CN116200388A - 一种银杏类黄酮合成IncRNA的分离及功能分析 - Google Patents

一种银杏类黄酮合成IncRNA的分离及功能分析 Download PDF

Info

Publication number
CN116200388A
CN116200388A CN202310195864.2A CN202310195864A CN116200388A CN 116200388 A CN116200388 A CN 116200388A CN 202310195864 A CN202310195864 A CN 202310195864A CN 116200388 A CN116200388 A CN 116200388A
Authority
CN
China
Prior art keywords
lnc10
flavonoid
lnc11
ginkgo
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310195864.2A
Other languages
English (en)
Other versions
CN116200388B (zh
Inventor
叶家保
许锋
李宇婷
张威威
廖咏玲
王启剑
王莉娜
王采妮
詹雯琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze University
Original Assignee
Yangtze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze University filed Critical Yangtze University
Priority to CN202310195864.2A priority Critical patent/CN116200388B/zh
Publication of CN116200388A publication Critical patent/CN116200388A/zh
Application granted granted Critical
Publication of CN116200388B publication Critical patent/CN116200388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Nutrition Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种银杏类黄酮合成IncRNA的分离及功能分析,属于银杏基因工程技术领域,本发明选择了lnc10和lnc11作为研究对象,从银杏叶片中成功克隆出lnc10和lnc11,并利用转基因和转录组测序等方法对其进行功能验证,从分子水平上揭示了银杏lnc10和lnc11对类黄酮生物合成具有正向调节作用,初步阐明了银杏lnc10和lnc11对类黄酮合成的调控机制,为lncRNA调控类黄酮的合成提供了理论依据。

Description

一种银杏类黄酮合成IncRNA的分离及功能分析
技术领域
本发明属于银杏基因工程技术领域,具体涉及一种银杏类黄酮合成IncRNA的分离及功能分析。
背景技术
银杏是银杏科银杏属唯一存活的孑遗植物,被认为是植物界的“活化石”。银杏具有极高的生态、经济、观赏和药用价值。黄酮类化合物是银杏中主要的次生代谢产物,广泛应用于食品、医药和天然保健品领域,在医学、科研等领域具有较高的研究价值,具有广阔的发展前景。长链非编码RNA(lncRNAs)通常是大于200nt、ORFs小于100aa且无明显蛋白编码能力的真核RNA,在植物体内的生命活动和发育过程中扮演着重要角色。尽管有关银杏类黄酮生物合成的研究较多,但大多数都集中在结构基因和转录因子调控类黄酮合成的分子机制上,而有关lncRNAs对银杏类黄酮合成生物学功能的研究报道很少。前期研究发现银杏中lnc10和lnc11等lncRNA可能参与类黄酮的合成,但是,其调控机制尚不清楚。
发明内容
本发明的目的是针对现有的问题,提供一种银杏类黄酮合成IncRNA的分离及功能分析。
本发明是通过以下技术方案实现的:
一种银杏类黄酮合成IncRNA的分离,包括如下步骤:
(1)根据银杏转录组数据库筛选出两个参与类黄酮合成的IncRNA,分别命名为Inc10和Inc11;
(2)克隆Inc10和Inc11基因;
(3)qRT-PCR检测lnc10和lnc11在银杏不同组织中的表达量;
(4)构建Inc10和Inc11过表达载体。
进一步地,步骤(2)中所述的Inc10和Inc11基因的克隆包括以下步骤:
1)分别采取新鲜的银杏根、茎、幼嫩叶、成熟叶、雄球花、雌球花、果实七个独立样本,将采集的材料迅速冻于液氮中,保存于-80℃冰箱中备用;
2)参照RNA提取试剂盒MiniBEST Plant RNA Extraction Kit说明书进行RNA的提取;
3)参照RNA反转录试剂盒HiScript II 1st Strand cDNA Synthesis Kit说明书进行RNA反转录;
4)以cDNA为模板,利用2×Rapid Taq Master Mix扩增lncRNA。
进一步地,步骤(3)中所述的qRT-PCR检测lnc10和lnc11在银杏不同组织中的表达量具体为:以根、茎、叶、雄球花、雌球花和果实中7个组织的cDNA为模板,选取银杏GbNADPH作为内参基因,利用IDT在线网站设计特异性定量引物,进行实时定量PCR扩增。
进一步地,步骤(4)中所述的Inc10和Inc11过表达载体的构建,包括如下步骤:
1)对pBI121-GUS选用Xba I和Xma I进行双酶切,37℃酶切1h,65℃水浴20min,使酶失活;
2)采用电泳检测上述酶切产物,并检测产物浓度。根据
Figure BDA0004107129590000021
II One StepCloning Kit说明书,按照载体与插入片段摩尔比为1:2的比例进行重组反应,37℃反应30min,将重组产物通过的热激法转入到DH5α并进行阳性验证和测序。
一种银杏类黄酮合成IncRNA的功能分析,包括如下步骤:
(1)通过农杆菌介导转化拟南芥,获得转基因拟南芥植株;
(2)HPLC检测转基因和对照组拟南芥中类黄酮含量;
(3)拟南芥总RNA提取;
(4)野生型和转基因拟南芥转录组文库构建及测序;
(5)RNA-seq分析,查找IncRNA和类黄酮代谢差异表达基因;
(6)qRT-PCR检测转基因和对照组拟南芥中差异表达基因,利用qRT-PCR技术对转录组数据进行验证;
(8)RNA Pull-down
通过RNA pull-down技术获得与lnc10互作蛋白,然后进行质谱分析。
本发明相比现有技术具有以下优点:
1、本发明利用qRT-PCR技术检测了lnc10和lnc11在银杏根、茎、幼嫩叶、成熟叶、雄球花、雌球花以及果实中的表达水平。发现lnc10和lnc11在不同组织中均有表达,lnc10在叶片中的表达量最高,lnc11在雄花中的表达量最高。
2、本发明从银杏中克隆了lnc10和lnc11,构建了pBI121-lnc10和pBI121-lnc11的过表达重组质粒,并利用根癌农杆菌GV3101介导的植物遗传转化体系获得转基因拟南芥纯合子植株。
3、本发明通过对转基因拟南芥实验组和野生型对照组进行转录组测序,分别从WTvs lnc10和WT vs lnc11中筛选得到2019个和2552个差异表达基因。用GO分析和KEGG富集分析发现,类黄酮合成通路中存在显著富集的差异基因,与类黄酮生物合成相关的结构基因在lnc10-OE和lnc11-OE中均显著提高。对差异表达基因进行转录因子预测,发现大量MYB和bHLH转录因子。另外,转基因拟南芥中还发现大量差异表达的lncRNAs。利用qRT-PCR技术对转录组数据进行验证,结果发现qRT-PCR结果与RNA-seq结果表达趋势一致,表明转录组数据准确可靠。
4、本发明初步解析了lnc10和lnc11对类黄酮的合成具有正向调节作用。与野生型拟南芥相比,lnc10和lnc11转基因植株中类黄酮化合物的含量均显著提高,表明lnc10和lnc11对拟南芥类黄酮的生物合成具有正向调控作用。
5、本发明筛选了与lnc10互作的蛋白。本发明通过RNA pull-down技术,获得了与lnc10互作的蛋白,通过质谱结果分析发现,lnc10可能通过与Gb_04109表达的蛋白互作进而调控黄酮类化合物的合成。
6、本发明从分子水平上揭示了银杏lnc10和lnc11对类黄酮生物合成具有正向调节作用,初步阐明了银杏lnc10和lnc11对类黄酮合成的调控机制,为lncRNA调控类黄酮的合成提供了理论依据。
附图说明
图1为目的基因lnc10和lnc11的克隆、构建及农杆菌转化电泳图;
图2为lnc10和lnc11的二级结构预测图;
图3为lnc10的序列信息图;
图4为lnc11的序列信息图;
图5为lnc10和lnc11转基因拟南芥筛选结果图;
图6为转基因拟南芥植株的PCR检测电泳图;
图7为拟南芥GUS染色图;
图8为拟南芥叶片中类黄酮的含量对比图;
图9为两两样品的皮尔逊相关系数分析和样品PCA分析图;
图10为差异表达基因统计分析图;
图11为转录因子预测图;
图12为差异表达基因GO注释分类统计图;
图13为差异表达基因KEGG分类图;
图14为差异表达基因KEGG富集气泡图;
图15为差异表达基因的表达谱图;
图16为GSEA富集类黄酮生物合成相关KEGG pathway图和差异表达基因的热图;
图17为lnc10基因在不同组织中的表达结果图;
图18为拟南芥莲座叶中WT与OE之间20个差异基因表达qRT-PCR验证结果图;
图19为lnc10蛋白互作图;
图20为正义链特异蛋白KEGG分类图。
具体实施方式
为了对本发明做更进一步的解释,下面结合下述具体实施例进行阐述。
实施例1:IncRNA的克隆与载体的构建
利用CE Design设计一步克隆实验所需引物,引物名称及序列如表1所示。
表1引物序列
Figure BDA0004107129590000041
Figure BDA0004107129590000051
(1)银杏RNA的提取及反转录
1)分别采集新鲜的银杏根、茎、幼嫩叶、成熟叶、雄球花、雌球花、果实七个独立样本,将采集的材料迅速冻于液氮中,保存于-80℃冰箱中备用;
2)参照RNA提取试剂盒MiniBEST Plant RNA Extraction Kit(TaKaRa,北京)说明书进行RNA的提取;
3)参照RNA反转录试剂盒HiScript II 1st Strand cDNA Synthesis Kit(诺唯赞,南京)说明书进行RNA反转录;
(2)PCR扩增
本发明基于银杏转录组数据,筛选出12个与类黄酮合成相关lncRNA,选择其中2个与类黄酮合成相关lncRNA作为研究对象(分别命名为lnc10、lnc11)。
PCR扩增以cDNA为模板,利用2×Rapid Taq Master Mix(诺唯赞,南京)扩增lncRNA,扩增体系如下:
反应体系(总体积25.0μl):2×Rapid Taq Master Mix 12.5μl,Primer 1(10μM)1.0μl,Primer 2(10μM)1.0μl,cDNA 1.0μl,加ddH2O至25.0μl。
反应程序:95℃预变性3min;95℃变性15s,Tm退火15s,72℃延伸15s,共15个循环;72℃后延伸5min。
(3)DNA片段胶回收
利用胶回收试剂盒切胶回收目的条带。
(4)lnc10和lnc11连接pMD19-T载体
1)将lnc10的PCR回收片段与pMD19-T载体连接,反应体系为:pMD19-T1.0μl,目的基因2.0μl,Solution I 2.0μl。
16℃水浴连接1h,得到连接产物pMD19-T-lnc10。
2)连接产物的转化:通过热激法将连接产物转化到DH5α感受态中,并添加至800μL无抗生素LB液体培养基中,37℃,220rpm震荡培养1h。
3)涂平板及挑单菌落:无菌条件下,吸取上述菌液涂布于含50mg/L Amp的LB固体培养基,37℃倒置培养12h,挑选形状规整大小合适的单菌落于含有50mg/L Amp的LB液体培养基中震荡培养。
4)菌液PCR鉴定阳性克隆:挑取单克隆于1mL含有50mg/L Amp的LB液体培养基震荡培养3h,待菌液浑浊后,以菌液为模板,以M13-47和M13-48为引物进行菌落PCR验证,验证正确后将菌液送公司进行测序验证。
以银杏叶片RNA反转录得到的cDNA为模板,经PCR扩增后电泳得到图1A电泳图,由图可看出扩增出目的条带分别在1000-1500和3000-5000之间,参考转录组文库中lnc10的序列长度为1175bp,lnc11的序列长度为3200bp,初步判定克隆产物lnc10和lnc11的片段大小符合预期,如图1B所示,电泳结果表明lnc10和lnc11成功连接到pMD-19T载体上。且测序结果显示,pMD19T-lnc10和pMD19T-lnc10上的序列与转录组文库中的序列信息一致,没有发生突变。
(5)lnc10和lnc11的过表达载体构建
1)pBI121-GUS质粒双酶切
对pBI121-GUS选用Xba I和Xma I进行双酶切,切割体系为:Xba I 0.5μl,Xma I1.0μl,CutSmart 5.0μl,pBI121-GUS 1.0μg,加ddH2O至50μl。
37℃酶切1h,65℃水浴20min,使酶失活。
2)过表达载体的构建
采用电泳检测上述酶切产物,并检测产物浓度。根据
Figure BDA0004107129590000061
II One StepCloning Kit说明书,按照载体与插入片段摩尔比为1:2的比例进行重组反应。摩尔数对应的DNA质量计算公式如下:
最适克隆载体使用量=[0.02×克隆载体碱基对数]ng(0.03pmol)
最适插入片段使用量=[0.04×插入片段碱基对数]ng(0.06pmol)
重组反应的体系如下:pBI121-GUS 0.03pmol,Lnc10 0.06pmol,5×CE II Buffer4.0μl,Exnase II 2.0μl,加ddH2O至20.0μl。
37℃反应30min。将重组产物通过的热激法转入到DH5α并进行阳性验证和测序。
载体pBI121-GUS经Xba I和Xma I双酶切后产生两个片段,从图1C中看出条带大小基本相符。和原质粒同时电泳,图中也显示酶切产生的长片段小于原质粒,说明酶切完全。综合分析得知酶切正确,回收大片段备用。
通过设计插入片段扩增引物,从构建的pMD19-T-lnc10和pMD19-T-lnc10上将序列分别克隆并构建pBI121-GUS-lnc10、pBI121-GUS-lnc11载体,经过转化、扩繁,通过检测引物JC121-U,JC121-D对其进行菌液PCR,结果显示条带大小与预期一致(图1D),测序结果显示与转录组的序列一致,表明载体构建成功,可用于后续实验。由图1E可知,菌液PCR后获得的条带大小与目的基因大小一致,表明pBI121-GUS-lnc10和pBI121-GUS-lnc11过表达载体成功转化到农杆菌中,将验证正确的农杆菌扩大培养,用于后续操作。
(6)生物信息学分析
LncRNA编码潜力分析:使用编码潜力预测软件CPC2分析lncRNAs的编码能力并计算得分。使用NCBI ORF finder预测lncRNA的开放阅读框。利用lncLocator预测lncRNA的亚细胞定位。利用RNAfold在线网站预测lncRNA的二级结构。将lnc10和lnc11序列与银杏基因组blast比对,分析其在染色体上的位置。
将lnc10和lnc11的cDNA序列分别放入NCBI数据库blast检索工具进行检索,结果显示未发现显著的相似性序列,表明lnc10和lnc11没有同源性序列,推测lnc10和lnc11可能是新的非编码RNA,保守性较差且功能未知。
利用lncRNA亚细胞定位预测工具对lnc10和lnc11的亚细胞定位情况进行预测,结果显示,lnc10和lnc11均定位于细胞质。
通过RNAfold在线网站对lnc10和lnc11的二级结构进行预测,结果如图2所示,lnc10和lnc11的二级结构均十分复杂,均包含茎区,内环、凸环,多分枝环和发卡环。根据预测得出lnc10和lnc11的最小自由能分别为-297.50kcal/mol,-786.10kcal/mol,结构均十分稳定。
本发明通过CPC2在线网站对lnc10和lnc11的编码能力进行预测并计算得分,结果如表2所示,lnc10和lnc11均不具有编码能力,其中编码能力最高得分为0.162799。
以上研究表明lnc10和lnc11均不具有蛋白编码能力,是真实的lncRNAs。
表2lnc10和lnc11的特征分析
Figure BDA0004107129590000081
同时,分别对lnc10和lnc11的ORF进行预测(图3,图4),发现lnc10和lnc11中分别有5个和14个ORF,通过对ORF进行Blast比对,未发现同源蛋白,另外利用Pfam数据库对ORF进行检索,也未发现功能结构域。
实施例2:重组质粒的农杆菌转化
(1)农杆菌感受态细胞的制备
取10μl菌液于1.0mL的YEP培养基中(含50mg/L Kan和50mg/L Rif),28℃,200rpm振荡培养24h。按照同样的比例取活化的菌液于45mL YEP培养基,28℃,200rpm振荡培养至OD值为0.4-0.5,加入5μl 100μM/L的乙酰丁香酮。继续震荡培养至OD值为0.6,5000rpm离心10min,用无菌水冲洗2次。继续离心,弃上清液,用20mL 50%甘油洗1次。离心去上清后,加入2mL50%的甘油,然后分装到1.5mL的离心管中,每管100μl。
(2)电转化法转化农杆菌
取100μl农杆菌感受态于电击杯中,取测序正确的pBI121-lnc10和pBI121-lnc10质粒2μl分别均匀的打入电击杯中。启动电转仪,设置电击参数:C=25μF,PC=200ohm,V=2.4KV。电击后加入700μl无抗生素的YEP并转移到原来保留的感受态空管中,28℃,200rpm,振荡培养2-3h。
实施例3:转基因拟南芥鉴定与筛选
(1)拟南芥种植
1)春化种子:将种子置于4℃下春化3天,打破种子休眠。
2)催芽:将种子均匀的播撒在灭菌的营养土中,盖上保鲜膜,放入培养箱中。培养条件设置为:16h光照,8h黑暗,22℃,湿度70%。
3)移栽:待幼苗长至有4片真叶时,将其移栽至直径9cm的花盆中,浇透定根水,放置培养箱中正常生长。
(2)花序侵染法转染拟南芥
将活化好的农杆菌GV3101菌液按1:100比例吸取到含50mg/L Rif和50mg/L Kan的YEB液体培养基中,28℃振荡至OD600值为8.0-1.0,4000rpm离心10min收集菌体,悬浮于侵染液(50g/L蔗糖,250μl/L silwetL-77)中,调节OD 600值约为0.8,黑暗静止约3h后浸染拟南芥。
选用盛花期的拟南芥植株,转化前一天浇透水,修剪已有的果荚。将拟南芥花序完全浸泡在侵染液中约30s,用保鲜膜围好。将植株侧倒放置于黑暗环境中约24h后,用清水喷一下正常培养。侵染后一周将种子顶端新长出的花序剪掉。侵染后的植株于正常生长条件下培养至种子成熟,收集T1代种子。
(3)转基因拟南芥的筛选
将种子置于1.5mL的离心管中,加75%的酒精表面消毒30s,再用2%-5%的NaClO消毒5min,然后用无菌水冲洗5次。消毒后均匀的将种子播撒在含有抗生素(100mg/L Kan)的MS培养基上,4℃低温春化2d后置于正常条件下生长约两周,将子叶和根生长均正常的植株移栽至培养基质中。
(4)转基因拟南芥分子鉴定及纯合子筛选
移栽成活后,分株取嫩叶为材料提取DNA,用载体构建所用的特异引物进行阳性PCR检测,阳性植株培养至种子成熟后分株收集T2代种子。将种子消毒后播撒在MS抗性培养基上,挑选比例为3:1的株系移栽,培养至种子成熟后分株收集T3代种子。再将T3代种子消毒后播撒于MS抗性培养基上,将不再出现性状分离的株系移栽,用于后续实验。
通过转农杆菌GV3101经过花序侵染法,收获T1代种子后,将获得的转基因拟南芥种子消毒后铺在含有100mg/L Kan的MS培养基上发芽生长,两周左右获得数株能够直立、叶片呈绿色的阳性苗(T1代)。而转基因失败的拟南芥则无法长出真叶,且子叶发白并逐渐死亡(图5A)。将转基因苗移栽到土壤中种植,待成熟后单株收集种子(T2代),经过同样的筛选方法,获得阳性苗:阴性苗=3:1比例的拟南芥植株(图5B),移栽后单株收种子(T3代),经同样的筛选方法获得阳性苗,当培养基上全部是绿色植株时,即为T3代转基因纯合子(图5C)。
提取转基因拟南芥DNA,PCR检测转基因拟南芥中目的基因的表达量,以野生型拟南芥为对照。其中用pBI121检测引物扩增出目的条带即为转基因拟南芥阳性苗,而野生型拟南芥没有扩增出条带(图6),证明了筛选得到的lnc10和lnc11转基因植株转化成功。
(5)GUS染色分析
取拟南芥叶片和植株浸泡在GUS染色液中,于37℃避光静置过夜。然后转入75%乙醇中脱色2-3次,至阴性对照材料呈白色。体式显微镜下观察并拍照。
GUS染色实验结果如图7所示,转基因拟南芥被染成蓝色,而野生型拟南芥的叶片没有被染成蓝色,与PCR验证结果一致。lnc10和lnc11转基因拟南芥中,GUS报告基因在根、茎、叶和花中均有表达。
实施例4:转基因拟南芥类黄酮含量测定
(1)类黄酮的提取
1)收集30天苗龄的拟南芥叶片于研钵中充分研磨,称取1.3g鲜样溶于2mL 100%甲醇(色谱纯)中,震荡混匀后超声波破碎仪360W超声30min,然后85℃水浴2h。
2)水浴后的提取液10000rpm离心10min,用注射器吸取上清液经0.45μm的微孔滤膜过滤进上样小瓶中,用于HPLC检测。
(2)类黄酮的测定步骤
采用HPLC系统(Thermo ScientificTMUltiMateTM3000,USA),配备AccucoreTMXLC18 LC分析柱(4.6mm×250mm,4μm,Thermo ScientificTM,USA)。流动相A为2%乙酸(色谱纯),B为乙腈(色谱纯)。流动相B先以线性浓度梯度85%-67.5%14min,线性浓度梯度67.5%-10%9min,再以10%-85%1min,并以85%维持4min。在265nm波长,30℃温度条件下检测,每次进样量50μl。本发明以槲皮素、山柰酚、异鼠李素为标准品,设置4个浓度梯度(5μg/mL、10μg/mL、15μg/mL、20μg/mL)。绘制标准曲线,分别计算野生型和转基因拟南芥叶片中总黄酮的含量:总黄酮含量=2.51×(槲皮素含量+山奈酚含量+异鼠李素含量)。
HPLC检测结果如表3所示。
表3高效液相色谱(HPLC)检测拟南芥中类黄酮的含量
Figure BDA0004107129590000111
通过比较发现,野生型和转基因拟南芥中类黄酮含量是有差别的(图8)。lnc10-OE三个株系中的类黄酮含量分别为50.88mg/g、48.92mg/g、50.37mg/g,lnc11-OE三个株系中的类黄酮含量分别为116.63mg/g、116.96mg/g、108.96mg/g,均显著高于野生型的38.52mg/g。结果表明,过表达的lnc10和lnc11均能提高拟南芥中黄酮类化合物的积累。
实施例5:拟南芥转录组文库构建及测序
将拟南芥WT、lnc10-OE(T3代)和lnc11-OE(T3代)转基因植株置于人工气候培养箱中。4周后取莲座叶液氮速冻后保存于-80℃冰箱,每个样品有3个生物重复,其中每个重复有10个植株。将样品送至百迈客生物技术公司进行转录组测序分析。转录组测序实验流程包括以下步骤:
(1)样品检测
使用NanoDrop 2000(Thermo Fisher Scientific,Wilmington,DE)测量RNA浓度和纯度。表4是上机前RNA样品的质检统计结果。使用Agilent生物分析仪2100系统(AgilentTechnologies,CA,USA)的RNA纳米6000检测试剂盒对RNA完整性进行评估,以保障使用合格的样品进行转录组测序。
表4RNA质量检测结果统计
Figure BDA0004107129590000121
结果显示,各样品质量满足建库要求。OD260/280和OD260/230的水平都在标准范围内(1.9-2.1,2.0-2.5)。各样品中的RIN值均趋近于10,表明RNA样品的完整度较好。28S/18S值都在1.8-2.0的范围内,表明所提取的RNA完整度好且基本无降解。进而,系统对这9个样品均给出了A等级的质检结果,并判定RNA的质量满足建库要求。
(2)文库构建
样品检测合格后,进行文库构建,主要流程如下:
1)用带有Oligo(dT)的磁珠富集真核生物mRNA;
2)加入Fragmentation Buffer将mRNA进行随机打断;
3)以mRNA为模板,用六碱基随机引物(random hexamers)合成第一条cDNA链,然后加入缓冲液、dNTPs、RNase H和DNA polymerase I合成第二条cDNA链,利用AMPure XPbeads纯化cDNA;
4)纯化的双链cDNA再进行末端修复、加A尾并连接测序接头,然后用AMPure XPbeads进行片段大小选择;
5)最后通过PCR富集得到cDNA文库。
(3)文库质控
文库构建完成后,使用Q-PCR方法对文库的有效浓度(文库有效浓度>2nM)进行准确定量,以保证文库质量。
(4)上机测序
库检合格后,不同文库按照目标下机数据量进行pooling,用Illumina平台进行测序。
完成9个样品的转录组分析,对测序数据的产出结果进行了统计(表5),共获得62.46Gb Clean Data,各样品Clean Data均达到5.92Gb,Q30碱基百分比在93.16%及以上。分别将各样品的Clean Reads与指定的参考基因组进行序列比对,比对效率从95.14%到97.21%不等。GC含量在45%-50%的范围内,可以认为数据中G碱基和C碱基分布均一且无偏好性。接着,分别将各样品的Clean Reads与指定的参考基因组进行序列比对,比对效率从95.14%到97.21%不等(表6)。基于所选参考基因组序列,使用StringTie软件对MappedReads进行拼接,并与原有的基因组注释信息进行比较,寻找原来未被注释的转录区,发掘该物种的新转录本和新基因,从而补充和完善原有的基因组注释信息。过滤掉编码的肽链过短或只包含单个外显子的序列,共发掘521个新基因,其中323个得到功能注释。转录组测序数据生物学重复之间的平行性和相关性是检测样品可靠性的重要指标。一般可以通过样本的相关性分析和主成分分析(Principal Component Analysis,PCA)分析结果来查看样本间的相似性。我们将WT、lnc10-OE和lnc11-OE三个样品之间的数据进行了相关性分析,皮尔逊相关系数(图9A)和PCA(图9B)分析结果显示WT、lnc10-OE和lnc11-OE的可清晰地划为三类,表明生物学重复可靠,符合进一步分析的要求。
表5测序数据统计
Figure BDA0004107129590000131
Figure BDA0004107129590000141
表6样品测序数据与所选参考基因组的序列比对结果统计表
Figure BDA0004107129590000142
实施例6:生物信息学分析
将下机数据进行过滤得到Clean Data,与指定的参考基因组进行序列比对,得到的Mapped Data,进行插入片段长度检验、随机性检验等文库质量评估;进行可变剪接分析、新基因发掘和基因结构优化等结构水平分析。基因表达水平通过每千碱基转录本中每百万个已绘制片段的片段数来估计。将lnc10-OE组和lnc11-OE组与WT组进行比较,在差异表达基因(DEG)检测过程中,以Fold Change≥2且FDR<0.01作为筛选标准。对差异表达基因进行数据库的功能注释及深入的聚类分析、GO功能注释和差异表达基因的KEGG代谢通路富集分析等。使用百迈客云平台BMKCloud进行转录因子预测分析。
(1)差异表达基因数据分析
1)差异表达基因筛选
在转基因株系中检测到类黄酮含量明显提高,为进一步了解哪些代谢途径被激活,对拟南芥WT、lnc10-OE(T3代)和lnc11-OE(T3代)转基因的莲座叶进行RNA-seq分析,共获得62.46Gb Clean data,Q30碱基百分比在93.16%及以上。分别将各样品的Clean Reads与指定的参考基因组进行序列比对,比对效率从95.14%到97.21%不等。基于比对结果,发掘新基因521个,其中323个得到功能注释。与WT相比,大多数与类黄酮生物合成途径相关的结构基因在转基因拟南芥中的表达量显著提高。过表达lncRNA导致类黄酮生物合成相关基因的上调。
接着,以差异倍数(Fold Change)≥2且错误发现率(FDR)<0.01作为筛选条件,筛选野生型和转基因之间的差异基因。如图10所示,在WT vs Lnc10中识别到了2019个DEGs,其中有1051个基因上调表达,968个基因下调表达。在WT vs lnc11中识别到了2552个DEGs,其中有1219个基因上调表达,1333个基因下调表达。
2)差异表达转录因子预测
此外,在百迈客云平台上利用转录因子预测工具进行转录因子预测。结果显示,在拟南芥中共鉴定出1723个转录因子(TF),主要包括bHLH、AP2/ERF、MYB、NAC、C2H2、WRKY家族(图11A)。与WT相比,lnc10中有105个差异表达的TF(图11B),lnc11中有114个差异表达的TF(图11C)。将差异表达基因与COG、GO、KEGG、KOG、NR、Pfam、Swiss-Prot数据库进行功能注释,各差异表达基因集注释到的基因数量统计如表8所示。
3)差异表达基因的GO功能注释和富集分析
为了进一步研究差异表达基因在lnc10-OE和lnc11-OE拟南芥叶片中的潜在功能,分别对其中的差异表达基因进行了GO数据库功能注释(图11)。其中,生物学过程包含20个;细胞成分包含18个;分子功能包含15个类别。生物学过程分类中,差异表达基因主要被注释到‘metabolic process’,‘cellular process’等,其中‘metabolic process’包含的差异基因最多,WT vs lnc10和WT vs lnc11分别有340、885个;细胞成分中,差异表达基因主要被注释到‘cell’,‘cell part’,‘organelle’等,WT vs lnc10中‘cell’和‘cell part’包含的差异基因最多,有271个,WT vs lnc11中‘membrane’包含的差异基因最多,有787个;分子功能中,差异表达基因主要被注释到‘catalytic activity’,‘binding’等,WT vs lnc10中‘binding’包含的差异基因最多,有408个,WT vs lnc11中‘catalytic activity’包含的差异基因最多,有1042个。
表7注释的差异表达基因数量统计
Figure BDA0004107129590000161
4)差异表达基因的KEGG功能注释分析
为了解lnc10和lnc11主要涉及的功能,将差异表达基因所参与的KEGG通路进行分类,结果如图13所示,在WT和lnc10中,共有697个DEG被归类为121个KEGG途径中,在WT和lnc11中,总共有963个DEG被归类为127个KEGG途径中。WT vs lnc10和WT vs lnc11的差异表达基因主要被注释到代谢类别中,其代谢类别分别被注释到33、34个代谢过程中。与光合相关的代谢过程主要包括:‘光合作用’、‘光合作用-天线蛋白’与初生代谢相关的代谢过程主要包括:‘氨基酸代谢’‘碳水化合物代谢’‘脂类代谢’‘其它氨基酸的代谢’‘核苷酸代谢’等代谢过程;与次生代谢相关的代谢过程主要包括:‘萜类和多酮类化合物的代谢’‘其他次生代谢物的合成’等代谢过程,这些代谢过程可能与lnc10和lnc11参与的功能息息相关。
为进一步研究lnc10和lnc11对差异表达基因参与的信号通路的富集程度,我们进行了KEGG通路富集分析。在WT和lnc10中,大多数富集途径与植物的昼夜节律、真核生物中的核糖体生物发生、氮代谢、植物与病原体的相互作用有关(图14A)。此外,在WT和lnc11中,大多数富集途径与病原体相互作用、光合作用、天线蛋白、脂肪酸伸长率、植物昼夜节律、苯丙烷生物合成、异黄酮生物合成、类黄酮生物合成有关(图14B)。
5)K-means聚类分析
为进一步研究lnc10和lnc11对差异表达基因变化模式的影响,我们根据每个样本中DEGs的FPKM值,利用层次聚类结合K-means聚类分析。结果显示,在WT vs lnc10和WT vslnc11中,所有的DEGs均被划分为两类,一类是表达上调,一类是表达下调(图15)。
6)类黄酮生物合成通路中差异基因表达分析
为了进一步分析过表达lnc10和过表达lnc11对拟南芥叶片中类黄酮生物合成产生的具体影响,我们对拟南芥类黄酮生物合成通路中的差异基因进行了分析。在本发明中,我们将Fold Change≥2且FDR<0.01作为筛选标准并结合GSEA分析筛选差异基因。GSEA分析采用KEGG通路中与类黄酮生物合成相关的基因集,以每个差异分组的log2FC的打分来分析基因集合的富集情况,并控制pvalue<0.05,FDR<0.05来作为显著富集。
如图16所示,在WT vs lnc10中,富集到‘苯丙素的生物合成(ko00940)’、‘类黄酮的生物合成(ko00941)’、‘花青素生物合成(ko00942)’、‘异黄酮的生物合成(ko00943)’和‘黄酮和黄酮醇的生物合成(ko00944)’通路中的分别有39、18、1、1和2个。在WT vs lnc11中,富集到‘苯丙素的生物合成(ko00940)’、‘类黄酮的生物合成(ko00941)’、‘异黄酮的生物合成(ko00943)’和‘黄酮和黄酮醇的生物合成(ko00944)’通路中的分别有74、12、8和2个。其中,在lnc10-OE和lnc11-OE中,参与类黄酮生物合成的大部分基因都是上调表达,例如PAL、C4H、4CL、CHS、CHI、F3H、FLS等类黄酮生物合成过程中的关键结构基因,表明lnc10和lnc11均参与了转基因拟南芥的类黄酮生物合成。
实施例7:类黄酮合成相关基因在转基因拟南芥中的表达分析
表8差异表达基因qRT-PCR引物
Figure BDA0004107129590000171
Figure BDA0004107129590000181
为检测lnc10和lnc11在不同组织中的表达量,以根、茎、叶、雄球花、雌球花和果实中7个组织的cDNA为模板,选取银杏GbNADPH作为内参基因,利用IDT在线网站设计特异性定量引物,进行实时定量PCR扩增。每个样品设置三个生物学重复,采用2-ΔΔCt法计算相对表达量。
结果如图17所示,lnc10在各个组织中均有表达,其中在嫩叶中的表达最高,且远高于其他组织,其次是成熟叶片,在根中的表达量最低。lnc11在雌球花中的表达量最高,在茎中次之,在根中的表达量最低。
根据转录组数据分析,以转录组测序样品RNA反转录的cDNA作为模板,随机挑选相关通路上的差异表达基因进行qRT-PCR转录组数据验证,利用IDT在线引物设计网站设计特异性引物,将AtPP2AA3(AT1G13320)设置为内参引物,引物序列见表8。荧光定量PCR操作等方法同上。
将基因qRT-PCR结果对应的log2(FoldChange)与RNA-seq对应的log2(FoldChange)进行分析,结果如图18所示,两组数据的表达水平呈线性关系,WT vs lnc10的线性线性回归方程为y=0.8439x-0.2507,R2=0.7281;WT vs lnc11的线性线性回归方程为y=0.8786x-0.277,R2=0.6455,RNA-Seq与qRT-PCR之间存在显著相关。也即,本发明的转录组数据是真实可靠的。
实施例8:RNA pull-down
(1)体外转录模板准备
合成含有T7启动子序列的上游引物lnc10-S,以实施例1中测序正常的pBI121-lnc10为模板克隆带有T7启动子序列的lnc10全长DNA,纯化后测定浓度,并跑电泳验证DNA线性化片段是否正确。以含有T7启动子序列的下游引物lnc10-A克隆lnc10,用于体外转录lnc10反义链,作为阴性对照。为防止RNA降解,RNA pull-down实验过程中所用的实验器材均需要进行去RNase处理。
(2)体外转录
体外转录按照Ribo TM RNAmax-T7生物素标记转录试剂盒说明书进行。
(3)银杏蛋白提取
1)蛋白质提取液的配置:取15mL1M Tris-HCl(pH 8),25mL甘油和2g聚乙烯吡咯烷酮,定容到100mL。
2)取1g研磨好的银杏叶片,加入3.5mL提取液,在冰上静置4h。4℃条件下10000rpm离心20min,所得上清液即为蛋白质提取液。
(4)RNA pull-down
1)预洗磁珠:
将磁珠DynabeadsTMMyOneTMStreptavidin T1(Thermo,美国)涡旋震荡30s,充分混合磁珠。取50ul于1.5mL离心管中,加入1mL 1X B&W Buffer(10mM Tris-HCl,1mM EDTA,2MNaCl),涡旋震荡5s。将离心管置于磁力架上静置30s,弃上清液。用100ul Solution A(0.1MNaOH,0.05M NaCl)清洗磁珠2次,持续2分钟。弃上清,再用100ul Solution B(0.1M NaCl)中清洗磁珠2次。
2)固定核酸
取50ul含有1X RNase Inhibitor的2X B&W buffer重悬磁珠,加入等量的RNA,4℃轻轻旋转孵育15分钟。弃上清,用100ul 1X B&W buffer清洗2-3次。
3)蛋白与RNA结合
Master Mix的配置:10X Protein-RNA Binding Buffer 10ul,50%甘油30ul,蛋白提取液30ul,RNase Inhibitor 2.0ul,100X蛋白酶抑制剂1.0ul,加RNase水至100ul。
将配置好的Master Mix加入到试管中,4℃旋转混匀60min。
4)洗脱RNA-蛋白复合物
加入100μL的1X wash buffer(20mM Tris(pH 7.5),10mM NaCl,0.1%Tween-20Detergent)清洗3次。弃上清后加入50μL Elution Buffer(10mM Tris HCl),95℃水浴10min。一半样品进行SDS-PAGE凝胶分离电泳后用快速银染试剂盒(碧云天)进行蛋白银染。一半送至金开瑞进行蛋白质谱鉴定。
本发明通过利用RNA pull-down技术来筛选lnc10互作蛋白。如图19A所示,RNApull-down所用的是lnc10的正义链(Sense strand)和反义链(Antisense strand),通过RNA pull-down获得互作蛋白后,对两个下拉下来的蛋白进行银染,无可见差异蛋白。质谱分析结果显示(表9),共鉴定到59个蛋白质,其中正义链得到了54个蛋白,正义链相对于反义链左结合的蛋白有38个。随后,对鉴定到的正义链的特异蛋白质进行KEGG功能注释(图20),结果发现,有一个基因(Gb_04109)被注释到“苯丙烷代谢途径”。表明lnc10可能通过与Gb_04109表达的蛋白互作进而调控黄酮类化合物的合成。
表9鉴定结果统计
Figure BDA0004107129590000201

Claims (5)

1.一种银杏类黄酮合成IncRNA的分离,其特征在于,包括如下步骤:
(1)根据银杏转录组数据库筛选出两个参与类黄酮合成的IncRNA,分别命名为Inc10和Inc11;
(2)克隆Inc10和Inc11基因;
(3)qRT-PCR检测lnc10和lnc11在银杏不同组织中的表达量;
(4)构建Inc10和Inc11过表达载体。
2.根据权利要求1所述的一种银杏类黄酮合成IncRNA的分离,其特征在于,步骤(2)中所述的Inc10和Inc11基因的克隆包括以下步骤:
1)分别采集新鲜的银杏根、茎、幼嫩叶、成熟叶、雄球花、雌球花、果实七个独立样本,将采集的材料迅速冻于液氮中,保存于-80℃冰箱中备用;
2)参照RNA提取试剂盒MiniBEST Plant RNA Extraction Kit说明书进行RNA的提取;
3)参照RNA反转录试剂盒HiScript II 1st Strand cDNA Synthesis Kit说明书进行RNA反转录;
4)以cDNA为模板,利用2×Rapid Taq Master Mix扩增lncRNA。
3.根据权利要求1所述的一种银杏类黄酮合成IncRNA的分离,其特征在于,步骤(3)中所述的qRT-PCR检测lnc10和lnc11在银杏不同组织中的表达量,具体为:以根、茎、叶、雄球花、雌球花和果实中7个组织的cDNA为模板,选取银杏GbNADPH作为内参基因,利用IDT在线网站设计特异性定量引物,进行实时定量PCR扩增。
4.根据权利要求1所述的一种银杏类黄酮合成IncRNA的分离,其特征在于,步骤(4)中所述的Inc10和Inc11过表达载体的构建,包括如下步骤:
1)对pBI121-GUS选用Xba I和Xma I进行双酶切,37℃酶切1h,65℃水浴20min,使酶失活;
2)采用电泳检测上述酶切产物,并检测产物浓度。根据
Figure FDA0004107129580000011
II One StepCloning Kit说明书,按照载体与插入片段摩尔比为1:2的比例进行重组反应,37℃反应30min,将重组产物通过的热激法转入到DH5α并进行阳性验证和测序。
5.一种银杏类黄酮合成IncRNA的功能分析,其特征在于,包括如下步骤:
(1)通过农杆菌介导转化拟南芥,获得转基因拟南芥植株;
(2)HPLC检测转基因和对照组拟南芥中类黄酮含量;
(3)拟南芥总RNA提取;
(4)野生型和转基因拟南芥转录组文库构建及测序;
(5)RNA-seq分析,查找IncRNA和类黄酮代谢差异表达基因;
(6)qRT-PCR检测转基因和对照组拟南芥中的差异表达基因,利用qRT-PCR技术对转录组数据进行验证;
(8)RNA Pull-down
通过RNA pull-down技术获得与lnc10互作蛋白,然后进行质谱分析。
CN202310195864.2A 2023-03-03 2023-03-03 一种银杏类黄酮合成IncRNA的分离及功能分析 Active CN116200388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310195864.2A CN116200388B (zh) 2023-03-03 2023-03-03 一种银杏类黄酮合成IncRNA的分离及功能分析

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310195864.2A CN116200388B (zh) 2023-03-03 2023-03-03 一种银杏类黄酮合成IncRNA的分离及功能分析

Publications (2)

Publication Number Publication Date
CN116200388A true CN116200388A (zh) 2023-06-02
CN116200388B CN116200388B (zh) 2024-04-16

Family

ID=86512624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310195864.2A Active CN116200388B (zh) 2023-03-03 2023-03-03 一种银杏类黄酮合成IncRNA的分离及功能分析

Country Status (1)

Country Link
CN (1) CN116200388B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116926116A (zh) * 2023-08-30 2023-10-24 长江大学 gb-miR160—GbERF4模块在调控银杏萜内酯合成中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736784A (zh) * 2021-08-04 2021-12-03 扬州大学 银杏长链非编码RNA Lnc2L和Lnc2S及其载体和应用
CN115466749A (zh) * 2022-10-28 2022-12-13 长江大学 一种银杏bZIP类转录因子GbbZIP08在促进植物类黄酮合成中的应用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113736784A (zh) * 2021-08-04 2021-12-03 扬州大学 银杏长链非编码RNA Lnc2L和Lnc2S及其载体和应用
CN115466749A (zh) * 2022-10-28 2022-12-13 长江大学 一种银杏bZIP类转录因子GbbZIP08在促进植物类黄酮合成中的应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIABAO YE等: "A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis", 《INDUSTRIAL CROPS & PRODUCTS》, vol. 139, pages 2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116926116A (zh) * 2023-08-30 2023-10-24 长江大学 gb-miR160—GbERF4模块在调控银杏萜内酯合成中的应用

Also Published As

Publication number Publication date
CN116200388B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
Gao et al. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1
Bart et al. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts
Wang et al. RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction
CN117587015A (zh) 用于操纵腺毛中的大麻素和其他化合物的毛状体特异性启动子
CN105087601A (zh) 一种珠子参转录因子基因PjWRKY1的应用
Wang et al. Re enhances anthocyanin and proanthocyanidin accumulation to produce red foliated cotton and brown fiber
CN116200388B (zh) 一种银杏类黄酮合成IncRNA的分离及功能分析
CN112481276B (zh) 玉米基因ZmSCL14在调控植物开花期中的应用
US10385356B1 (en) Nitrogen uptake in plants
EP2611925B1 (en) Sugarcane bacilliform viral (scbv) enhancer and its use in plant functional genomics
CN114540357A (zh) 玉米长链非编码RNA lncRNA25659及其用途
CN111893132B (zh) 一种提高植物pal酶活性与苯丙烷合成通路活性的方法
Yun et al. Genome-edited HEADING DATE 3a knockout enhances leaf production in Perilla frutescens
Li et al. OsBC1L1 and OsBC1L8 function in stomatal development in rice
CN110964740B (zh) 一种高黄酮醇烟草的制备方法及其应用
WO2023221554A1 (zh) 抗除草剂转基因玉米事件nCX-1、核酸序列及其检测方法
CN105814207A (zh) 玉米调节元件及其用途
CN102533804B (zh) 白沙蒿Δ12脂肪酸脱氢酶(As FAD2)基因及用途
Moon et al. Integrated omics analysis of root-preferred genes across diverse rice varieties including Japonica and indica cultivars
CN105814208A (zh) 玉米调节元件及其用途
Chen et al. VvMYB114 mediated by miR828 negatively regulates trichome development of Arabidopsis
CN104558131B (zh) 花生della基因家族及其编码基因与应用
Lempe et al. Functional evidence on the involvement of the MADS-box gene MdDAM4 in bud dormancy regulation in apple
KR100996667B1 (ko) 벼의 캘러스 또는 분화중인 캘러스에서 특이적으로 발현하는 유전자의 프로모터 및 전사인자
KR101497832B1 (ko) 잎, 줄기 또는 이들 모두에 특이적 프로모터, 이를 포함하는 발현 벡터, 이에 의한 형질 전환 벼 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant