CN116201630A - 一种氢气发动机燃烧系统及燃烧模式控制方法 - Google Patents

一种氢气发动机燃烧系统及燃烧模式控制方法 Download PDF

Info

Publication number
CN116201630A
CN116201630A CN202310166080.7A CN202310166080A CN116201630A CN 116201630 A CN116201630 A CN 116201630A CN 202310166080 A CN202310166080 A CN 202310166080A CN 116201630 A CN116201630 A CN 116201630A
Authority
CN
China
Prior art keywords
hydrogen
cylinder
engine
air
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310166080.7A
Other languages
English (en)
Other versions
CN116201630B (zh
Inventor
闫博文
马天宇
胡铁刚
邓伟
蒋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Changan Automobile Co Ltd
Original Assignee
Chongqing Changan Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Changan Automobile Co Ltd filed Critical Chongqing Changan Automobile Co Ltd
Priority to CN202310166080.7A priority Critical patent/CN116201630B/zh
Publication of CN116201630A publication Critical patent/CN116201630A/zh
Application granted granted Critical
Publication of CN116201630B publication Critical patent/CN116201630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B43/12Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/24Pistons  having means for guiding gases in cylinders, e.g. for guiding scavenging charge in two-stroke engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/28Other pistons with specially-shaped head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0278Port fuel injectors for single or multipoint injection into the air intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions

Abstract

本发明涉及一种氢气发动机燃烧系统,包括一台四缸氢气发动机,具有气缸、与气缸连接的缸盖,与气缸配合的活塞,设在所述缸盖一侧的两个进气道及进气门,设在所述缸盖另一侧的两个排气道及排气门,所述活塞的顶面与缸盖的下面之间为燃烧室,还包括匹配的机械增压装置和低压冷却EGR系统;其特征是:一高压氢气喷嘴设置在缸盖一侧的两个进气道之间;一预燃室设置在缸盖的中心部位;所述机械增压装置的发动机几何压缩比为16‑18;所述气缸的直径为70mm。还涉及一种氢气发动机燃烧模式控制方法。其能够提高当前氢气发动机热效率及改善排放性能。

Description

一种氢气发动机燃烧系统及燃烧模式控制方法
技术领域
本发明涉及汽车发动机,特别是一种氢气发动机燃烧系统及燃烧模式控制方法。
背景技术
随着中国“碳达峰”和“碳中和”目标的提出,氢能的开发利用再次受到社会普遍关注,氢气供给及配套产业也将有望得到快速发展。氢气燃烧可实现零碳排放,因此对汽车行业节能减排具有重要意义。近年来氢气的利用主要集中于燃料电池领域,然而随着传统汽车动力转型,氢气发动机也展现出十分可观的前景。氢气发动机的发展可利用现有内燃机庞大的产业基础及多年来积累的开发经验,相比燃料电池发展代价明显较低,且随着近年来发动机高热效率技术的快速发展,其能量转换效率也有望逐渐逼近燃料电池,更为重要的是氢气发动机对氢燃料纯度要求较低,适用性更强,可大幅降低制氢、储氢、运氢等环节成本。综合上述因素,氢气发动机展现出广阔应用前景,已成为各企业及研究机构的研究热点。
当前氢气发动机相比氢燃料电池而言,其劣势主要在于能量转化效率及产生NOx排放两方面。氢气相比传统汽油、天然气等燃料的稀燃能力更强,燃烧速率更快,为实现较高热效率同时降低热负荷,通常采用稀燃方式。然而尽管如此,由于氢气发动机采用点燃方式,因此仍将不可避免的受到爆震限制,压缩比通常仅能限定在14以下,同时其稀燃极限难以在原有燃料特性的基础上进一步拓展,这都制约了氢气发动机热效率和排放性能的进一步提升。当前氢气发动机热效率最高仅为42%左右,同时为满足排放法规要求,氢气发动机必须加装NOx稀燃后处理系统。由于稀燃后处理系统对NOx转化效率较低,为降低后处理成本,尽可能降低原始NOx排放仍具有重要意义。
CN1644899公开了“一种氢气发动机的燃烧控制系统及其控制方法”,其优点是:用现代精确控制技术,分三步,分别由节气门、喷油量、EGR控制氢气-空气混合气的浓度。(1)在怠速和30%额定负荷下,发动机应当运转在非常低的燃空比Φ0下,并且要用节气门控制发动机的功率输出。这时的燃空比既能使NO的排放量极低又能保证发动机达到良好的经济性。(2)在30%-70%额定负荷下,混和气浓度随负荷大小在Φ0到0.7之间调整。(3)在70%额定负荷以上时,发动机应当在当量燃空比下运转,而功率输出则由废气再循环(EGR)率控制。因此,随着燃空比增加,燃烧效率降低很小达到最低排放要求和理想的功率输出的燃烧控制。
CN212928023U公开了“一种点燃式发动机及发动机燃烧控制系统。该点燃式发动机包括气缸和缸盖,气缸内设有燃烧室,缸盖上设有与燃烧室相连的火花塞,还包括重整反应机构和连接管道;重整反应机构设置在缸盖内,用于使含氢原子的燃料发生重整反应,生成重整气;连接管道,连通重整反应机构和燃烧室;气缸上设有与连接管道相连的射流口,射流口设置在火花塞外围。该点燃式发动机基于重整气形成喷射火花塞的气体射流,使得火花塞附近保持较高的氢气浓度,利用气体射流点燃后形成的扩散火焰继续引燃高稀释比率的可燃混合气,保障高稀释比率下的稳定燃烧。
毋庸置疑,两份专利文献公开的技术方案都是本领域的一种有益的尝试。
发明内容
本发明的目的是提供一种氢气发动机燃烧系统,其能够提高当前氢气发动机热效率及改善排放性能。还提供一种氢气发动机燃烧模式控制方法。
本发明的一种氢气发动机燃烧系统,包括一台1.5L的四缸氢气发动机,具有气缸、与气缸连接的缸盖,与气缸配合的活塞,设在所述缸盖一侧的两个进气道及进气门,设在所述缸盖另一侧的两个排气道及排气门,所述活塞的顶面与缸盖的下面之间为燃烧室,还包括匹配的机械增压装置和低压冷却EGR系统;
一高压氢气喷嘴设置在缸盖一侧的两个进气道之间;一预燃室设置在缸盖的中心部位;所述机械增压装置的发动机几何压缩比为16-18;所述气缸的直径为70mm。
进一步,所述高压氢气喷嘴的轴线与气缸中心线位于同一平面,并且与水平面的夹角为22—25°;所述高压氢气喷嘴的喷气压力大于100bar。
进一步,所述进气门的端面与水平面的夹角为15—18°,所述排气门的端面与水平面的夹角为18—23°。
进一步,所述预燃室的中心线与水平面垂直;所述预燃室由电热塞与壳体构成,所述壳体呈圆筒形,且下部为半球壳结构,该半球壳结构上等距离设有6—8个喷孔,所述喷孔的轴线与所述预燃室的中心轴线的夹角θ为60-65°。
进一步,所述活塞的顶面具有导流凸起、导流凹坑和压缩平面;所述导流凸起由进气侧斜面、排气侧斜面以及圆柱侧面构成,其中,进气侧斜面与压缩平面的夹角α为20—30°、排气侧斜面与压缩平面的夹角β为25—35°;所述进气侧斜面与排气侧斜面的交线靠近进气侧,所述交线与气缸中心线距离L1为气缸直径的10-13%,所述交线与缸盖上的预燃室安装孔端部的垂直距离L2为气缸直径的3-6%,所述圆柱侧面的直径为气缸直径的85-95%。
进一步,所述导流凹坑为圆柱形面,其直径为气缸直径的45-50%,所述导流凹坑相对进气侧斜面的最小深度L3为气缸直径的4-6%,所述导流凹坑中心线方向与活塞的压缩平面之间的夹角γ为20—35°;并且大于或等于进气侧斜面与压缩平面的夹角α。
本发明所述的一种氢气发动机燃烧模式控制方法,在上述的氢气发动机燃烧系统上进行;
在发动机小负荷工况时,氢气全部在活塞的上止点附近通过高压氢气喷嘴喷射,以保证预燃室周围混合气相对较浓,进而实现稳定着火,产生射流火焰引燃;
在发动机中等负荷工况时,通过机械增压装置向缸内引入大量空气和冷却EGR,使气缸内的混合气的整体稀释比控制在2.5左右,其中,EGR占比约为20%;氢气采用两次喷射以保证混合气整体更加均匀,以降低气耗及NOx排放;
在发动机大负荷工况时,通过机械增压装置向缸内引入大量空气和冷却EGR,第一次氢气喷射比例需保证所形成的混合气空燃比仍控制在2.5左右,在活塞的上止点喷射;第二次氢气喷射也在活塞的上止点喷射;预燃室产生射流火焰点燃并诱发压燃燃烧的基础上,实现部分氢气边喷边烧的扩散燃烧方式,以有效控制混合气燃烧速率,避免压升率和最大爆发压力过高。
进一步,在发动机中等负荷工况时,氢气采用两次喷射为:第一次氢气喷射,在进气门关闭时刻进行,喷射比例(第一次喷氢质量/总喷氢质量)约为90%,氢气在气缸内滚流作用下将与空气进行充分混合,同时极稀的混合气可避免被预燃室内的电热塞的热极过早点燃;第二次氢气喷射,在活塞的上止点附近完成喷射,并借助活塞顶面的导流凸起和导流凹坑以及气流运动引导至预燃室内实现可靠着火。
进一步,在发动机小负荷工况时,气缸平均有效压力BMEP低于5bar。
进一步,在发动机中等负荷工况时,气缸平均有效压力BMEP在5-12bar。
进一步,在发动机大负荷工况时,气缸平均有效压力BMEP大于12bar。
本发明的有益效果:
通过上述燃烧系统实现了预燃室射流火焰点燃部分混合气进而诱发压燃的燃烧模式,进一步拓展了氢气混合气的稀燃极限,有利于实现更低的气耗和NOx排放,同时通过采用部分混合气扩散燃烧的方式,可有效拓展该燃烧模式下的发动机负荷上限。此外该燃烧模式通过上止点附近氢气喷射可有效控制燃烧开始时刻及燃烧相位,同时采用电热塞作为预燃室点火装置,有效规避了高温高压条件下传统火花塞难以应用的问题。
附图说明
图1为本发明燃烧系统示意图;
图2 为预燃室的结构示意图;
图3为活塞的结构示意图;
图4为图3的剖面图。
图中(标记指代的技术特征):
1—活塞;
11—导流凸起,111—进气侧斜面,112—排气侧斜面,113—圆柱侧面;
12—导流凹坑;
13—压缩平面;
2—高压氢气喷嘴;
3—进气道;
4—进气门;
5—预燃室,51—电热塞,52—壳体;
6—排气道;
7—排气门。
具体实施方式
下面结合附图对本发明做进一步说明。
如图1至图4所示的一种氢气发动机燃烧系统,包括一台1.5L的四缸氢气发动机,具有气缸、与气缸连接的缸盖,与气缸配合的活塞1,设在所述缸盖一侧的两个进气道3及进气门4,设在所述缸盖另一侧的两个排气道6及排气门7,所述活塞1的顶面与缸盖的下面之间为燃烧室,还包括匹配的机械增压装置和低压冷却EGR系统;
一高压氢气喷嘴2设置在缸盖一侧的两个进气道3之间;一预燃室5设置在缸盖的中心部位;所述机械增压装置的发动机几何压缩比为16-18;所述气缸的直径为70mm。
所述高压氢气喷嘴2的轴线与气缸中心线位于同一平面,并且与水平面的夹角为22—25°;所述高压氢气喷嘴2的喷气压力大于100bar。
所述进气门4的端面与水平面的夹角为15—18°,所述排气门7的端面与水平面的夹角为18—23°。
所述预燃室5的中心线与水平面垂直;所述预燃室5由电热塞51与壳体52构成,所述壳体52呈圆筒形,且下部为半球壳结构,该半球壳结构上等距离设有6—8个喷孔,所述喷孔的轴线与所述预燃室5的中心轴线的夹角θ为60-65°。
所述活塞1的顶面具有导流凸起11、导流凹坑12和压缩平面13;所述导流凸起11由进气侧斜面111、排气侧斜面112以及圆柱侧面113构成,其中,进气侧斜面111与压缩平面13的夹角α为20—30°、排气侧斜面112与压缩平面13的夹角β为25—35°;所述进气侧斜面111与排气侧斜面112的交线靠近进气侧,所述交线与气缸中心线距离L1为气缸直径的10-13%,所述交线与缸盖上的预燃室5安装孔端部的垂直距离L2为气缸直径的3-6%,所述圆柱侧面113的直径为气缸直径的85-95%。
所述导流凹坑12为圆柱形面,其直径为气缸直径的45-50%,所述导流凹坑12相对进气侧斜面111的最小深度L3为气缸直径的4-6%,所述导流凹坑12中心线方向与活塞的压缩平面13之间的夹角γ为20—35°;并且大于或等于进气侧斜面111与压缩平面13的夹角α。
本发明所述的一种氢气发动机燃烧模式控制方法,在权利要求6所述的氢气发动机燃烧系统上进行,在发动机小负荷工况时,氢气全部在活塞1的上止点附近通过高压氢气喷嘴2喷射,以保证预燃室5周围混合气相对较浓,进而实现稳定着火,产生射流火焰引燃。在发动机小负荷工况,氢气喷气量较少,缸内混合气整体明显过稀,且多集中于燃烧室中心区域。
在发动机中等负荷工况时,通过机械增压装置向缸内引入大量空气和冷却EGR,使气缸内的混合气的整体稀释比缸内总气体质量与氢气完全燃烧所需空气质量之比控制在2.5左右,其中,EGR占比约为20%;氢气采用两次喷射以保证混合气整体更加均匀,以降低气耗及NOx排放。
在发动机大负荷工况时,通过机械增压装置向缸内引入大量空气和冷却EGR,第一次氢气喷射比例需保证所形成的混合气空燃比仍控制在2.5左右,在活塞1的上止点喷射;第二次氢气喷射也在活塞1的上止点喷射;预燃室5产生射流火焰点燃并诱发压燃燃烧的基础上,实现部分氢气边喷边烧的扩散燃烧方式,以有效控制混合气燃烧速率,避免压升率和最大爆发压力过高。由于此时增压装置的增压能力到达上限,第一次喷射若采用较大空燃比将导致混合气偏浓,使压燃爆发压力过高或混合气在压缩行程中即被预燃室5内电热塞51的热极点燃。
在发动机中等负荷工况时,氢气采用两次喷射为:第一次氢气喷射,在进气门4关闭时刻进行,喷射比例(第一次喷氢质量/总喷氢质量)约为90%,氢气在气缸内滚流作用下将与空气进行充分混合,同时极稀的混合气可避免被预燃室5内的电热塞51的热极过早点燃;第二次氢气喷射,在活塞1的上止点附近完成喷射,并借助活塞1顶面的导流凸起11和导流凹坑12以及气流运动引导至预燃室5内实现可靠着火。由于中等负荷下,发动机气缸壁面温度较高,且氢气喷气量相对较多,因此可在预燃室产生的射流火焰引燃部分混合气基础上实现剩余混合气压燃燃烧。
在发动机小负荷工况时,气缸平均有效压力BMEP低于5bar。
在发动机中等负荷工况时,气缸平均有效压力BMEP在5-12bar。
在发动机大负荷工况时,气缸平均有效压力BMEP大于12bar。
以下通过较佳实施例进一步对本发明技术方案进行说明。
所述燃烧系统匹配一台1.5L 4缸氢气发动机,缸径为70mm,匹配有机械增压和低压冷却EGR系统。
参见图1所示的一种新型氢气发动机燃烧系统主要包括进气道3、排气道6、进气门4、排气门7、活塞1、高压氢气喷嘴2、预燃室5。
所述氢气发动机燃烧系统匹配的发动机几何压缩比设计为17,并采用机械增压和低压冷却EGR。
所述高压氢气喷嘴2的喷气压力为100bar以上,布置于缸盖侧面的两进气门4之间,其轴线与气缸中心线位于同一平面,并与水平面的夹角为25°。
所述进气门4的底面与缸盖底面夹角为15°,所述排气门7的底面与水平面夹角为20°。
所述预燃室5由电热塞51与室壳体52组成,并采用定向安装,其中心轴线与水平面垂直;所述壳体52上均匀布置8个喷孔,所示喷孔轴线与所述预燃室5的中心轴线夹角θ为65°。
所述活塞1的顶面具有导流凸起11和导流凹坑12。所述导流凸起11由进气侧斜面111、排气侧斜面112以及圆柱侧面113构成,其中进气侧斜面111与活塞压缩平面13的夹角α为23°,排气侧斜面112与活塞压缩平面13的夹角β为30°。所述进气侧斜面111与排气侧斜面112的交线靠近进气侧,其与所述气缸中心线距离L1为7.6mm,与预燃室5安装孔的垂直距离L2为气缸直径的3mm,所述圆柱侧面113的直径为63mm。
所述导流凹坑12为圆柱形面,其直径为气缸直径的32mm,所述导流凹坑12相对进气侧斜面111的最小深度L3为3.6mm,凹坑中心线方向与活塞压缩平面13之间的夹角γ为30°。
在发动机小负荷工况,即平均有效压力BMEP低于5bar,氢气喷气量较少,缸内混合气整体明显过稀,此时氢气全部在上止点附近喷射,保证所述预燃室5周围混合气相对较浓,进而实现稳定着火。小负荷工况下由于喷气量较少且多集中于燃烧室中心区域,因此氢气混合气主要被预燃室5点火后产生的射流火焰引燃。
在发动机中等负荷工况,即平均有效压力BMEP在5-12bar,通过机械增压向缸内快速引入大量空气和冷却EGR,使得缸内混合气的整体稀释比(缸内总气体质量与氢气完全燃烧所需空气质量之比)控制在2.5,其中EGR占比15-20%。氢气喷射过程中,采用两次喷射以保证混合气整体更加均匀,进而降低气耗及NOx排放。进一步地,在进气门4关闭时刻进行第一次氢气喷射,喷射比例为80-90%,氢气在缸内滚流作用下将与空气进行充分混合,同时极稀的混合气可避免被预燃室5内电热塞5-1的热极过早点燃。剩余氢气在上止点附近完成喷射,并借助活塞1顶面的导流凸起1-1和导流凹坑1-2以及气流运动引导至预燃室5内实现可靠着火。由于中等负荷下,发动机气缸壁面温度较高,且氢气喷气量相对较多,因此可在预燃室5产生的射流火焰引燃部分混合气基础上实现剩余混合气压燃燃烧。
在发动机大负荷工况,即平均有效压力BMEP大于12bar,氢气喷射方法与中等负荷类似,然而由于此时增压系统的增压能力到达上限,第一次喷射若采用较大比例将导致混合气偏浓,由此使得压燃爆发压力过高或混合气在压缩行程中即被预燃室5内电热塞51的热极点燃。因此大负荷工况下第一次氢气喷射比例需保证所形成的混合气空燃比仍控制在2.5,剩余氢气均在上止点喷射,在预燃室5产生射流火焰点燃并诱发压燃燃烧的基础上,实现部分氢气边喷边烧的扩散燃烧方式,进而有效控制混合气燃烧速率,避免压升率和最大爆发压力过高,进而实现大负荷工况运行。

Claims (11)

1.一种氢气发动机燃烧系统,包括一台1.5L的四缸氢气发动机,具有气缸、与气缸连接的缸盖,与气缸配合的活塞(1),设在所述缸盖一侧的两个进气道(3)及进气门(4),设在所述缸盖另一侧的两个排气道(6)及排气门(7),所述活塞(1)的顶面与缸盖的下面之间为燃烧室,还包括匹配的机械增压装置和低压冷却EGR系统;其特征是:一高压氢气喷嘴(2)设置在缸盖一侧的两个进气道(3)之间;一预燃室(5)设置在缸盖的中心部位;所述机械增压装置的发动机几何压缩比为16-18;所述气缸的直径为70mm。
2.根据权利要求1所述的氢气发动机燃烧系统,其特征是:所述高压氢气喷嘴(2)的轴线与气缸中心线位于同一平面,并且与水平面的夹角为22—25°;所述高压氢气喷嘴(2)的喷气压力大于100bar。
3.根据权利要求1或2所述的氢气发动机燃烧系统,其特征是:所述进气门(4)的端面与水平面的夹角为15—18°,所述排气门(7)的端面与水平面的夹角为18—23°。
4.根据权利要求3所述的氢气发动机燃烧系统,其特征是:所述预燃室(5)的中心线与水平面垂直;所述预燃室(5)由电热塞(51)与壳体(52)构成,所述壳体(52)呈圆筒形,且下部为半球壳结构,该半球壳结构上等距离设有6—8个喷孔,所述喷孔的轴线与所述预燃室(5)的中心轴线的夹角θ为60-65°。
5.根据权利要求4所述的氢气发动机燃烧系统,其特征是:所述活塞(1)的顶面具有导流凸起(11)、导流凹坑(12)和压缩平面(13);所述导流凸起(11)由进气侧斜面(111)、排气侧斜面(112)以及圆柱侧面(113)构成,其中,进气侧斜面(111)与压缩平面(13)的夹角α为20—30°、排气侧斜面(112)与压缩平面(13)的夹角β为25—35°;所述进气侧斜面(111)与排气侧斜面(112)的交线靠近进气侧,所述交线与气缸中心线距离L1为气缸直径的10-13%,所述交线与缸盖上的预燃室(5)安装孔端部的垂直距离L2为气缸直径的3-6%,所述圆柱侧面(113)的直径为气缸直径的85-95%。
6.根据权利要求5所述的氢气发动机燃烧系统,其特征是:所述导流凹坑(12)为圆柱形面,其直径为气缸直径的45-50%,所述导流凹坑(12)相对进气侧斜面(111)的最小深度L3为气缸直径的4-6%,所述导流凹坑(12)中心线方向与活塞的压缩平面(13)之间的夹角γ为20—35°;并且大于或等于进气侧斜面(111)与压缩平面(13)的夹角α。
7.一种氢气发动机燃烧模式控制方法,在权利要求6所述的氢气发动机燃烧系统上进行,其特征是:
在发动机小负荷工况时,氢气全部在活塞(1)的上止点附近通过高压氢气喷嘴(2)喷射,以保证预燃室(5)周围混合气相对较浓,进而实现稳定着火,产生射流火焰引燃;
在发动机中等负荷工况时,通过机械增压装置向缸内引入大量空气和冷却EGR,使气缸内的混合气的整体稀释比控制在2.5左右,其中,EGR占比约为20%;氢气采用两次喷射以保证混合气整体更加均匀,以降低气耗及NOx排放;
在发动机大负荷工况时,通过机械增压装置向缸内引入大量空气和冷却EGR,第一次氢气喷射比例需保证所形成的混合气空燃比仍控制在2.5左右,在活塞(1)的上止点喷射;第二次氢气喷射也在活塞(1)的上止点喷射;预燃室(5)产生射流火焰点燃并诱发压燃燃烧的基础上,实现部分氢气边喷边烧的扩散燃烧方式,以有效控制混合气燃烧速率,避免压升率和最大爆发压力过高。
8.根据权利要求7所述的氢气发动机燃烧模式控制方法,其特征是:在发动机中等负荷工况时,氢气采用两次喷射为:第一次氢气喷射,在进气门(4)关闭时刻进行,喷射比例约为90%,氢气在气缸内滚流作用下将与空气进行充分混合,同时极稀的混合气可避免被预燃室(5)内的电热塞(51)的热极过早点燃;第二次氢气喷射,在活塞(1)的上止点附近完成喷射,并借助活塞(1)顶面的导流凸起(11)和导流凹坑(12)以及气流运动引导至预燃室(5)内实现可靠着火。
9.根据权利要求7所述的氢气发动机燃烧模式控制方法,其特征是:在发动机小负荷工况时,气缸平均有效压力BMEP低于5bar。
10.根据权利要求7所述的氢气发动机燃烧模式控制方法,其特征是:在发动机中等负荷工况时,气缸平均有效压力BMEP在5-12bar。
11.根据权利要求7所述的氢气发动机燃烧模式控制方法,其特征是:在发动机大负荷工况时,气缸平均有效压力BMEP大于12bar。
CN202310166080.7A 2023-02-27 2023-02-27 一种氢气发动机燃烧系统及燃烧模式控制方法 Active CN116201630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310166080.7A CN116201630B (zh) 2023-02-27 2023-02-27 一种氢气发动机燃烧系统及燃烧模式控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310166080.7A CN116201630B (zh) 2023-02-27 2023-02-27 一种氢气发动机燃烧系统及燃烧模式控制方法

Publications (2)

Publication Number Publication Date
CN116201630A true CN116201630A (zh) 2023-06-02
CN116201630B CN116201630B (zh) 2024-04-16

Family

ID=86516951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310166080.7A Active CN116201630B (zh) 2023-02-27 2023-02-27 一种氢气发动机燃烧系统及燃烧模式控制方法

Country Status (1)

Country Link
CN (1) CN116201630B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117780523A (zh) * 2024-02-27 2024-03-29 潍柴动力股份有限公司 一种氢气发动机燃烧系统的控制方法、装置、设备及介质

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291825A (ja) * 1996-02-26 1997-11-11 Hiroyasu Tanigawa ピストンサイクルのエネルギ変換方法及びその装置
JPH09329026A (ja) * 1996-04-09 1997-12-22 Hiroyasu Tanigawa ピストンサイクルをエネルギ保存サイクルとする方法及び装置
KR19980044123U (ko) * 1996-12-26 1998-09-25 박병재 엔진용 피스톤
CN1342835A (zh) * 2001-10-31 2002-04-03 清华大学 氢气内燃机燃烧系统用的燃烧装置
DE10144683A1 (de) * 2001-09-11 2003-03-27 Volkswagen Ag Viertakt-Brennkraftmaschine mit Direkteinspritzung
CN1644899A (zh) * 2005-01-07 2005-07-27 北京理工大学 氢气发动机燃烧控制系统
US7281531B1 (en) * 2006-10-18 2007-10-16 Brehon Energy Plc System and method of stoichiometric combustion for hydrogen fueled internal combustion engines
CN101403334A (zh) * 2007-10-30 2009-04-08 奇瑞汽车股份有限公司 一种汽车氢气燃料内燃机燃烧方法和装置
WO2009145745A1 (en) * 2008-04-16 2009-12-03 Hinderks M V New reciprocating machines and other devices
CN106640338A (zh) * 2016-12-28 2017-05-10 天津大学 一种顶置气门二冲程缸内直喷汽油机燃烧室
US20180003132A1 (en) * 2016-06-29 2018-01-04 Caterpillar Inc. Method for controlling ignition in internal combustion engine and pre-chamber assembly thereof
CN109184898A (zh) * 2018-09-29 2019-01-11 哈尔滨工程大学 一种船用大缸径天然气发动机预燃室多孔射流引燃式高效燃烧系统
CN109339943A (zh) * 2018-09-01 2019-02-15 哈尔滨工程大学 一种带有滚流燃烧室的天然气缸内直喷双燃料发动机燃烧系统
CN110905652A (zh) * 2019-12-20 2020-03-24 哈尔滨工程大学 一种缸内多次高压直喷天然气的发动机及其分层快速燃烧方法
US20200318570A1 (en) * 2019-04-05 2020-10-08 Woodward, Inc. Auto-ignition control in a combustion engine
CN212928023U (zh) * 2020-09-07 2021-04-09 广州汽车集团股份有限公司 点燃式发动机及发动机燃烧控制系统
CN113202622A (zh) * 2021-05-25 2021-08-03 清华大学 一种氢气内燃机燃烧系统及燃烧控制方法
CN114183262A (zh) * 2021-12-08 2022-03-15 北京工业大学 一种预燃室射流点火缸内直喷氢内燃机及控制方法
CN114294129A (zh) * 2022-01-26 2022-04-08 英国伦敦布鲁内尔大学 氨发动机的氢气射流点燃式燃烧系统
CN114320571A (zh) * 2020-10-09 2022-04-12 马勒动力系统有限责任公司 操作氢燃料内燃机的方法
CN114526150A (zh) * 2022-02-27 2022-05-24 北京工业大学 一种基于预燃室的射流点火氢氧内燃机及控制方法
CN115126592A (zh) * 2022-07-27 2022-09-30 同济大学 一种氢气预燃室式发动机及其控制方法
CN115234368A (zh) * 2022-07-15 2022-10-25 东风本田发动机有限公司 一体化制氢式射流点火装置及氨燃料发动机控制系统
US20230042829A1 (en) * 2020-04-28 2023-02-09 Daniel R. Cohn Multifuel Automotive Engine-Derived Systems for Clean Grid Load Balancing and Non-Grid Electricity Applications
DE102022133235A1 (de) * 2022-12-14 2023-02-23 FEV Europe GmbH Verfahren zum Betrieb eines Wasserstoffverbrennungsmotors

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291825A (ja) * 1996-02-26 1997-11-11 Hiroyasu Tanigawa ピストンサイクルのエネルギ変換方法及びその装置
JPH09329026A (ja) * 1996-04-09 1997-12-22 Hiroyasu Tanigawa ピストンサイクルをエネルギ保存サイクルとする方法及び装置
KR19980044123U (ko) * 1996-12-26 1998-09-25 박병재 엔진용 피스톤
DE10144683A1 (de) * 2001-09-11 2003-03-27 Volkswagen Ag Viertakt-Brennkraftmaschine mit Direkteinspritzung
CN1342835A (zh) * 2001-10-31 2002-04-03 清华大学 氢气内燃机燃烧系统用的燃烧装置
CN1644899A (zh) * 2005-01-07 2005-07-27 北京理工大学 氢气发动机燃烧控制系统
US7281531B1 (en) * 2006-10-18 2007-10-16 Brehon Energy Plc System and method of stoichiometric combustion for hydrogen fueled internal combustion engines
CN101403334A (zh) * 2007-10-30 2009-04-08 奇瑞汽车股份有限公司 一种汽车氢气燃料内燃机燃烧方法和装置
WO2009145745A1 (en) * 2008-04-16 2009-12-03 Hinderks M V New reciprocating machines and other devices
US20180003132A1 (en) * 2016-06-29 2018-01-04 Caterpillar Inc. Method for controlling ignition in internal combustion engine and pre-chamber assembly thereof
CN106640338A (zh) * 2016-12-28 2017-05-10 天津大学 一种顶置气门二冲程缸内直喷汽油机燃烧室
CN109339943A (zh) * 2018-09-01 2019-02-15 哈尔滨工程大学 一种带有滚流燃烧室的天然气缸内直喷双燃料发动机燃烧系统
CN109184898A (zh) * 2018-09-29 2019-01-11 哈尔滨工程大学 一种船用大缸径天然气发动机预燃室多孔射流引燃式高效燃烧系统
US20200318570A1 (en) * 2019-04-05 2020-10-08 Woodward, Inc. Auto-ignition control in a combustion engine
CN110905652A (zh) * 2019-12-20 2020-03-24 哈尔滨工程大学 一种缸内多次高压直喷天然气的发动机及其分层快速燃烧方法
US20230042829A1 (en) * 2020-04-28 2023-02-09 Daniel R. Cohn Multifuel Automotive Engine-Derived Systems for Clean Grid Load Balancing and Non-Grid Electricity Applications
CN212928023U (zh) * 2020-09-07 2021-04-09 广州汽车集团股份有限公司 点燃式发动机及发动机燃烧控制系统
CN114320571A (zh) * 2020-10-09 2022-04-12 马勒动力系统有限责任公司 操作氢燃料内燃机的方法
CN113202622A (zh) * 2021-05-25 2021-08-03 清华大学 一种氢气内燃机燃烧系统及燃烧控制方法
CN114183262A (zh) * 2021-12-08 2022-03-15 北京工业大学 一种预燃室射流点火缸内直喷氢内燃机及控制方法
CN114294129A (zh) * 2022-01-26 2022-04-08 英国伦敦布鲁内尔大学 氨发动机的氢气射流点燃式燃烧系统
CN114526150A (zh) * 2022-02-27 2022-05-24 北京工业大学 一种基于预燃室的射流点火氢氧内燃机及控制方法
CN115234368A (zh) * 2022-07-15 2022-10-25 东风本田发动机有限公司 一体化制氢式射流点火装置及氨燃料发动机控制系统
CN115126592A (zh) * 2022-07-27 2022-09-30 同济大学 一种氢气预燃室式发动机及其控制方法
DE102022133235A1 (de) * 2022-12-14 2023-02-23 FEV Europe GmbH Verfahren zum Betrieb eines Wasserstoffverbrennungsmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘进美: "国外汽车代用燃料发展现状", 世界汽车, no. 4, 1 May 1993 (1993-05-01), pages 1 - 5 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117780523A (zh) * 2024-02-27 2024-03-29 潍柴动力股份有限公司 一种氢气发动机燃烧系统的控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN116201630B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US20130104850A1 (en) Multi-fuel pre-mixed combustion system of internal combustion engine
CN109209656B (zh) 一种天然气发动机燃烧组织方法
CN109296446B (zh) 一种带有天然气高低压混合喷射和预燃室的柴油微喷引燃天然气发动机燃烧组织方法
CN114320572B (zh) 多燃烧模式氨燃料发动机及其控制方法
CN110318891B (zh) 一种天然气/柴油双燃料发动机多模式燃烧组织方法
CN112761780A (zh) 一种稀薄燃烧系统、方法和发动机
CN110905652B (zh) 一种缸内多次高压直喷天然气的发动机及其分层快速燃烧方法
CN116201630B (zh) 一种氢气发动机燃烧系统及燃烧模式控制方法
CN114278426A (zh) 一种基于火焰射流控制的高燃点燃料压燃及燃烧调控装置
WO2023274184A1 (zh) 一种双燃料智能燃烧系统及其控制方法
EP4326981A1 (en) Internal combustion engine
CN114183262A (zh) 一种预燃室射流点火缸内直喷氢内燃机及控制方法
JP2022179467A (ja) 水素を燃料とする内燃機関のマルチモード運転
CN117231357A (zh) 缸内直喷氨氢内燃机及其控制方法
CN111305968B (zh) 一种多燃料充量压缩燃烧发动机的燃料喷射方法及装置
JP2987260B2 (ja) 遮熱型ガスエンジン
CN110318900B (zh) 一种缸内、进气岐管及预燃室混合供气的燃烧方法
CN116792226A (zh) 用于内燃机的氢燃料供给方法、系统及其燃烧组件
CN216554102U (zh) 一种基于火焰射流控制的高燃点燃料压燃及燃烧调控装置
Hu et al. Experimental Research on Performance Development of Direct Injection Hydrogen Internal Combustion Engine with High Injection Pressure
CN115111089A (zh) 一种预燃室式氨燃料发动机系统
CN114017178A (zh) 一种稀薄燃烧控制方法、控制装置及氢气发动机系统
JPH0633785A (ja) 弁開度制御装置付き遮熱型ガスエンジン
CN112049722B (zh) 一种改善船用双燃料发动机动态响应的燃气双喷射系统及其喷射控制方法
US20240018915A1 (en) Ammonia-hydrogen fusion fuel diffusion combustion control system based on reactivity regulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant