和电化学稳定性、吸液率、孔隙率、较为出色的力学性能以及优异的热稳定性,同时具有阻燃效果,大大提高了电池的安全性能。
附图说明
图1为本发明使用PE和不同比例ABS树脂和PCTFE制成的复合隔膜组装锂电池循环100圈后的阻抗谱示意图;
图2为本发明吸收电解液后PE和不同比例ABS树脂和PCTFE制成的复合隔膜的线性伏安曲线示意图;
图3为本发明使用PE和不同比例ABS树脂和PCTFE制成的复合隔膜组装呈锂电池后的电化学阻抗谱示意图;
图4为本发明PE和不同比例ABS树脂和PCTFE制成的复合隔膜在200℃下放置2h的前后对比示意图;
图5为本发明PE和不同比例ABS树脂和PCTFE制成的复合隔膜DSC曲线、TG曲线和DTG曲线示意图;
图6为本发明PE和不同比例ABS树脂和PCTFE制成的复合隔膜沿机械方向的应力-应变曲线示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明,但下述实施例仅仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其它实施例,都属于本发明的保护范围。下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例:
本发明提供一种半固态锂电池复合隔膜,包括以下制备步骤:
(1)选用ABS树脂和PCTFE按照一定比例混合得到原料,ABS树脂和PCTFE在使用混合前放置设定温度为80℃的干燥箱内干燥24h;
ABS指丙烯腈-丁二烯-苯乙烯共聚物,是一种强度高、韧性好、易于加工成型的热塑型高分子结构材料,PCTFE指聚三氟氯乙烯,具有高度稳定性、耐热性、不燃性、不吸湿性、不透气性以及惰性的优质热塑性树脂,由于PCTFE中的卤素元素F和Cl具有阻燃作用,可以提高隔膜的安全性;
(2)将混合后的原料倒入并溶解于N,N-二甲基甲酰胺溶液中;
(3)通过机械搅拌得到均匀溶液,机械搅拌的温度环境为60℃,搅拌时间为12h;
(4)向搅拌得到的均匀溶液中添加Sb2O3纳米颗粒,优选Sb2O3纳米颗粒的4-6nm,并球磨处理,球磨处理的时间为3~4h;
(5)最后通过超声分散形成纺丝溶液,超声分散的时间为0.5~1h,将制备好的纺丝溶液电纺成纳米纤维膜,高压静电纺丝时,环境温度不高于45℃,纺丝电压为13~17kV,推注速度为0.1~0.5mm/min,收集距离为20cm;
制备好的电纺纳米纤维膜在80℃真空下干燥24h。
经过多次实验,ABS树脂、PCTFE、N,N-二甲基甲酰胺溶液和Sb2O3(三氧化二锑,是一种无机化合物)纳米颗粒的质量比例为5:5:40:1能够得到性能效果最佳的复合隔膜(其中主要改变ABS树脂和PCTFE的比例进行实验);
以下分别列举:PE材料;
ABS树脂、PCTFE、N,N-二甲基甲酰胺溶液和Sb2O3纳米颗粒的质量比例为3:7:40:1;
ABS树脂、PCTFE、N,N-二甲基甲酰胺溶液和Sb2O3纳米颗粒的质量比例为7:3:40:1;
ABS树脂、PCTFE、N,N-二甲基甲酰胺溶液和Sb2O3纳米颗粒的质量比例为5:5:40:1时最终制备得到的复合隔膜的性能对比:
1:如图1所示,为ABS树脂和PCTFE比例分别为3:7、5:5和7:3以及PE材料组装锂电池循环100圈后的阻抗谱,从图1中可以看出,当ABS树脂和PCTFE比例为5:5时,离子电导率和电化学稳定性最优异(其中图1中的横纵方向单位均为欧姆);
2:如图2所示,为浸润过电解液后PE和不同比例的ABS树脂和PCTFE制成的复合隔膜的电化学稳定性对比图,从图2中可以看出5:5的ABS树脂和PCTFE制成的复合隔膜在4.6V时才出现电流明显增大的现象,因此此比例下的ABS树脂和PCTFE制成的复合隔膜电化学稳定性最优异;
3:如图3所示,此为PE和不同比例的ABS树脂和PCTFE制成的复合隔膜的电导率的对比图,此处采用电化学阻抗法测试浸润电解液后隔膜的交流阻抗法来计算离子电导率的大小,从图3中可以看出,5:5的ABS树脂和PCTFE制成的复合隔膜的电导率是最高的;
4:如图4和图5所示,此为PE和不同比例的ABS树脂和PCTFE制成的复合隔膜的热稳定性的对比图,具体的,将这四种隔膜分别冲成直径为16mm的圆片并置于200℃的烘箱中静置2h,比较放置前后隔膜尺寸的变化,结果如图4所示,从图4中可以看出,ABS树脂和PCTFE在5:5和7:3的情况下,热稳定性最强,不会出现收缩情况;
为进一步阐述ABS树脂和PCTFE制成的复合隔膜的热稳定性的作用机理,测试出了PE和不同比例的ABS树脂和PCTFE制成的复合隔膜的DSC、TG、和DTG的对比图,如图5的a、b、c所示,从图中可以看出PE隔膜在135℃有一个明显的吸热峰,而ABS树脂和PCTFE制成的复合隔膜在172℃左右有一个小的吸热峰,在300℃左右有一个明显的放热峰,从而可以得出ABS树脂和PCTFE制成的复合隔膜的热稳定性远远优于PE隔膜;
5:如图6所示,此为PE和不同比例的ABS树脂和PCTFE制成的复合隔膜的机械强度的对比图,ABS树脂和PCTFE的比例为3:7的复合隔膜最大应力应变分别为7MPa和47%左右,ABS树脂和PCTFE的比例为5:5时的复合隔膜最大应力应变分别为16MPa和71%左右,ABS树脂和PCTFE的比例为7:3时的复合隔膜最大应力应变分别为23MPa和105%左右,随着ABS树脂比例的增高复合隔膜的机械强度也在提高,主要优于ABS树脂的柔韧性强,由于ABS树脂和PCTFE制成的复合隔膜的本质是多孔纤维网络,使得该复合隔膜的最大应力低于PE膜的最大应力,但是其作为隔膜仍然满足电池生产的机械性能要求(6.895MPa)。
综上所述,结合所有因素,选择比例为5:5的ABS树脂和PCTFE制成的复合隔膜的性能是最佳的。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

1.一种半固态锂电池复合隔膜,其特征在于:包括以下制备步骤:
(1)选用ABS树脂和PCTFE按照一定比例混合得到原料;
(2)将混合后的原料倒入并溶解于N,N-二甲基甲酰胺溶液中;
(3)通过机械搅拌得到均匀溶液;
(4)向搅拌得到的均匀溶液中添加Sb2O3纳米颗粒,并球磨处理;
(5)最后通过超声分散形成纺丝溶液,将制备好的纺丝溶液电纺成纳米纤维膜。
2.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述ABS树脂、PCTFE、N,N-二甲基甲酰胺溶液和Sb2O3纳米颗粒的质量比例为5:5:40:1。
3.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述ABS树脂和PCTFE在使用混合前放置设定温度为80℃的干燥箱内干燥24h。
4.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述机械搅拌的温度环境为60℃,搅拌时间为12h。
5.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述球磨处理的时间为3~4h。
6.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述超声分散的时间为0.5~1h。
7.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述高压静电纺丝时,环境温度不高于45℃,纺丝电压为13~17kV,推注速度为0.1~0.5mm/min,收集距离为20cm。
8.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述制备好的电纺纳米纤维膜在80℃真空下干燥24h。
9.根据权利要求1所述的一种半固态锂电池复合隔膜,其特征在于:所述Sb2O3纳米颗粒的4-6nm。
CN202310020810.2A 2023-01-06 2023-01-06 一种半固态锂电池复合隔膜 Pending CN116247369A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310020810.2A CN116247369A (zh) 2023-01-06 2023-01-06 一种半固态锂电池复合隔膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310020810.2A CN116247369A (zh) 2023-01-06 2023-01-06 一种半固态锂电池复合隔膜

Publications (1)

Publication Number Publication Date
CN116247369A true CN116247369A (zh) 2023-06-09

Family

ID=86630596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310020810.2A Pending CN116247369A (zh) 2023-01-06 2023-01-06 一种半固态锂电池复合隔膜

Country Status (1)

Country Link
CN (1) CN116247369A (zh)

Similar Documents

Publication Publication Date Title
Zhu et al. Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery
CN108842303B (zh) 勃姆石/聚丙烯腈复合纳米纤维隔膜及其制备方法与应用
CN109786619B (zh) 一种电池隔膜及其制备方法
Kang et al. A thermostability gel polymer electrolyte with electrospun nanofiber separator of organic F-doped poly-m-phenyleneisophthalamide for lithium-ion battery
CN111525184B (zh) 一种复合固态电解质薄膜及其制备和应用
US20220238959A1 (en) Functional coating material for lithium ion battery separator and preparation method therefor
CN107474270B (zh) 一种聚合物电解质膜的制备方法
JP6972000B2 (ja) 非多孔質セパレータ及びその使用
CN109735915B (zh) 超交联有机纳米粒子及其制备方法、改性聚合物膜及其制备方法以及凝胶聚合物电解质
Li et al. Electrospun sio 2/pmia nanofiber membranes with higher ionic conductivity for high temperature resistance lithium-ion batteries
Padmaraj et al. Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery
CN109167094B (zh) 一种基于纤维状快离子导体的有机/无机复合固态电解质膜及其制备方法
Li et al. Study on preparation of polyacrylonitrile/polyimide composite lithium-ion battery separator by electrospinning
Zhang et al. Preparation and characterization of polypropylene supported electrospun POSS-(C3H6Cl) 8/PVDF gel polymer electrolytes for lithium-ion batteries
CN107978789B (zh) 一种聚合物导电纤维增韧的硫化物复合电解质
Mahant et al. Poly (methyl methacrylate) reinforced poly (vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries
Xing et al. A review on nanofibrous separators towards enhanced mechanical properties for lithium-ion batteries
CN114725616A (zh) 一种无机杂化芳纶纳米纤维隔膜、制备方法及其在锂电池中的应用
CN112421181A (zh) 一种提高锂电池隔膜的热稳定性的方法
CN113206345B (zh) 一种对位芳纶纳米纤维/无机纳米粒子复合涂层增强聚烯烃电池隔膜及制备方法
CN114649560A (zh) 一种Zn-MOF/PAN@PAN复合隔膜材料及其制备方法和应用
Cao et al. Composite electrospun membranes containing a monodispersed nano-sized TiO 2@ Li+ single ionic conductor for Li-ion batteries
CN116247369A (zh) 一种半固态锂电池复合隔膜
CN116454534A (zh) 一种芳纶纳米纤维/导电涂层涂覆聚烯烃复合隔膜及其制备方法和应用
CN108767173B (zh) 一种复合锂离子电池隔膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination