CN116200655A - 一种抗氧化热成形钢及其生产方法 - Google Patents

一种抗氧化热成形钢及其生产方法 Download PDF

Info

Publication number
CN116200655A
CN116200655A CN202211589297.0A CN202211589297A CN116200655A CN 116200655 A CN116200655 A CN 116200655A CN 202211589297 A CN202211589297 A CN 202211589297A CN 116200655 A CN116200655 A CN 116200655A
Authority
CN
China
Prior art keywords
steel
hot
equal
production method
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211589297.0A
Other languages
English (en)
Inventor
熊雪刚
张开华
郑昊青
崔凯禹
李海波
陈述
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN202211589297.0A priority Critical patent/CN116200655A/zh
Publication of CN116200655A publication Critical patent/CN116200655A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种抗氧化热成形钢及其生产方法,该钢种热成形后显微组织为马氏体,屈服强度≥1000MPa,抗拉强度≥1500MPa,延伸率≥6%,且热成形后未出现氧化皮脱落,氧化层厚度在2um以内,点焊工艺窗口≥1.0KA,涂装后的漆膜附着力级别低于ISO2409‑2013标准要求的1级。提供的钢强度级别高,可加工成复杂成形零件,相比现有的热轧车厢钢,具有高强轻量化、生产成本低,适于复杂成形工况的特点;相比常规的22MnB5热成型钢或镀层钢,热成形后的零件无需抛丸、镀层处理,可避免抛丸不当引起的钢板表面微裂纹,具有工艺成本低的优势;提供的热轧氧化铁皮控制方法可以推广到其他高表面质量要求的钢种。

Description

一种抗氧化热成形钢及其生产方法
技术领域
本发明属于热成形钢技术领域,具体涉及一种抗氧化热成形钢及其生产方法。
背景技术
热轧热成形钢板在商用车上的应用具备很大的市场潜力,但是热成形过程钢材表面会产生疏松氧化皮,氧化皮容易剥落到模具中,降低模具的使用寿命,因此常规热成形钢一般会在模具淬火后进行抛丸处理,或者以镀层板状态供货,但这样就增加了生产成本,因此抗高温氧化热成形钢的开发具有广阔的应用前景。由于Si、Cr元素有利于提高热成形钢抗高温氧化性能,但其又会带来热轧氧化铁皮严重的问题,因此,设计适宜的热轧工艺以减轻热轧氧化铁皮具有重要的实际意义。
经检索,CN114130842A公开了一种高Cr-Si合金化1000-1800MPa级热成形钢氧化皮去除方法,所述钢的成分为:0.15-0.35%C,0.8~3.2%Mn,0.8~2.8%Si,1.5~3.9%Cr,0.01~0.05Nb,0.01~0.05%V,0.01~0.03%Ti,0.05~0.15%Cu,其余为Fe和不可避免的杂质,并提供了一种盐酸酸洗和EPS结合的氧化皮去除工艺,采用浓度60g/L~200g/L、温度60-95℃的盐酸分三阶段进行酸洗,最终获得的钢在热成形后,氧化皮厚度不大于2um。
CN114540712A公开了一种添加Ce元素的无涂层增强抗高温氧化热冲压成形钢,所述钢的成分为:0.2~0.4%C,1.3~2.0%Si,1.0~1.8%Mn,0.15~1.5%Cr,0.01~0.15%Ti,0.0008~0.004%B,0.0002~0.01%Ce,Al≤0.05%,S≤0.01%,P≤0.01%,其余为Fe及不可避免的杂质。所述钢制备过程包括炼钢、连铸、热轧、酸洗、冷轧、退火,获得的钢在930℃加热5min后迅速淬火的屈服强度≥1000MPa,抗拉强度≥1450MPa,总延伸率≥7.0%,强塑积≥12.0GPa·%。
综上可知,现有专利未涉及抗氧化热成形钢及热轧氧化铁皮控制方法。
发明内容
为了克服所述现有技术存在的缺陷,本发明针对热成形过程钢材表面会产生疏松氧化皮,氧化皮容易剥落到模具中,降低模具的使用寿命;以及热成形钢应用于车厢板时,采用传统的冷轧热成形钢板成分淬透性能不足的问题,进行了抗氧化热成形钢的生产研发。
为实现所述发明目的,本发明提供了一种抗氧化热成形钢,其化学成分按重量百分比包括,C:0.20-0.24%,Mn:0.8-2.0%,Ti:0.015-0.040%,P≤0.015%,S≤0.005%,N≤0.0050%,Si+Cr:2.0-4.0%,B:0.0015-0.0040%,稀土含量0.0015-0.0040%,所述稀土是但不限于Ce、Y、La等元素中的一种或多种,其余为Fe及不可避免的杂质元素。
该钢种热成形后显微组织为马氏体,屈服强度≥1000MPa,抗拉强度≥1500MPa,延伸率≥6%,且热成形后未出现氧化皮脱落,氧化层厚度在2μm以内,点焊工艺窗口≥1.0KA,涂装后的漆膜附着力级别低于ISO 2409-2013标准要求的1级。下面对所述钢中主要的合金元素限制原因进行说明:
C是钢中重要的强化元素,对热成形后钢板的马氏体含量、抗拉强度等影响显著,且C含量增加后,可使CCT曲线右移、延迟珠光体和贝氏体转变,以获得单一马氏体组织。因此,基于组织控制和抗拉强度的要求,将C含量控制为0.20-0.24%。
Mn在钢中起到固溶强化、提高韧性的作用,同时采用较高Mn元素含量,可以提高奥氏体的淬透性,并降低临界冷却速率,但是Mn含量过高时,易引起铸坯偏析,影响组织均匀性,因此,将Mn含量控制为0.8-2.0%。
Si是钢中重要的间隙固溶强化元素,在相变过程能提高C的活度,促进C从铁素体向残余奥氏体中扩散,提高奥氏体的稳定性,促进后续的马氏体转变,同时Si能提高马氏体钢的回火稳定性,降低马氏体钢的过时效。另外,Si在热成形过程中可形成致密氧化膜,抑制钢板表面氧化膜继续生长,从而提高钢的抗高温氧化性。
Cr能够提高钢的淬透性,促进马氏体转变,同时Cr能提高钢的抗高温氧化性能,因此,本发明要求添加Si和Cr,并将Si+Cr含量控制为2.0-4.0%。
微量B可明显提高热成形用钢的淬透性,获得马氏体组织,但是B含量偏高时,晶界偏析的风险较大。因此,将B含量控制为0.0015-0.0040%。
微量稀土可通过形成细小析出相细化铸态组织,或对原始奥氏体起到钉扎作用,促进奥氏体再结晶和铁素体细化,另外,稀土有利于提高钢在热成形过程形成致密的氧化膜,提高氧化膜与基体的结合力。但是,稀土含量偏高时,形成大尺寸的氧化物或硫化物夹杂的风险较大。因此,将稀土含量设计为0.0015-0.0040%,其中稀土是但不限于Ce、Y、La等元素中的一种或多种。
少量的Ti可以固定钢中N,形成TiN以避免BN的形成,从而提高B的有效含量,但是Ti含量和N含量不宜过高,否则形成的液析TiN尺寸较大,易影响钢的塑性。因此,将Ti含量控制为0.015~0.040%,N含量控制为0.0050%。
一种所述抗氧化热成形钢的生产方法,所述方法采用转炉冶炼-LF精炼-RH精炼-连铸-热轧的生产流程。
所述钢在RH真空精炼工序加入稀土,加入前保证钢液O≤0.0015%,S≤0.008%,加入稀土后进行吹氩处理。这缘于稀土易与氧、硫结合形成大尺寸的氧化物或硫化物夹杂,如果在炼钢工序添加稀土则必须保证O、S等元素控制在较低水平,且必须在真空工序之后。采用在RH真空精炼工序加入稀土,解决了所述问题。
进一步,所述钢铸坯厚度为200-250mm。
进一步,所述钢采用热送热装装入板坯加热炉。由于所述钢添加了Si、Cr、B等较多的淬透性元素,铸坯在室温下冷却时开裂的风险较大,因此要求:连铸后获得的钢坯采用热送热装送入板坯加热炉。
进一步,所述钢板坯再加热温度为1220-1280℃。为促进板坯加热时表面氧化铁皮疏松,利于后续板坯除鳞,从而减轻热轧氧化铁皮,采用较高的板坯加热温度。同时,较高的加热温度有利于减轻后续轧制时轧机负荷,避免轧机将热轧氧化铁皮压碎,并压入到钢板表面。因此,将板坯再加热温度控制为1220-1280℃。
进一步,所述钢从加热炉中送出后迅速除鳞,除鳞前钢坯温度≥1205℃,除鳞水压力≥20MPa。Si和Cr含量较高的钢种,在板坯加热过程中易形成FeSiO4(铁橄榄石相),其熔点较低,约为1178~1205℃,其从液态相凝固后易与氧化铁皮和钢基体粘结,在后续除鳞过程中较难去除。因此,需保证板坯中FeSiO4(铁橄榄石相)完全为液态,便于后续除鳞去除,需控制出炉温度在1205℃以上,增大除鳞水压力至20MPa以上。
进一步,所述钢板在粗轧过程中全道次除鳞,保证除鳞喷水间的重叠量在5-35mm之间,以保证除鳞水对钢坯表面的全覆盖。为了进一步除去可能残留的氧化铁皮或/和FeSiO4(铁橄榄石相),钢板在粗轧过程中要求全道次除鳞,保证除鳞喷水间的重叠量在5-35mm之间,以保证除鳞水对钢坯表面的全覆盖。
进一步,所述钢板粗轧后中间坯厚度35~50mm。
进一步,所述钢板精轧开轧温度1020~1100℃,精轧速度≥8m/s,精轧终轧温度850-890℃。轧后进行层流冷却,层流冷却速率15-35℃/s,终冷温度590-630℃。在精轧过程采用较低的开轧温度(1020~1100℃)、较高的终轧温度(850~890℃)、较快的轧制速度(≥8m/s),是为了尽量减少钢板卷取前与空气接触的时间,抑制氧化铁皮的生长,但是精轧轧制温度也不能太低,否则,高温轧制形成的FeO会被轧制破碎,使接触空气的比表面积增大,进一步氧化层较难去除的Fe2O3
进一步,所述钢板在精轧过程中开启中压水、轧辊防剥落水、轧辊冷却水、机架间冷却水,且轧辊采用润滑轧制,其中油水体积分数比为0.7-1.0;所述精轧轧辊工作里程介于10Km~20Km之间;所述层流冷却工序采用的冷却水质,要求Cl-含量≤100mg/L。
精轧时的轧辊状态和钢板表面状态对热轧氧化铁皮的形成影响也大。因此工艺要求:①精轧轧辊工作里程较短,介于10Km-20Km之间,以免轧辊表面磨损较严重,或轧辊表面氧化铁皮脱落至钢板,从而引起钢板表面氧化铁皮加重;②轧辊采用润滑轧制,且为0.7~1.0,这也是为了保护轧辊表面状态,防止轧辊振动引起氧化铁皮脱落或压入,控制油水体积分数比则是为了提高轧辊表面润滑效果。③精轧过程中开启中压水是为了去除钢板表面氧化铁皮,开启轧辊防剥落水、轧辊冷却水是为了改善轧辊表面状态,防止轧辊温度过高,形成氧化铁皮后剥落,开启机架间冷却水是为了提高轧制速度,减少钢板在高温区与空气的接触时间。
层流冷却工序没有除鳞措施,所以无法像轧制工序那样通过除鳞去除氧化铁皮,只能尽量通过工艺设计减少氧化铁皮的生长。首先,提高冷却速率促进钢板迅速降温,减少在高温段与空气接触的时间。其次,终冷温度不宜过低,因为氧化铁的共晶反应(FeO+Fe2O3=Fe3O4)温度在570℃左右,如果终冷温度低于570℃,会反应形成致密的Fe3O4,不利于后续酸洗。更为理想的状态是氧化铁皮都控制为FeO,便于酸洗,所以卷取温度要求控制在较高的水平,即590-630℃。另外,层流冷却水的水质,特别是Cl-含量对钢板氧化铁皮生长,以及腐蚀后形成氧化铁有促进作用。因此,要求控制Cl-含量低于100mg/L。
轧制工艺不光会影响钢板表面氧化铁皮状态,还会影响钢板的组织和性能。为保证Si、Cr、B、稀土等合金元素充分固溶,将板坯加热温度设计在较高的水平,即1220-1280℃。为促进钢在精轧过程中的不完全再结晶轧制,将精轧温度控制在较低的水平,即1020-1100℃,以促进原始奥氏体扁平化,为后续相变积累更多的能量和形核点,从而促进成品的铁素体组织细化。为促进相变过程形成细小均匀的铁素体组织,采用较高的层流冷却速度,即15-35℃/s。由于钢中添加了Si、Cr、B等淬透性元素,终冷温度不宜过低,否则易形成贝氏体或马氏体组织,增加板形控制、后续酸洗开卷难度。因此,将终冷温度控制在590-630℃。
进一步,所述钢板经层流冷却后卷取成钢卷,在送入酸洗机组进行酸洗,酸洗拉矫延伸率1.0~1.4%,酸洗介质为盐酸;酸洗后获得的成品钢厚度为2-6mm。
进一步,所述钢热成形的工艺为:保温温度900-950℃,保温时间5-15min,再进行模具淬火,在淬火的同时进行成型,其中模具附带冷却装置。
与现有技术相比,本发明的有益效果:
①本发明提供的钢强度级别高,可以加工成复杂成形零件,相比于现有的热轧车厢钢,具有采用高强轻量化降低生产成本,适用于复杂成形工况的特点。
②本发明提供的钢相比于常规的22MnB5热成型钢,或者镀层钢,热成形后的零件无需进行抛丸、镀层处理,还可避免抛丸工艺不当引起的钢板表面微裂纹,具有工艺成本低的优势。
③本发明提供的热轧氧化铁皮控制方法可以推广到其他高表面质量要求的钢种。
附图说明
图1为实施例1对应试验钢热成形后的氧化层结构图;
图2为实施例1对应试验钢漆膜附着力评级图;
图3为实施例1对应试验钢点焊工艺窗口图。
具体实施方式
以下结合具体实施例对本发明作进一步说明,但不以任何方式限制本发明。为免赘述,以下实施例中的原材料若无特别说明则均为市购,所用方法若无特别说明则均为常规方法。
表1为本发明实施例及对比例的成分,表2为本发明实施例及对比例的生产工艺参数,表3为本发明实施例及对比例钢的力学性能及抗氧化性能指标。
表1实施例及对比例的成分
C Si Mn P S Cr Ti B 稀土 N
实施例1 0.25 1.93 1.15 0.009 0.002 1.05 0.027 0.0032 0.0022 0.0035
实施例2 0.25 1.47 1.12 0.008 0.003 1.75 0.028 0.0033 0.0025 0.0034
实施例3 0.22 1.68 1.32 0.006 0.004 1.56 0.032 0.0028 0.0030 0.0041
对比例1 0.25 1.08 0.80 0.010 0.003 0.78 0.010 0.0031 0.0025 0.0058
对比例2 0.25 1.48 0.80 0.017 0.003 0.81 0.038 0.0031 / 0.0028
对比例3 0.24 1.42 0.77 0.006 0.002 1.44 0.036 0.0022 / 0.0040
表2实施例及对比例的生产工艺参数
Figure BDA0003991956320000051
实施例1-实施例3所述热成形钢,经热连轧轧制、层流冷却、卷取、酸洗、淬火,并在热连轧过程中严格控制除鳞制度、轧辊状态、层冷水质等参数,获得的成品钢板,屈服强度大于1000MPa,抗拉强度大于1500MPa,延伸率大于6%,氧化层厚度小于2μm,漆膜附着力级别低于1级,点焊工艺窗口大于1.0KA。
表2实施例及对比例的生产工艺参数(续)
Figure BDA0003991956320000061
表3实施例及对比例钢的力学性能及抗氧化性能指标
Figure BDA0003991956320000062
对比例1化学成分中硅和铬的含量较低,淬透性不足,因此热成形后屈服强度和抗拉强度偏低。同时,板坯加热温度低于铁硅橄榄石相FeSiO4的熔点1178℃,造成铁硅橄榄石与基体和加热时形成的氧化铁皮黏附,导致板坯除鳞时氧化铁皮无法除尽,而且精轧过程中未开启轧辊防剥落水和冷却水,以及轧辊润滑轧制,会导致热轧过程形成的二次氧化铁皮无法除尽,最终导致成品钢热成形的氧化铁皮厚度超过2um,并由此导致涂漆后漆膜与钢的附着力降低。
对比例2和对比例3化学成分中均未添加稀土,而稀土有利于促进钢在热成形后形成致密的表面氧化层,抑制氧化层的进一步生长,降低氧化层的厚度。同时,对比例2除磷水压力较低,无法除尽板坯表面的氧化铁皮。对比例3层流冷却水中的Cl-含量偏高,且酸洗时为投拉矫以促进氧化铁皮的脱落。这些工艺参数的不当设置最终导致成品钢热成形的氧化铁皮厚度超过2um,以及涂漆后漆膜与钢的附着力降低。
对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用所述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种抗氧化热成形钢,其特征在于,其化学成分按重量百分比包括,C:0.20-0.24%,Mn:0.8-2.0%,Ti:0.015-0.040%,P≤0.015%,S≤0.005%,N≤0.0050%,Si+Cr:2.0-4.0%,B:0.0015-0.0040%,稀土含量0.0015-0.0040%,所述稀土是但不限于Ce、Y、La等元素中的一种或多种,其余为Fe及不可避免的杂质元素。
2.一种权利要求1所述的抗氧化热成形钢的生产方法,其特征在于,所述方法采用转炉冶炼-LF精炼-RH精炼-连铸-热轧的生产流程。
3.根据权利要求2所述的生产方法,其特征在于:所述钢在RH真空精炼工序加入稀土,加入前保证钢液O≤0.0015%,S≤0.008%,加入稀土后进行吹氩处理。
4.根据权利要求3所述的生产方法,其特征在于:所述钢铸坯厚度为200-250mm;所述钢采用热送热装装入板坯加热炉;所述钢板坯再加热温度为1220-1280℃。
5.根据权利要求4所述的生产方法,其特征在于:所述钢从加热炉中送出后迅速除鳞,除鳞前钢坯温度≥1205℃,除鳞水压力≥20MPa。
6.根据权利要求5所述的生产方法,其特征在于:所述钢板在粗轧过程中全道次除鳞,保证除鳞喷水间的重叠量在5-35mm之间。
7.根据权利要求6所述的生产方法,其特征在于:所述钢板粗轧后中间坯厚度35-50mm;所述钢板精轧开轧温度1020-1100℃,精轧速度≥8m/s,精轧终轧温度850-890℃;轧后进行层流冷却,层流冷却速率15-35℃/s,终冷温度590-630℃。
8.根据权利要求7所述的生产方法,其特征在于:所述钢板在精轧过程中开启中压水、轧辊防剥落水、轧辊冷却水、机架间冷却水,且轧辊采用润滑轧制,其中油水体积分数比为0.7-1.0;所述精轧轧辊工作里程介于10Km-20Km之间;所述层流冷却工序采用的冷却水质,要求Cl-含量≤100mg/L。
9.根据权利要求8所述的生产方法,其特征在于:所述钢板经层流冷却后卷取成钢卷,再送入酸洗机组进行酸洗,酸洗拉矫延伸率1.0-1.4%,酸洗介质为盐酸;酸洗后获得的成品钢厚度为2-6mm。
10.根据权利要求9所述的生产方法,其特征在于,所述钢热成形的工艺为:保温温度900-950℃,保温时间5-15min,再进行模具淬火,在淬火的同时进行成型,其中模具附带冷却装置。
CN202211589297.0A 2022-12-09 2022-12-09 一种抗氧化热成形钢及其生产方法 Pending CN116200655A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211589297.0A CN116200655A (zh) 2022-12-09 2022-12-09 一种抗氧化热成形钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211589297.0A CN116200655A (zh) 2022-12-09 2022-12-09 一种抗氧化热成形钢及其生产方法

Publications (1)

Publication Number Publication Date
CN116200655A true CN116200655A (zh) 2023-06-02

Family

ID=86510294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211589297.0A Pending CN116200655A (zh) 2022-12-09 2022-12-09 一种抗氧化热成形钢及其生产方法

Country Status (1)

Country Link
CN (1) CN116200655A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116837296A (zh) * 2023-08-22 2023-10-03 北京理工大学重庆创新中心 适用于厚规格的抗氧化热成形钢的制备方法及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116837296A (zh) * 2023-08-22 2023-10-03 北京理工大学重庆创新中心 适用于厚规格的抗氧化热成形钢的制备方法及其应用

Similar Documents

Publication Publication Date Title
CN108796375B (zh) 一种抗拉强度1000MPa级热镀锌高强钢及其减量化生产方法
US10358690B2 (en) Steel plate used for hot stamping forming, forming process of hot stamping and hot-stamped component
CN108823507B (zh) 一种抗拉强度800MPa级热镀锌高强钢及其减量化生产方法
CN102409222B (zh) 连续退火或热镀锌的冷轧相变诱导塑性钢板及其制备方法
CN111041382A (zh) 一种具有低高温摩擦系数的1800MPa级无镀层热成形钢及其制备方法
CN104520460A (zh) 冷轧钢板、其制造方法以及热冲压成型体
CN108929986B (zh) 一种高强度耐磨汽车制动用热轧钢板及其生产工艺
CN110172640B (zh) 500MPa级高加工硬化率热镀锌双相钢板及其制备方法
CN112522571B (zh) 一种双辊薄带连铸生产马氏体钢带的方法
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
CN109943765B (zh) 一种800MPa级高屈强比冷轧双相钢及其制备方法
CN111304540A (zh) 一种280Mpa级汽车结构用冷轧钢带及其制造方法
CN110592348A (zh) 超低碳冷轧钢性能分级控制方法
CN109023055B (zh) 一种高强度高成形性汽车钢板及其生产工艺
CN111979488B (zh) 一种780MPa级合金化热镀锌DH钢及其制备方法
CN113061812A (zh) 980MPa级冷轧合金化镀锌淬火配分钢及其制备方法
CN112430787A (zh) 一种低屈强比高强度冷轧热镀锌钢板及其制造方法
CN113846272B (zh) 一种1700MPa级高Cr-Si薄规格热成形钢的热轧制备方法
CN114921726A (zh) 低成本高屈强比冷轧热镀锌超高强钢及其生产方法
CN116200655A (zh) 一种抗氧化热成形钢及其生产方法
CN112522572A (zh) 一种双辊薄带连铸生产高耐蚀钢的方法
CN112522567B (zh) 高强薄规格高耐蚀钢及其制造方法
CN115522129B (zh) 330MPa级宽幅薄规格高质量热轧搪瓷钢及生产方法
CN112522591B (zh) 一种薄带连铸生产高强高耐蚀钢的方法
CN112522633B (zh) 一种薄规格马氏体钢带及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination