CN116218892A - 一种clm24(de3)菌株的构建方法及其应用 - Google Patents

一种clm24(de3)菌株的构建方法及其应用 Download PDF

Info

Publication number
CN116218892A
CN116218892A CN202310104489.6A CN202310104489A CN116218892A CN 116218892 A CN116218892 A CN 116218892A CN 202310104489 A CN202310104489 A CN 202310104489A CN 116218892 A CN116218892 A CN 116218892A
Authority
CN
China
Prior art keywords
strain
clm24
synthesis
cell
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310104489.6A
Other languages
English (en)
Inventor
马文建
王长辉
陈洪冉
叶冬林
王璐
赵军旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Science and Technology
Original Assignee
Tianjin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Science and Technology filed Critical Tianjin University of Science and Technology
Priority to CN202310104489.6A priority Critical patent/CN116218892A/zh
Publication of CN116218892A publication Critical patent/CN116218892A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1247DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07006DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供了一种CLM24(DE3)菌株的构建方法及其应用与无细胞糖蛋白合成,本发明通过基因编辑技术将T7RNAP基因导入大肠杆菌W3110中,由此获得了使W3110可特异高效生产蛋白的潜力,进一步地通过敲除waal基因获得了CLM24(DE3)菌株,该菌株获得了高效生产糖蛋白的潜力;通过无细胞蛋白合成体系表征了其相对于出发菌株,不仅可以进行高效的蛋白合成,并且可以进行蛋白的完全修饰,实现糖蛋白的合成;这是赋予大肠杆菌无细胞合成的关键因素,可以认为CLM24(DE3)菌株对合成生物学中糖蛋白的合成具有潜在应用价值。

Description

一种CLM24(DE3)菌株的构建方法及其应用
技术领域
本发明属于基因编辑领域,具体涉及一种CLM24(DE3)菌株的构建方法及其应用。
技术背景
糖蛋白的合成在合成生物学领域中十分受研究者关注,因其具有多种生物学、生理学的功能,在生命体的生长发育,神经、免疫系统的过程控制,炎症及免疫反应,癌细胞的增殖转移等过程中都起到了关键性的作用。目前,糖蛋白的合成有化学键的连接合成,真核工程细胞的内源性糖蛋白合成,合成成本都较高。
大肠杆菌W3110作为一种工程化的原核模式菌株,具有生长速度快,表达能力强,代谢易于控制,理论上可以全基因组编辑等特点。T7RNA聚合酶是来源于噬菌体的RNA转录酶,具有高度的启动子转移性,且只会转录位于T7启动子下游的DNA。此酶在大肠杆菌中的蛋白表达中应用广泛,与pET系列载体搭配,可获得高表达量的目的蛋白。
Waal蛋白是W3110菌株的周质腔中存在的糖基转移酶,Waal蛋白能够把O-抗原多糖链转移到类脂A-核心多糖复合体上,通过其他酶的作用穿过细胞外膜而在细菌表面形成脂多糖。此过程消耗了大量的糖基,因此,若在大肠杆菌中合成糖蛋白,就需要敲除waal基因。大肠杆菌自身作为原核模式菌株不具备蛋白糖基化修饰过程,目前,研究人员通过将空肠弯曲杆菌的糖基化蛋白修饰过程引入大肠杆菌中可以实现大肠杆菌蛋白合成后的糖基化修饰。因此提供一种大肠杆菌合成糖蛋白的新方法,对于合成生物学和医药领域的低成本的规模化生产具有十分重大的意义。
本申请将提供一种菌株可直接合成T7RNA聚合酶特异高效合成目的蛋白,并可对目的蛋白直接进行糖基化修饰。
发明内容
为了解决上述技术问题,本发明的目的是提供一株高效合成糖蛋白的大肠杆菌的菌株及构建方法。该大肠杆菌CLM24(DE3)与pET系列载体搭配不仅能够进行高效的蛋白合成,同时可以利用空肠弯曲杆菌糖基化机制将合成的蛋白质直接进行翻译后糖基化修饰。
本发明提供技术方案之一,所述工程菌株以大肠杆菌W3110为出发菌株,首先将敲除lac操纵序列中lacZ基因,并且在lacI基因后插入T7RNA聚合酶基因;
进一步地在基因组上敲除糖基转移酶编码基因waal;
本发明提供技术方案之二,是技术方案一所述基因工程菌的应用,特别是在以无细胞蛋白合成体系中合成荧光蛋白sfGFP的应用,
具体地,无细胞蛋白合成体系方法如下:
将技术方案一所述基因工程菌按1%接种量接入2×YTPG培养基中,在OD600=0.8时加入0.25mM的IPTG诱导T7RNA聚合酶表达,37℃,220rpm,培养2.5h,收取菌体,制备细胞提取物;
2×YTPG培养基组成如下:10g/L酵母提取物,16g/L胰蛋白胨,5g/LNaCl,7g/LK2HPO4,3g/LKH2PO4,18g/L葡萄糖,其余为水;调节pH至7.2左右;
进一步地,配置无细胞反应体系(15μl)组成如下:20-53.3%(v/v%)S30细胞提取物,8-20mM谷氨酸镁,16ng/μl DNA模板,10mM谷氨酸胺,130mM谷氨钾钾,1.2mMATP,0.85mMUTP,0.85mMGTP,0.85mMCTP,0.034mg/ml叶酸,0.171mg/ml大肠杆菌tRNA,20种氨基酸各2mM,30mMPEP,0.4mMNAD,0.27mM辅酶A,4mM草酸,1mM腐胺,1.5mM亚精胺和57mMHEPES;其余为水;
经过30℃,4h的孵育收集反应液,检测sfGFP的含量及荧光强度如图3;
优选地,无细胞反应液中添加16mM谷氨酸镁,40%(v/v%)S30细胞提取物,无细胞反应的蛋白合成水平最优。
本发明表明,该菌株蛋白合成水平较出发菌株大大增强,合成体系通过添加PglB(空肠弯曲杆菌寡糖转移酶)可直接应用空肠弯曲杆菌糖基化机制。结果表明,大肠杆菌CML24(DE3)具有高效合成糖蛋白的能力。
附图说明
图1菌株E.coliW3110ΔlacZ::T7RNAP基因组PCR验证图
泳道M-marker;泳道1-菌株E.coliW3110ΔlacZ::T7RNAP;泳道2-菌株W3110;
验证长度:7314bp(验证插入的T7RNAP替换lacZ)
验证长度:5211bp
验证引物:lac-JD-F:tattctggtggccggaaggc
T7JD-R:cggtagcaaagaacgaagtaaaga
图2菌株CLM24(DE3)基因组PCR验证图
泳道M-marker;泳道1-菌株E.coliW3110ΔlacZ::T7RNAP;泳道2-菌株CLM24(DE3);
验证长度:1516bp
验证长度:216bp(验证消除kana抗性基因)
验证引物:waalYZ-F:agatggtatgtagggctccaagag
waalYZ-R:tgcattttaccctaattcacgtac
图3.1 CLM24(DE3)的无细胞提取物表达荧光蛋白sfGFP的western blot检测图,W3110作对照
图3.2 CLM24(DE3)的无细胞提取物表达荧光蛋白sfGFP的荧光表达水平图,W3110做对照
图4 CLM24(DE3)的无细胞合成反应中Mg2+(8mM、10mM、12mM、14mM、16mM、18mM、20mM)及细胞提取物含量(3μl、4μl、5μl、6μl、7μl、8μl)对反应的合成能力影响图
图5 CLM24(DE3)的无细胞糖蛋白合成反应图,以蛋白迁移水平发生改变说明进行了糖基化修饰,W3110(DE3)作对照
具体实施方案:
下面结合实施例,对本发明进一步说明,下属实施例是叙述性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。
本发明中所使用的原料,如无特殊说明,均为常规市售产品,本发明中所使用的方法,如无特殊说明,均为本领域常规方法,本发明所用各物质质量均为常规使用质量。
实施例1菌株W3110(DE3)的构建
菌株E.coliW3110ΔlacZ::T7RNAP的构建
以大肠杆菌W3110为原始菌株,敲除lac操纵序列中lacZ基因,并且在lacI基因后插入T7RNAP基因,使W3110菌株具有自身合成T7RNAP的能力,具有特异高效的转录能力。
构建此菌株使用的方法为λRed重组。主要是构建同源重组片段,及消除卡那霉素抗性基因(SEQ ID NO.1),以pKD46(GenBank:MF287367)作为同源重组质粒,进行基因的敲除及整合。同源重组片段包含上下游同源臂、卡那霉素抗性基因和T7RNAP基因。以下详细描述具体方法:
1、第一步同源重组片段T7RNAP-FRT-kana-FRT的构建。构建T7RNAP-FRT-kana-FRT片段,其中FRT-kana-FRT来源于pKD13质粒,kana为氯霉素抗性基因(SEQ ID NO.1),T7RNAP(SEQ ID NO.2)来源于BL21(DE3)基因组,以大肠杆菌BL21(DE3)为模板,以lacI-T7-F/T7-pkd13-R为引物,PCR得到上游同源臂、T7RNAP基因;以pKD13质粒为模板,以T7-pkd13-F/pkd13-lacI-R为引物,PCR得到FRT-kana-FRT基因;以W3110为模板,以pkd13-lacI-F/l-down-R为引物,PCR得到下游同源臂。以三个片段,包括上游同源臂T7RNAP,FRT-kana-FRT,下游同源臂,overlap PCR得到同源重组片段T7RNAP-FRT-kana-FRT。
2、制备大肠杆菌W3110化学转化感受态细胞并将质粒pKD46化转其中。
3、第一步同源重组。将构建好的同源重组片段T7RNAP-FRT-kana-FRT电转入含pKD46质粒的感受态细胞中,30℃下LB平板倒置培养24h,卡那霉素抗性筛选,挑去转化子进行菌落PCR鉴定后,提取基因组进行基因组PCR验证,以出发菌株W3110做对照(验证图见图1)。
4、卡那霉素抗性消除。将鉴定成功的E.coliW3110ΔlacZ::T7RNAPFRT-kana-FRT菌株制备电转化感受态细胞将pCP20质粒转化其中,30℃下LB平板倒置培养24h,氯霉素抗性筛选,挑取转化子进行基因组提取测序验证,37℃培养数代消除pKD46,pCP20质粒,得到构建成功的菌株W3110(DE3)。
表1:T7RNAP基因替换lacZ基因所用引物
Figure SMS_1
实施例2菌株CLM24(DE3)构建(敲除waal基因)
菌株CLM24(DE3)构建,使用实施例1构建的W3110(DE3)菌株作为底盘菌株,敲除基因组上的waal基因(糖基转移酶)
构建此菌株使用方法为λRed重组。主要是构建同源重组片段,及消除卡那霉素抗性基因(SEQ ID NO.1),以pKD46(GenBank:MF287367)作为同源重组质粒,进行基因的敲除。同源重组片段包含上下游同源臂、卡那霉素抗性基因。
以下详细描述具体方法:
1、第一步同源重组片段FRT-kana-FRT的构建。构建T7RNAP-FRT-kana-FRT片段,其中FRT-kana-FRT来源于pKD13质粒,kana为氯霉素抗性基因(SEQ ID NO.1),以pKD13质粒为模板,以waal-FRT-F/FRT-waal-R为引物,PCR得到FRT-kana-FRT基因;以W3110为模板,以800waal-F/waal-FRT-R,waal-FRT-F/800waal-R为引物,PCR得到上、下游同源臂。以三个片段,包括上游同源臂,FRT-kana-FRT,下游同源臂,overlap PCR得到同源重组片段FRT-kana-FRT。
2、制备大肠杆菌W3110(DE3)化学转化感受态细胞并将质粒pKD46化转其中。
3、第一步同源重组。将构建好的同源重组片段FRT-kana-FRT电转入含pKD46质粒的感受态细胞中,30℃下LB平板倒置培养24h,卡那霉素抗性筛选,挑去转化子进行菌落PCR鉴定,以出发菌株W3110(DE3)做对照。
4、卡那霉素抗性消除。将鉴定成功的E.coliW3110(DE3)Δwaal::kana菌株制备电转化感受态细胞将pCP20质粒转化其中,30℃下LB平板倒置培养24h,氯霉素抗性筛选,挑取转化子进行基因组提取测序验证,37℃培养数代消除pKD46,pCP20质粒,得到构建成功的菌株CLM24(DE3)提取基因组进行PCR验证(验证图见图2)。
表2:敲除waal基因所用引物
800waal-F gttgagcgagttattcctgtgg
800waal-R tcttctcacaaatagaaagggtg
waal-FRT-F gcagttttggaaaagttatcatcattataaaggtaaaacatctgtcaaacatgagaattaa
FRT+waal-R agtgagttttaactcacttcttaaacttgtttattcttaagtgtaggctggagctgcttc
实施例3CLM24(DE3)的蛋白合成能力及糖基化修饰分析
CLM24(DE3)的蛋白合成能力及糖基化修饰分析,使用实施例2中构建的菌株CLM24(DE3)作为实验菌株,蛋白合成能力使用western blot、荧光强度水平检测,糖基化修饰使用western blot检测蛋白迁移率。
以下描述具体方法:
1、无细胞反应的配置:将技术方案一所述基因工程菌按1%接种量接入2×YTPG培养基中,在OD600=0.8时加入0.25mM的IPTG诱导T7RNA聚合酶表达,37℃,220rpm,培养2.5h,收取菌体,制备细胞提取物;
2×YTPG培养基组成如下:10g/L酵母提取物,16g/L胰蛋白胨,5g/LNaCl,7g/LK2HPO4,3g/L KH2PO4,18g/L葡萄糖,其余为水;调节pH至7.2左右;
进一步地,配置无细胞反应体系(15μl)组成如下:20.0、26.7、33.3、40.0、46.7、53.3%(v/v)S30细胞提取物,8、10、12、14、16、18、20mM谷氨酸镁,16ngμl-1sfGFP DNA模板,10mM谷氨酸胺,130mM谷氨钾钾,1.2mMATP,0.85mMUTP,0.85mMGTP,0.85mMCTP,0.034mg/ml叶酸,0.171mg/ml大肠杆菌tRNA,20种氨基酸各2mM,30mMPEP,0.4mMNAD,0.27mM辅酶A,4mM草酸,1mM腐胺,1.5mM亚精胺和57mMHEPES;其余为水;
经过30℃,4h的孵育收集反应液,以出发菌株W3110作为对照。
2、western blot检测sfGFP的含量和荧光强度检测
(1)、将收集的无细胞蛋白合成反应,进行80℃孵育变性蛋白,冷却离心后,将总蛋白进行SDS PAGE电泳后转移至硝酸纤维素膜(NC膜)上,用5%(w/v)脱脂奶粉溶液封闭NC膜1h,TBST溶液洗涤三次后,4℃孵育一抗过夜,TBST洗涤三次后,室温避光孵育二抗(1:5000稀释比例)2h,重复洗涤,将NC膜平铺于Odyssey红外激光成像系统中,设置程序,进行数据分析。
(2)、将收集的无细胞蛋白合成反应按10%(v/v)用57mMHEPES稀释,避光条件下加入黑色不透光的96孔板中,每个样品空中加入50ul稀释后样品,将设置程序30s混匀,酶标仪激发波长和发射波长为488nm和510nm,进行数据分析。
3、将收集的无细胞反应液进行第二步蛋白糖基化反应,配置使得反应体系终浓度为10mM MnCl2和0.1%(w/v)DDM,加入2μg寡糖转移酶(PglB)和5μg脂连接寡糖(LLOs),30℃下孵育16h,将收集的无细胞糖蛋白合成反应,将收集的无细胞蛋白合成反应,进行80℃孵育变性蛋白,冷却离心后,将总蛋白进行SDS PAGE电泳后转移至硝酸纤维素膜(NC膜)上,用5%(w/v)脱脂奶粉溶液封闭NC膜1h,TBST溶液洗涤三次后,4℃孵育一抗过夜,TBST洗涤三次后,室温避光孵育二抗(1:5000稀释比例)2h,重复洗涤,将NC膜平铺于Odyssey红外激光成像系统中,设置程序,进行数据分析。
4、无细胞蛋白合成反应的Mg2+及细胞提取物含量优化
Mg2+作为转录过程中T7RNAP的辅因子,细胞提取物中的核糖体、转录因子等都是影响无细胞蛋白合成的关键性因素;因此对CLM24(DE3)无细胞蛋白合成反应的Mg2+(8mM、10mM、12mM、14mM、16mM、18mM、20mM)及细胞提取物含量(3μl、4μl、5μl、6μl、7μl、8μl)进行优化实验,
其余无细胞反应体系(15μl)组成如下:16ng/μl sfGFP DNA模板,10mM谷氨酸胺,130mM谷氨钾钾,1.2mMATP,0.85mMUTP,0.85mMGTP,0.85mMCTP,0.034mg/ml叶酸,0.171mg/ml大肠杆菌tRNA,20种氨基酸各2mM,30mMPEP,0.4mMNAD,0.27mM辅酶A,4mM草酸,1mM腐胺,1.5mM亚精胺和57mMHEPES;其余为水;
经过30℃,4h的孵育收集反应液,按10%(v/v)用57mMHEPES稀释,避光条件下加入黑色不透光的96孔板中,每个样品空中加入50ul稀释后样品,将设置程序30s混匀,酶标仪激发波长和发射波长为488nm和510nm,进行数据分析。

Claims (6)

1.一种CLM24(DE3)菌株的构建方法及其应用,特征在于:将大肠杆菌W3110的lacZ基因替换为T7RNAP,并敲除waal基因,所获得菌株为CLM24(DE3)。
2.根据权利要求1所述的一种CLM24(DE3)菌株的构建方法及其应用,其:在大片段及二次λRed重组时,同源臂需延长至800-1000bp。
3.根据权利要求1所述的一种CLM24(DE3)菌株的构建方法及其应用,其特征在于:CLM24(DE3)菌株较出发菌株具有高效生产蛋白的潜力。
4.根据权利要求1所述的一种CLM24(DE3)菌株的构建方法及其应用,其特征在于:大肠杆菌CLM24(DE3)菌株具有进行糖蛋白合成的潜力。
5.根据权利要求1所述的一种CLM24(DE3)菌株的构建方法及其应用,其特征在于:CLM24(DE3)菌株具有应用于无细胞合成的Mg2+工作浓度为16mM。
6.根据权利要求1所述的一种CLM24(DE3)菌株的构建方法及其应用,其特征在于:CLM24(DE3)菌株具有应用于无细胞合成及无细胞糖蛋白合成的应用潜力。
CN202310104489.6A 2023-02-13 2023-02-13 一种clm24(de3)菌株的构建方法及其应用 Pending CN116218892A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310104489.6A CN116218892A (zh) 2023-02-13 2023-02-13 一种clm24(de3)菌株的构建方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310104489.6A CN116218892A (zh) 2023-02-13 2023-02-13 一种clm24(de3)菌株的构建方法及其应用

Publications (1)

Publication Number Publication Date
CN116218892A true CN116218892A (zh) 2023-06-06

Family

ID=86570852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310104489.6A Pending CN116218892A (zh) 2023-02-13 2023-02-13 一种clm24(de3)菌株的构建方法及其应用

Country Status (1)

Country Link
CN (1) CN116218892A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106190938A (zh) * 2016-07-18 2016-12-07 南开大学 一种构建的重组大肠杆菌及生物合成3’‑唾液乳糖的方法
CN106754603A (zh) * 2017-01-09 2017-05-31 天津科技大学 利用木糖诱导产生四氢嘧啶的基因工程菌及其应用
CN108774628A (zh) * 2018-07-02 2018-11-09 南开大学 合成致新生儿脑膜炎大肠杆菌糖蛋白结合疫苗的大肠杆菌工程菌及用途
CN111471637A (zh) * 2020-05-08 2020-07-31 江苏华燕集团有限公司 2`-岩藻糖基乳糖高产菌株及其制备方法和用途
CN112501106A (zh) * 2021-02-01 2021-03-16 天津科技大学 一种生产2’-岩藻糖基乳糖的大肠杆菌及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106190938A (zh) * 2016-07-18 2016-12-07 南开大学 一种构建的重组大肠杆菌及生物合成3’‑唾液乳糖的方法
CN106754603A (zh) * 2017-01-09 2017-05-31 天津科技大学 利用木糖诱导产生四氢嘧啶的基因工程菌及其应用
CN108774628A (zh) * 2018-07-02 2018-11-09 南开大学 合成致新生儿脑膜炎大肠杆菌糖蛋白结合疫苗的大肠杆菌工程菌及用途
CN111471637A (zh) * 2020-05-08 2020-07-31 江苏华燕集团有限公司 2`-岩藻糖基乳糖高产菌株及其制备方法和用途
CN112501106A (zh) * 2021-02-01 2021-03-16 天津科技大学 一种生产2’-岩藻糖基乳糖的大肠杆菌及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张肖冰等: "大肠杆菌W3110菌株waal基因的敲除及糖基转移酶pglB的表达", 中国科技论文在线, 6 January 2014 (2014-01-06), pages 2 *

Similar Documents

Publication Publication Date Title
JP4829969B2 (ja) tRNA組成物、およびその使用
US10865404B1 (en) Aspartase mutant, recombinant expression vector and recombinant bacterium containing aspartase mutant, and use thereof
US7186525B2 (en) Methods of RNA and protein synthesis
CN113122490B (zh) 双基因缺陷型工程菌及其在提高n-乙酰氨基葡萄糖产量的应用
US20060040279A1 (en) DNA chips used for bioprocess control
CN115175994A (zh) 组氨酸、嘌呤途径代谢物和质粒dna的增强的产生
CN114277046A (zh) 一种合成四氢嘧啶的三基因串联表达载体及应用
Fu et al. Improving the efficiency and orthogonality of genetic code expansion
EP1747232B1 (en) Molecules involved in protein folding and methods of identifying them
CN110305855B (zh) 天麻GeCPR基因及其应用
CN116218892A (zh) 一种clm24(de3)菌株的构建方法及其应用
CN116574710A (zh) 具有链置换功能的dna聚合酶及其应用
CN114774419B (zh) 一种温敏型基因回路系统及其构建方法与应用
CN109929853B (zh) 嗜热菌来源的热激蛋白基因的应用
CN110862952B (zh) 5-氨基乙酰丙酸生产菌株及其构建方法和应用
JP2022535651A (ja) 好熱性タンパク質を利用した組換えインビトロ転写及び翻訳のための系、方法及び組成物
CN112662603B (zh) 一种用于发酵生产l-赖氨酸的基因工程菌及其构建方法
US11760988B2 (en) L-aspartate alpha-decarboxylase mutant and application thereof
WO2023198006A1 (zh) 一种s-乳酰谷胱甘肽的制备方法
CN116693638B (zh) Pg1-lc蛋白作为snap-25的水解酶的应用
CN115838712B (zh) 具有肌肽水解酶功能的蛋白酶及其在l-肌肽合成中的应用
JP5796951B2 (ja) タンパク質又はポリペプチドの製造方法
CN117947077A (zh) 一种高效表达非特异性过氧化酶毕赤酵母重组菌株的构建方法
CN117625656A (zh) 一种sumo蛋白酶基因、重组表达载体、工程菌及其应用
CN117165549A (zh) 一种胱硫醚-γ-合酶突变体及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination