CN116156664A - 通信设备、基站、通信方法和计算机可读介质 - Google Patents

通信设备、基站、通信方法和计算机可读介质 Download PDF

Info

Publication number
CN116156664A
CN116156664A CN202310173844.5A CN202310173844A CN116156664A CN 116156664 A CN116156664 A CN 116156664A CN 202310173844 A CN202310173844 A CN 202310173844A CN 116156664 A CN116156664 A CN 116156664A
Authority
CN
China
Prior art keywords
data
base station
transmission
access
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310173844.5A
Other languages
English (en)
Inventor
P·瓦伊格
S·巴伦
P·内左
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN116156664A publication Critical patent/CN116156664A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)

Abstract

本发明涉及一种通信设备、基站、通信方法和计算机可读介质,还涉及一种包括接入点和非AP站点的无线网络。该站点具有业务队列并且关联的退避计数器,这些退避计数器在超过相应的AIFS持续时间期间将介质连续侦听为空闲时,随时间的经过而递减。为了补偿由OFDMA RU提供的附加机会,队列在由AP提供的RU中传输该队列的数据时,切换到MU模式。为了恢复在已知技术中在MU模式中冻结的退避计数器的动态性,实施例在队列退避计数器其中之一的各到期时提供以下:确定到期业务队列的当前模式;在传统模式的情况下,站点访问信道以传输来自该队列的数据;而在MU模式的情况下,在没有传输来自该队列的数据的情况下,抽取新的退避值以重置到期退避计数器。

Description

通信设备、基站、通信方法和计算机可读介质
(本申请是申请日为2017年10月27日、申请号为201780066921X、发明名称为“802.11ax网络中针对多用户EDCA传输模式的QoS管理”的申请的分案申请。)
技术领域
本发明通常涉及通信网络,并且更具体地涉及包括接入点(AP)和多个非AP站点的无线网络中的无线通信方法以及相应装置。本发明涉及通信网络,这些通信网络通过诸如EDCA等的竞争来提供对非AP站点的信道访问,并且将对这些非AP站点的辅访问提供至对授予接入点的传输机会TXOP进行分割的子信道(或资源单元),从而传输数据。
本发明可应用在无线通信网络中,特别地可应用在802.11ax网络中,从而向站点提供对802.11ax复合信道和/或对形成例如授予接入点的802.11ax复合信道的OFDMA资源单元的访问,并且使得能够进行上行链路通信。
背景技术
IEEE 802.11MAC标准族(a/b/g/n/ac等)定义了无线局域网(WLAN)必须在物理层级和介质访问控制(MAC)层级上工作的方式。通常,802.11MAC(介质访问控制)工作模式实现了众所周知的分布式协调功能(DCF),其中该分布式协调功能依赖于基于所谓的“载波侦听多路访问/冲突避免”(CSMA/CA)技术的基于竞争的机制。
原始的访问DCF方法已被改进成众所周知的增强型分布式信道访问(EDCA)方法,以在访问网络的通信信道时考虑优先数据业务。
EDCA定义业务类别、以及使得可以与低优先级业务相比不同地处理高优先级业务的四个相应的访问类别。
EDCA在站点中的实现可以使用用于按不同的优先级服务数据业务的多个业务队列(已知为“访问类别”)来进行,其中各业务队列与相应的队列退避计数器相关联。队列退避计数器利用从各个队列竞争参数(例如,EDCA参数)随机抽取的退避值而被初始化,并且用于竞争对通信信道的访问,以便发送业务队列中所存储的数据。
传统EDCA参数包括针对各业务队列的CWmin、CWmax和AIFSN,其中CWmin和CWmax是针对给定业务队列选择了EDCA竞争窗CW的选择范围的下边界和上边界。AIFSN代表仲裁帧间间隙数,并且定义除DIFS间隔(定义AIFS时间段的总和)之外的站点在使与所考虑的业务队列相关联的队列退避值递减之前必须将介质侦听为空闲的时隙(通常为9μs)的数量。这意味着,通过EDCA,只要在超过相应的仲裁帧间间隙持续时间期间通信信道被连续侦听为空闲,该站点就使队列退避计数器随时间的经过而递减。
传统EDCA参数可以在网络中的AP所发送的信标帧中定义,以广播网络信息。
竞争窗CW和队列退避值是EDCA变量。
传统的EDCA退避过程包括:站点从各个竞争窗CW随机地选择针对业务队列退避计数器的退避值,然后在AIFS时间段之后将介质侦听为空闲时使该退避值递减。一旦退避值达到零,则允许站点访问介质。
因而,EDCA队列退避计数器针对站点起两个作用。首先,这些计数器通过降低冲突风险来驱动站点高效地访问介质;第二,这些计数器通过反映业务队列中所包含的数据的老化(数据越老,退避值越低)、并由此通过EDCA参数(特别是延迟EDCA队列退避计数器的递减的开始的AIFSN参数)的不同值向业务队列提供不同优先级,来提供服务质量即QoS的管理。
站点使用EDCA退避过程来通过基于退避的竞争访问通信网络。
最近,电气和电子工程师协会(IEEE)正式批准802.11ax任务组作为802.11ac的继任者。802.11ax任务组的主要目标涉及试图提高在密集部署场景中所使用的无线通信装置的数据速度。
特别地,802.11ax标准的最近发展试图通过具有接入点(AP)的无线网络中的多个站点来优化通信信道的使用。实际上,典型的内容具有例如与高清视听实时交互式内容有关的重要数据量;并且应当以所需的服务质量QoS传输这些内容。
此外,众所周知,随着站点的数量和业务量的增加(即,在密集WLAN场景中),IEEE802.11标准中所使用的CSMA/CA协议的性能快速变差。
在该上下文中,多用户(MU)传输已被认为允许进行在相对于AP的下行链路(DL)和上下链路(UL)方向上以及在授予AP的传输机会期间的相对于不同用户的多个同时传输。在上行链路中,可以使用多用户传输以通过允许多个非AP站点同时传输来减少冲突概率。
为了实际进行这样的多用户传输,提出了将授予的通信信道分割为子信道(也称为资源单元(RU)),其中多个用户(非AP站点)例如基于正交频分多址(OFDMA)技术在频域中共享这些子信道。各RU可以由多个音调(tone)来定义,其中80MHz信道包含多达996个可用音调。
OFDMA是作为用以改进基于高级架构的无线网络的效率的新关键技术而出现的OFDM的多用户变形例。OFDMA将物理层上的OFDM与MAC层上的频分多址(FDMA)组合,从而使得不同的子载波能够被指派到不同的站点以提高并发性。相邻的子载波经常经历相同的信道条件、并因此被分组到子信道:OFDMA子信道或RU因此是子载波的集合。
OFDMA的多用户特征允许AP将不同的RU指派至不同的非AP站点以增加争用。这可以帮助减少802.11网络内的竞争和冲突。
在OFDMA中,信道带宽中的子载波的不同子集可以由不同的帧传输同时使用。在下行链路方向上,允许AP向不同的接收非AP站点发射平行传输。这些传输被称为多用户下行链路传输(MU DL)。另外,AP可以向非AP站点提供上行链路传输调度;这种传输方案被称为多用户上行链路(MU UL)。
为了支持多用户上行链路(即,授予TXOP期间向802.11ax接入点(AP)的上行链路传输),802.11ax AP必须提供供传统站点(非802.11ax站点)设置其NAV以及供802.11ax客户端站点确定AP所提供的资源单元RU的分配的信令信息。
802.11ax标准定义了由AP发送至站点以触发多用户上行链路通信的新的控制帧(即,触发帧(TF))。
文献IEEE 802.11-15/0365提出,由AP发送“触发帧”(TF)以请求来自多个站点的多用户上行链路(MU UL)OFDMA PPDU的传输。TF定义由AP提供至这些非AP站点的资源单元。作为响应,站点发送MU UL(OFDMA)PPDU作为对触发帧的立即响应。所有发送器可以同时发送数据,但是使用不相交的RU(即,OFDMA方案中的频率)的集合,从而得到干扰较少的传输。
可以由AP为特定站点保留资源单元RU,在这种情况下,AP在TF中指示出保留了RU的站点。将这种RU称为被调度RU。所指示的站点无需进行用以访问这种RU的竞争。
另一方面,AP可以通过基于竞争的访问向802.11ax站点提出一个或多个资源单元。这些RU被称为随机RU,并且有助于提高网络关于向AP的未管理业务的效率。
在AP先占了(通常为20MHz宽度的)多个通信信道的情况下,在各个先占信道上复制包括触发帧的所有控制帧。这是为了在这些信道中的任何信道上工作的传统站点能够设置它们的NAV。
802.11ax标准考虑了多个类型的触发帧,从而向站点触发各种信息项。例如,触发帧可用于检索站点的业务队列中所存储的上行链路数据业务。在另一示例中,触发帧可用于从站点请求缓冲区状态报告(BSR),以确定哪些802.11ax站点保持等待传输的上行链路包以及这些上行链路包的相关大小(站点业务队列中的数据量)。
从以上容易看出,多用户上行链路介质访问方案(或者OFDMA或RU访问方案)允许减少通过同时介质访问尝试所产生的冲突的数量,同时还减少由于介质访问引起的开销(因为介质访问成本在数个站点之间分担)。因而,OFDMA或RU访问方案似乎比传统的基于EDCA竞争的介质访问方案(在高密度802.11小区的环境中)(在介质使用方面)更高效。
尽管OFDMA或RU访问方案似乎更高效,但EDCA访问方案也必须存活并因此与OFDMA或RU访问方案共存。
这主要是由于传统802.11站点的存在而引起的,这些传统802.11站点必须仍有机会访问介质,而它们并不知晓OFDMA或RU访问方案。此外,必须确保向介质的访问的整体公平性。
802.11ax站点也应有机会通过传统的基于EDCA竞争的介质访问来实现对介质的访问,例如以将数据直接发送至另一站点(即,与向AP的上行链路业务不同的对等[P2P]业务),这也是更加有必要的。
因此,EDCA和OFDMA/RU访问方案这两个介质访问方案必须共存。
该共存存在缺点。
例如,802.11ax站点和传统站点使用EDCA访问方案具有相同的介质访问概率。然而,802.11ax站点使用MU上行链路或OFDMA或RU访问方案具有额外的介质访问机会。
这导致对介质的访问在802.11ax站点和传统站点之间不完全公平。
为了恢复站点之间的某种公平性,提出了如下的解决方案:在经由被访问资源单元(即,通过MU UL OFDMA传输)成功地传输数据时,将至少一个EDCA参数的当前值修改为惩罚或降级值,以降低站点通过EDCA竞争再次访问通信信道的概率。例如,要用于EDCA参数的惩罚或降级值比原始(或传统)值更具限制性。
例如,提出了:在AP为802.11ax站点所保留的资源单元(RU)中成功地(MU ULOFDMA)传输数据时,802.11ax站点切换到MU EDCA模式并持续利用计时器(以下表示为HEMUEDCATimer,代表高效率多用户EDCA计时器)倒计时得到的预定持续时间。在该MU EDCA模式中,站点的EDCA参数的集合已被修改(具体是惩罚),以降低站点通过EDCA访问方案再次访问通信信道的概率。
针对MU EDCA参数的集合的惩罚或降级值由AP在专用信息元素中(通常在信标或关联帧中)提供。
该文献中所公开的方法建议针对在被访问RU中传输的各业务队列仅增大AIFSN的值,同时保持CWmin和CWmax不变。随着相应的AIFS时间段的增加,基本上延迟了MU EDCA模式中的业务队列在将介质侦听为空闲时使其队列退避计数器递减。这在介质很长时间未保持空闲的高密度环境中特别明显。
在切换到MU EDCA模式时,站点开始其HEMUEDCATimer倒计时。不论所传输的数据来自于的业务队列如何,每当站点成功地(MU UL OFDMA)在新保留的RU中传输数据时,HEMUEDCATimer被重新初始化。建议HEMUEDCATimer的初始化值高(例如,几十毫秒),以便包含MU UL传输的若干新机会。
HEMUEDCATimer机制意味着,只要AP将所保留的RU提供至站点,站点就保持处于MUEDCA状态。
在HEMUEDCATimer期满时,MU EDCA模式下的业务队列切换回到具有传统EDCA参数的传统EDCA模式,由此使队列从MU EDCA模式退出。
因而,这种双工作模式(传统EDCA模式和MU EDCA模式)的机制通过降低处于MUEDCA模式的站点使用传统EDCA机制实现对介质的访问的概率来促进MU UL机制的使用。
另外,该文献提出向由AP提供的降级/惩罚参数的集合中的AIFSN参数提供特定值。该特定值向站点指示该特定值应将非常高的值用于所关注的业务队列的AIFSN。
如该文献所述,提出AIFSN的非常高的值等于也由AP提供的HEMUEDCATimer值。通常,与传统EDCA模式中的最差AIFS[i]的小于0.1毫秒相比,HEMUEDCATimer计时器值约为几十毫秒。
提出将“0”用于AIFSN参数的特定值。由于对于AIFSN而言通常不允许该值(因为AIFSN必须至少等于DIFS),因此该值直接由站点检测为使用HEMUEDCATimer来设置AIFSN的代码。
该方案的结果是MU EDCA模式中的业务队列通过EDCA竞争被授予传输机会不太频繁。因而,很明显,使用代码值(直到目前为止为“0”)旨在使对这些业务队列的EDCA访问不太频繁。另一方面,这简化了AP处的处理,使得不再需要计算相关的惩罚AIFSN值。
然而,通过防止退避计数器在站点使用惩罚MU EDCA参数时演变,该机制使队列退避计数器不再反映哪个业务队列应具有传统EDCA的意义上的最高传输优先级(例如,在内部存储有最早数据)。例如,在站点接收到具有专用于该站点的被调度RU的触发帧的情况下,退避计数器冻结的站点不再能够将这些退避计数器用于处理该站点的QoS并发送具有最高优先级的数据(不仅关于该站点的访问类别,而且还关于AC[]队列中的数据的相应年龄)。
因而,网络中的QoS严重劣化,并且需要重新引入用于业务优先化的适当QoS运算,这将适应于802.11ax标准中所设想的介质访问惩罚方案。
发明内容
本发明寻求克服上述担忧。特别地,本发明寻求克服由引入MU UL OFDMA传输所引起的QoS处理的损失。
通过802.11e的引入,经由EDCA退避机制将数据的优先级连同四个访问类别业务队列一起处理。由于EDCA退避计数器在MU UL OFDMA资源单元上传输数据时没有演变,因此MU UL OFDMA通信的引入破坏了EDCA退避计数器反映四个AC业务队列的相对优先级的能力。
因而,本发明旨在为了恢复AC队列的相对优先级的相关反映的目的而将一些类似EDCA的行为恢复到队列退避计数器。
在该上下文中,本发明提供一种通信设备,包括:
接收部件,用于接收从构建符合IEEE 802.11系列标准的无线网络的基站传输来的信号,所述信号包括与AIFSN值有关的信息;以及
控制部件,用于进行控制,使得在所述接收部件接收到的信号中所包括的AIFSN值是零的情况下,不经由所述无线网络传输获得了向所述无线网络的增强型分布式信道访问式访问即EDCA访问的访问类别的数据。
反过来,还提出一种通信方法,其中,站点进行以下:
接收从构建符合IEEE 802.11系列标准的无线网络的基站传输来的信号,所述信号包括与AIFSN值有关的信息;以及
进行控制,使得在接收部件接收到的信号中所包括的AIFSN值是零的情况下,不经由所述无线网络传输获得了向所述无线网络的增强型分布式信道访问式访问即EDCA访问的访问类别的数据。
本发明的其它实施例提供一种通信网络中的通信方法,所述通信网络包括多个站点,至少一个站点包括用于按不同的优先级来服务数据业务的多个业务队列,各业务队列与相应的队列退避计数器相关联,以竞争对通信信道的访问从而传输该业务队列中所存储的数据,
所述通信方法包括:
在所述站点处,
只要在超过相应的仲裁帧间间隙持续时间即AIFS持续时间期间所述通信信道被(通常连续地)侦听为空闲(自由或可用),就使所述队列退避计数器随时间的经过而递减。这意味着,各业务队列在网络仍被侦听为空闲的各新的连续时隙处使其退避计数器递减之前,在相应的AIFS期间将介质检测为空闲;
在所述通信信道上的授予接入点的传输机会内由所述接入点提供的被访问资源单元中(优选为成功地)传输任何业务队列中所存储的数据时,将该业务队列从传统竞争模式切换为MU竞争模式;以及
在所述队列退避计数器其中之一到期(即,期满,例如达到零)时,基于关联的业务队列的当前(即,在到期时的)模式来判断是访问所述通信信道以传输关联的业务队列中所存储的数据、还是在没有在所述通信信道中传输来自关联的业务队列的数据的情况下抽取新的退避值以重置到期队列退避计数器。
这些实施例可以在仍保持802.11ax标准中设想的惩罚方案的同时,恢复退避计数器的递减。因而,可以恢复业务队列中的数据的老化,并由此恢复QoS。
一旦退避计数器到期,这通过所提出的对介质访问的控制来实现。与现有技术的避免退避计数器到期的预防措施相反,所提出的方案是对这种退避计数器达到零的反应性对策。因而可以再次实现退避计数器的动态行为。
这些实施例的结果包括退避计数器可以再次反映AC中的数据的老化这一事实,而且还包括不再需要限制性AIFSN值这一事实。
相应地,这些实施例还提供一种通信网络中的通信站点,所述通信网络包括多个站点,所述通信站点包括:
多个业务队列,用于按不同的优先级来服务数据业务,各业务队列与相应的队列退避计数器相关联,以竞争对通信信道的访问从而传输该业务队列中所存储的数据;以及
至少一个微处理器,其被配置成执行以下步骤:
只要在超过相应的仲裁帧间间隙持续时间期间所述通信信道被侦听为空闲,就使所述队列退避计数器随时间的经过而递减;
在所述通信信道上的授予接入点的传输机会内由所述接入点提供的被访问资源单元中传输任何业务队列中所存储的数据时,将该业务队列从传统竞争模式切换为MU竞争模式;以及
在所述队列退避计数器其中之一到期时,基于关联的业务队列的当前模式来判断是访问所述通信信道以传输关联的业务队列中所存储的数据、还是在没有在所述通信信道中传输来自关联的业务队列的数据的情况下抽取新的退避值以重置到期队列退避计数器。
该站点具有与以上定义的方法相同的优点。
在所附权利要求书定义了本发明的可选特征。以下参考方法来说明这些特征中的一些特征,同时这些特征可被转换为专用于根据本发明的任何通信站点的系统特征。
在实施例中,如果当前模式是传统竞争模式,则站点访问通信信道以传输关联的业务队列中所存储的数据,
而如果当前模式是MU竞争模式,则在没有在通信信道中传输来自关联的业务队列的数据的情况下,抽取新的退避值以重置到期队列退避计数器。
这样确保了保持802.11ax标准中所设想的惩罚方案:EDCA方案即使在恢复了动态性的关联退避计数器到期,也仍工作,而在MU EDCA中不允许对业务队列的介质访问。这是本发明所提供的控制。
在一些实施例中,判断是访问通信信道还是抽取新的退避值进一步基于关联的业务队列中当前存储的数据。特别是为了保持与MU UL传输无关的数据的QoS公平性的目的,该方法使得可以将惩罚方案调整到一些类型的数据。
根据特定特征,如果当前模式是传统竞争模式、或者如果关联的业务队列中所存储的数据包括要寻址到与接入点不同的另一站点的数据(即,该数据是P2P数据),则站点访问通信信道以传输关联的业务队列中所存储的数据,
而如果当前模式是MU竞争模式、并且关联的业务队列中所存储的数据不包括要寻址到不同于接入点的另一站点的数据,则在没有在通信信道中传输来自关联的业务队列的数据的情况下,抽取新的退避值以重置到期队列退避计数器。
在该配置中,由于P2P业务不涉及向AP的MU UL传输,因此针对该P2P业务保持了QoS公平性。换句话说,即使站点处于针对相同AC的MU EDCA模式,本发明也针对P2P数据允许进行对介质的EDCA访问。
在该上下文中,可以规定,在向通信信道的访问的情况下,在被访问的通信信道中仅传输处于MU竞争模式的关联业务队列中所存储的且要被寻址到不同于接入点的另一站点的数据。这意味着,在传统EDCA访问中仅允许P2P数据,而站点(或相应的AC)处于MU EDCA模式。
在一些实施例中,MU竞争模式使用与传统竞争模式相同的仲裁帧间间隙持续时间。由于本发明的反应性方法,惩罚方案中的对介质访问的控制不再依赖于竞争参数,而是主要依赖于在任何退避计数器到期时对当前模式的附加测试。结果,不再需要修改AIFSN,因而AP不再需要传输AIFSN的修改值。结果,站点和AP处的处理减少,同时用以传输惩罚的EDCA参数的带宽的使用也减少。
在特定实施例中,利用从相应的竞争窗抽取的关联退避值来重置各队列退避计数器,以及
MU竞争模式使用与传统竞争模式相同的下边界CWmin和/或相同的上边界CWmax,其中该下边界CWmin和上边界CWmax这两者定义了选择竞争窗的大小的选择范围。
该配置简化了进入MU竞争模式(例如,MU EDCA模式)和从MU竞争模式退出,因为可以使竞争窗保持不变。然而,变形例可以考虑在传统竞争模式和MU竞争模式之间具有不同的边界。
在一些实施例中,该方法还包括:在站点处,在业务队列切换到MU竞争模式的情况下被初始化的MU模式计时器(在标准中被称为HEMUEDCATimer)到期时,将业务队列切换回到传统竞争模式。根据特定特征,MU模式计时器被所有的业务队列共享,并且每当在通信信道上的授予接入点的任何后续传输机会内由该接入点所提供的被访问资源单元中传输来自任何业务队列的数据时,被重新初始化为预定持续时间。这意味着,在没有在后续传输机会内由AP提供的任何RU中传输来自站点的任何数据的情况下,在预定持续时间期满时,处于MU竞争模式的所有业务队列退出MU竞争模式。
在一些实施例中,在授予接入点的传输机会内由接入点提供的资源单元中所传输的数据是从基于关联队列退避计数器的当前(即,访问介质时的)退避值所选择的至少一个业务队列检索到的。
因而,在实现本发明时,维持了QoS的公平管理。
根据特定特征,业务队列对选择了具有最低当前退避值的业务队列进行选择。如此保持了AC队列的类似EDCA的行为。
在替代实施例中,在授予接入点的传输机会内由接入点提供的资源单元中所传输的数据是从由接入点所指示的优选业务队列检索到的。
根据特定特征,优选业务队列指示包括在从接入点接收到的触发帧中,该触发帧保留通信信道上的授予接入点的传输机会、并且定义形成包括被访问资源单元的通信信道的资源单元即RU。
该方法使得AP可以驱动QoS管理。
在其它实施例中,重置标志与各业务队列相关联,其中每当在没有传输来自业务队列的数据的情况下抽取新的退避值以重置关联的队列退避计数器时,启用该重置标志,并且每当传输来自业务队列的数据时,禁用该重置标志,以及
在授予接入点的传输机会内由接入点提供的资源单元中所传输的数据是从基于与业务队列相关联的重置标志的启用或禁用状态而选择的至少一个业务队列检索到的。
优选地,授予接入点的传输机会内由接入点提供的资源单元中所传输的数据是从具有启用的重置标志的业务队列检索到的。
这些配置的重置标志保存了与业务队列有关的QoS信息。实际上,由于抽取新的退避值,因此业务队列的优先级与其它业务队列相比可能丢失(因为对于这种情况,在新退避值的重新抽取定时,在MU EDCA模式中不传输数据)。因而,使用重置标志来指示哪些业务队列具有在访问RU时应紧急传输的优先级数据。
在一些实施例中,该方法还包括:在所述站点处,针对在被访问资源单元中传输的至少一个业务队列,计算新的退避值以重置关联的队列退避计数器。
该方法恢复了更公平的QoS管理,因为这里应用了与传统EDCA相同的行为(每当传输时针对业务队列为新的退避值)。
在特定实施例中,仅针对在被访问资源单元的开始处传输的数据所来自于的传输业务队列来计算新的退避值。通常,假定第一传输队列在被访问资源单元中传输大部分数据。其它传输队列仅发送少量数据以填充在被访问资源单元(假定为TXOP)中可用的带宽。在该方面,针对这些“辅”队列抽取新的退避值对这些队列的剩余数据非常容易造成破坏,因而与直接OFDMA访问相比必须等待更长的时间。结果,所提出的实现通过保持这些辅队列的相同的未来传输概率,来保持关于这些辅队列的公平性。
在变形例中,针对各传输业务队列来计算新的队列退避值。如此由于应用与传统EDCA完全相同的行为,因此实现了公平的QoS管理。
在一些实施例中,基于各自与相应的业务队列相关联的竞争参数集来计算用于重置队列退避计数器的退避值,以及
该方法还包括:在所述站点处,将与在至少参数寿命持续时间期间保持处于MU竞争模式的(优选地,各个)业务队列相关联的竞争参数集重置为默认参数集。例如,参数寿命持续时间可以对应于用于初始化MU模式计时器(HEMUEDCATimer)的预定持续时间的至少两倍。
这有助于提高网络效率。实际上,由于所关注的业务队列长时间保持处于MU竞争模式,因此该业务队列的竞争参数(通常是EDCA参数)不再反映实际网络状况。因此,重置这些竞争参数擦除了这些竞争参数可能嵌入的任何旧的网络约束。在不具有与网络状况有关的任何知识的情况下,就好像业务队列是网络中的新的业务队列一样。
在其它实施例中,该方法还包括:在站点处,在被访问通信信道中传输了关联的业务队列中所存储的数据之后,抽取新的退避值以重置到期队列退避计数器。因而,在站点或业务队列处于传统EDCA竞争模式的情况下,保持了传统EDCA方案。
在另外的其它实施例中,该方法包括:在站点处,从接入点接收触发帧,该触发帧保留通信信道上的授予接入点的传输机会,并且定义形成包括被访问资源单元的通信信道的至少一个资源单元RU(优选为多个)。这遵循用以声明RU的标准要求。
在另外的其它实施例中,仅在被访问资源单元中成功地传输数据时,传输业务队列才切换到MU竞争模式。该结构保证了公平性。实际上,在竞争模式切换的体系中,仅应实现惩罚MU竞争模式以(这里通过RU)补偿其它传输机会的存在,这意味着成功传输了数据。
在另外的其它实施例中,传输数据所经由的被访问资源单元是随机资源单元,其中使用与用于抽取退避值以重置队列退避计数器的竞争参数集分开的RU竞争参数集通过竞争来访问该随机资源单元。
在另外的其它实施例中,传输数据所经由的被访问资源单元是被调度资源单元,其中该被调度资源由接入点指派至站点。
当然,一些站点可以访问被调度RU,而其它站点可以同时访问随机RU,这使得(针对一个或多个AC队列)同时具有处于MU竞争模式的各种站点。
本发明的另一方面涉及一种非暂时性计算机可读介质,其存储程序,所述程序在由装置中的微处理器或计算机系统执行时使所述装置进行如上定义的任何方法。
非暂时性计算机可读介质可以具有与以上和以下与方法和装置相关地陈述的特征和优点类似的特征和优点。
可以通过计算机来实现根据本发明的方法的至少一部分。因此,本发明可以采用如下的形式:全硬件实施例、全软件实施例(包括固件、常驻软件、微代码等)、或者结合了这里一般可全部称为“电路”、“模块”或“系统”的软件和硬件方面的实施例。此外,本发明可以采用计算机程序产品的形式,其中该计算机程序产品可以采用以介质中体现有计算机可使用程序代码的表现的任何有形介质体现的计算机程序产品的形式。
由于本发明可以在软件中实现,因此本发明可以体现为计算机可读代码以供在任何合适的载体介质上提供给可编程设备。有形载体介质可以包括诸如硬盘驱动器、磁带装置或固态存储器装置等的存储介质。瞬态载体介质可以包括诸如电信号、电子信号、光信号、声信号、磁信号或电磁信号(例如,微波或RF信号)等的信号。
附图说明
本领域技术人员在检查附图和具体实施方式时,本发明的其它优点将变得明显。本发明的实施例现将参考以下附图仅通过示例的方式来描述。
图1示出可以实现本发明的实施例的典型无线通信系统;
图2a示出涉及访问类别的IEEE 802.11e EDCA;
图2b示出业务类的八个优先级和四个EDCA AC之间的映射的示例;
图2c示出退避计数器倒计数的802.11e机制;
图2d示出MAC数据帧头部的结构;
图3示出支持现有技术中已知的20MHz、40MHz、80MHz或160MHz的复合信道带宽的802.11ac信道分配;
图4使用时间线示出802.11ax上行链路OFDMA传输方案的示例,其中AP发出用于在现有技术中已知的80MHz信道上保留OFDMA资源单元的传输机会的触发帧;
图5a示出使用EDCA机制的触发帧的传统传输的示例性场景,其中可以应用在现有技术中已知的惩罚方案;
图5b示出在现有技术中已知的退避计数器和关联的数据选择的示例性演变;
图5c示出根据本发明实施例的退避计数器和关联的数据选择的演变;
图6示出根据本发明实施例的通信装置或站点的示意性表示;
图7示意性示出根据本发明实施例的无线通信装置的架构的框图;
图8示出根据本发明实施例的通信站点的示例性传输块;
图9使用流程图示出本发明的实施例中的在接收到新的要传输的数据时站点的MAC层所进行的主要步骤;
图10使用流程图示出根据本发明实施例的基于EDCA介质访问方案来访问介质的步骤;
图11使用流程图示出根据本发明实施例的在接收到定义RU的触发帧时基于RU或OFDMA访问方案来访问资源单元的步骤;
图12使用流程图示出根据本发明实施例的用以从MU竞争模式切换回(或退)到传统竞争模式的站点管理;
图13示出如在802.11ax标准中所定义的触发帧的结构;
图14a示出用于描述信标帧中的EDCA的参数的标准化信息元素的结构;以及
图14b示出根据本发明实施例的用以传输降级EDCA参数值的专用信息元素的示例性结构、以及HEMUEDCATimer值。
具体实施方式
现在将利用特定非限制性典型实施例并且通过参考附图来说明本发明。
图1示出通信系统,其中在该通信系统中,在中心站点或者也被视为网络的站点的接入点(AP)110的管理下,多个通信站点(或节点)101~107经由无线局域网(WLAN)的无线传输信道100来交换数据帧。无线传输信道100由工作频带来定义,其中该工作频带由单个信道或形成复合信道的多个信道构成。
在下文,词语“站点”是指任何类型的站点。用语“接入点站点”或简言之“接入点”(AP)是指扮演接入点110的角色的站点。用语“非接入点站点”或简言之“非AP站点”或者客户端站点(STA)是指其它站点101~107。
访问共享无线介质以发送数据帧主要是基于CSMA/CA技术,以通过在空间和时间上分离并发传输来侦听载波并避免冲突。
CSMA/CA中的载波侦听由物理机制和虚拟机制这两者来进行。虚拟载波侦听是通过在传输数据帧之前传输控制帧以保留介质来实现的。
接着,包括AP的源站点或传输站点在传输数据帧之前,首先尝试通过物理机制来侦听在至少一个DIFS(代表DCF帧间间隙)时间段内已空闲的介质。
然而,如果侦听到共享无线介质在DIFS时间段内忙碌,则源站点继续等待,直到该无线介质变得空闲为止。
图1的无线通信系统包括物理接入点110,该物理接入点110被配置为管理WLANBSS(基本服务集),即先前已登记到AP的一组非AP站点。AP所管理的这种BSS被称为基础结构型BSS。在下文,术语BSS将被用作基础结构型BSS的等同物。
一旦建立了BSS,接入点就可以将BSS内的或者来自其它网络(例如,有线网络)的业务桥接到BSS(或者反之亦然)。因而,BSS的站点应仅与在数据帧针对BSS的另一站点的情况下负责中继这些数据帧的AP对话。
为了访问介质,包括AP的任何站点开始对被设计成在所谓的竞争窗[0,CW]中随机地选择的多个时隙之后到期的退避计数器进行倒计数,其中CW是整数。该退避机制或过程(还被称为信道访问方案)是将传输时间推迟随机间隔的冲突避免机制的基础,由此降低共享信道上的冲突的概率。在退避时间到期(即,退避计数器达到零)之后,在介质空闲的情况下,源站点可以发送数据或控制帧。
通过在IEEE 802.11e标准中定义的众所周知的EDCA机制,已经在无线网络中在站点级别引入了对服务质量(QoS)的管理。
实际上,在原始的DCF标准中,通信站点仅包括一个传输队列/缓冲器。然而,由于在先前帧的传输/重新传输结束之前不能传输后续的数据帧,因此传输/重新传输先前帧的延迟阻止了通信具有QoS。
图2a示出涉及访问类别的IEEE 802.11e EDCA机制,从而改进服务质量(QoS),以更高效地使用无线介质。
802.11e标准依赖于具有以下两个操作模式的协调功能(被称为混合协调功能(HCF)):增强型分布式信道访问(EDCA)和HCF控制信道访问(HCCA)。
EDCA增强或扩展了原始访问DCF方法的功能:EDCA是为了支持与DiffServ(区分服务)相似的优先业务而设计的,其中DiffServ是用于按类指定并控制网络业务以使得特定类型的业务优先的协议。
EDCA由于其表现了分布式且容易部署的机制的特征,因此是WLAN中的重要信道访问方案或机制。该方案竞争使用EDCA竞争参数来竞争对通信网络的至少一个通信信道的访问,以便站点在所访问的通信信道上传输本地存储的数据。
上述的由于帧重新传输的延迟因而未能具有令人满意的QoS这一不足已经利用多个传输队列/缓冲器得到了解决。
通过引入四个访问类别(AC)并且由此引入四个相应的传输/业务队列或缓冲器(210)来实现EDCA中的QoS支持。通常,四个AC按降序优先级顺序如下:语音(或“AC_VO”)、视频(或“AC_VI”)、尽力而为(或“AC_BE”)和后台(或“AC_BG”)。
当然,还可考虑另一数量的业务队列。
各AC具有自己的用以存储要在网络上传输的相应数据帧的业务队列/缓冲器。从协议堆栈的上层传入的数据帧(即,MSDU)被映射到四个AC队列/缓冲器其中之一上,并由此被输入在所映射的AC缓冲器中。
各AC还具有自己的队列竞争参数的集合,并且与优先级值相关联,由此定义MSDU中的具有更高或更低优先级的业务。因而,存在用于按不同的优先级来服务数据业务的多个业务队列。队列竞争参数通常包括针对各业务队列的CWmin、CWmax、AIFSN和TXOP_Limit参数。CWmin和CWmax是针对给定业务队列选择EDCA竞争窗CW的选择范围的下边界和上边界。AIFSN代表仲裁帧间间隙数,并且定义除SIFS间隔(定义AIFS时间段的总和-参见图2b)之外的站点在使与所考虑的业务队列相关联的队列退避计数器递减之前必须将介质侦听为空闲的时隙(通常为9μs)的数量。TXOP_Limit定义站点可以请求的TXOP的最大大小。
这意味着,各AC(和相应的缓冲器)用作包括各自的队列退避引擎211的独立DCF竞争实体。因而,各队列退避引擎211与各业务队列相关联,以使用队列竞争参数并(从CW中)抽取退避值以初始化相应队列退避计数器,从而用于竞争对至少一个通信信道的访问以便在所访问的通信信道上传输各业务队列中所存储的数据。
竞争窗CW和退避值被称为EDCA变量。
这样使得,同一通信站点内的AC彼此竞争,以使用例如以上所述的传统EDCA访问方案来访问无线介质并且获得传输机会。
通过在AC之间设置不同的队列退避参数(诸如不同的CWmin、CWmax、AIFS和不同的传输机会持续时间限制(TXOP_Limit)等)来实现AC之间的服务区分。这有助于调整QoS。
除使用平均较低的CW之外的使用不同的AIFSN值(以推迟退避计数器的递减)使得EDCA中的高优先级业务与低优先级业务相比被传输的机会更高:具有高优先级业务的站点平均而言在发送包之前从统计上比具有低优先级业务的站点等待得少一些。
参考图2a所示的四个AC缓冲器(210),缓冲器AC3和AC2通常被保留用于实时应用(例如,语音AC_VO或视频传输AC_VI)。这些缓冲器分别具有最高优先级和倒数第二高优先级。
缓冲器AC1和AC0被保留用于尽力而为(AC_BE)业务和后台(AC_BG)业务。缓冲器AC1和AC0分别具有倒数第二低优先级和最低优先级。
根据映射规则将具有优先级的从上层(例如,链路层)到达MAC层的各数据单元MSDU映射到AC中。图2b示出八个优先级的业务类(根据IEEE 802.1d为0~7之间的用户优先级或UP)和四个AC之间的映射的示例。然后,将数据帧存储在与所映射的AC相对应的缓冲器中。
例如在图2c中示出不同AIFSN的影响。
各站点在尝试传输之前必须等待固定时间量以确保介质空闲。利用DCF,DIFS对于所有类型的业务都是恒定的。然而,利用802.11e,站点必须等待的固定时间量将依赖于访问类别并且被称为仲裁帧间间隙(AIFS)。
使用AIFS,等待传输的各业务队列“i”必须等待,直到通过空闲信道评估(CCA)和网络分配向量(NAV)(这里为了简洁并未论述这两者)声明介质可用为止。一旦介质可用,各业务队列“i”在使其关联的队列退避计数器递减之前,必须等待(包括推迟对介质的访问的SIFS时间段的)相应的AIFS[i]时间段。
因而,四个业务队列各自具有与指派给该队列的优先级相对应的定义帧间间隙值。例如,AC_VO队列是最高优先级,因此具有最低帧间间隙计时器。IEEE 802.11e所指派的AIFS计时器(250)全部被定义为1个短帧间间隙(SIFS)值+由使用中的物理层编码方法(CCK、DSSS、OFDM)定义的可变数量的时隙时间(AIFSN)。EDCA参数AIFS数(AIFSN)的值是管理员可配置的,其中默认值被定义为如下:
AC_VO 1SIFS+2*时隙(AIFSN=2)
AC_VI 1SIFS+2*时隙(AIFSN=2)
AC_BE 1SIFS+3*时隙(AIFSN=3)
AC_BG 1SIFS+7*时隙(AIFSN=7)
AIFSN值可以由AP在所谓的EDCA参数集信息元素中提供(例如在由AP发送的信标帧中提供)。该信息元素中的AIFSN字段为四位长,其中最小值是在标准中定义的2且最大值是基于字段长度限制的15。
以这种方式,仲裁帧间间隙允许更高优先级的业务队列中的帧的统计优势,因为这些帧相对于其它队列在使它们的随机退避计数器递减之前不需要等待过长时间。
该图示出与两个不同业务队列相对应的两个AIFS[i]。可以看出,由于该优先差异,一个优先的业务队列早于另一不太优先的业务队列而开始使其退避值递减。在利用网络中的任何站点的各新介质访问之后(即,在重新将介质侦听为空闲时),重复该情形。
为了发起数据的传输,站点中的业务队列首先随机选择其退避计数器的退避值。如以上已经说明的,退避值必须在针对该业务队列所定义的竞争窗值内。与AIFS参数相同,各种业务队列的竞争窗之间的差异用于通过允许更高优先级的队列在被允许通过空中技术传输之前等待更短的时间间隔来优先这些队列中的业务。
一旦适当的AIFS[i]时间段到期,各业务队列就可以开始针对经过的每个时隙使其队列退避计数器(251)减小1。
接着,在针对业务队列(或AC)的EDCA退避过程结束(至少一个退避计数器达到零)时,传输站点的MAC控制器(以下图7中的附图标记704)将来自该业务队列的数据帧传输至物理层以传输到无线通信网络上。
由于业务队列在访问无线介质时并发地操作,因此可能发生同一通信站点的两个业务队列同时结束它们的退避。在这种情形下,MAC控制器的虚拟冲突处理程序(212)操作冲突AC之间的(如图2b所示)具有最高优先级的AC的选择,并且放弃从具有较低优先级的AC传输数据帧。
然后,虚拟冲突处理程序命令具有较低优先级的AC使用增大的CW值再次开始退避操作。
图2d示出MAC数据帧和IEEE 802.11e MAC帧的头部中所包括的QoS控制字段200的结构。除其它字段外,MAC数据帧还包括帧控制头部201和帧本体202。如该图所示,QoS控制字段200由两个字节构成,其中这两个字节包括以下的信息项:
-位B0~B3用于存储识别业务流的业务标识符(TID)204。业务标识符采用与由数据帧传送的数据相对应的传输优先级值(用户优先级UP,0~9之间的值-参见图2b)的值、或者采用用于其它数据流的业务流标识符(TSID)的值(8~15之间的值);
-位B4由非AP站点用来区分位B8~B15的含义,并且在以下进行详述;
-位B5和B6定义指定与数据帧相关联的确认策略的ACK策略子字段。该子字段用于确定接收站点必须如何确认数据帧;正常ACK、无ACK或块ACK。
-位B7被保留,这意味着不被当前802.11标准使用;以及
-如果位B4被设置为1,则位B8~B15表示“队列大小”子字段203,以指示在发送该帧的非AP站点处的给定TID的缓冲业务量。队列大小是针对所指定的TID所缓冲的所有包的向上舍入到256八位字节的最接近倍数且以256八位字节为单位表示的总大小。接收到帧的接入点可以使用该信息来确定该接入点将授予站点的下一TXOP持续时间。队列大小为0指示不存在针对该TID的任何缓冲业务。队列大小为255指示该TID 204的未指定或未知大小。
-作为“队列大小”使用的替代,如果位B4被设置为0,则位B8~B15表示“所请求的TXOP持续时间”子字段。这指示发送站点针对所指定的TID确定下一TXOP所需的以32μs为单位的持续时间。当然,“所请求的TXOP持续时间”提供与“队列大小”等同的请求,因为这两者都考虑针对所指定的TID所缓冲的所有包。
针对如现在所述的最新标准版本,已保持了802.11e MAC帧格式、并且更特别是QoS控制字段200。
为满足对于用以支持带宽密集型应用的更快速无线网络的不断增长的需求,802.11ac以经由多信道操作的更大带宽传输为目标。图3示出支持20MHz、40MHz、80MHz或160MHz的复合信道带宽的802.11ac信道分配。
IEEE 802.11ac引入了20MHz信道的受限数量的预定义子集的支持,以形成可用于无线网络上的任何802.11ac站点为了传输数据而进行保留的专用预定义复合信道配置。
预定义子集在图中示出,并且与802.11n所支持的仅20MHz和40MHz相比、对应于20MHz、40MHz、80MHz和160MHz信道带宽。实际上,20MHz组成信道300-1~300-8级联以形成更宽的通信复合信道。
在802.11ac标准中,各预定义的40MHz、80MHz或160MHz子集中的信道在工作频带内连续,即,在工作频带中定序的复合信道中,不允许孔(缺失信道)。
160MHz信道带宽包括两个80MHz信道,其中这两个80MHz信道可以是或者可以不是频率连续的。80MHz信道和40MHz信道分别包括两个频率相邻或连续的40MHz信道和20MHz信道。然而,本发明可以包括具有信道带宽的任何组成(即,仅包括工作频带内的连续信道、或者包括工作频带内的非连续信道)的实施例。
在“主信道”(300-3)上通过增强型分布式信道访问(EDCA)机制向站点授予TXOP。实际上,对于具有带宽的各复合信道,802.11ac将一个信道指定为“主要的”,这意味着该信道被用来竞争对复合信道的访问。20MHz的主信道是属于同一基本集合的所有客户端站点(STA)共同的,即,由同一本地接入点(AP)管理或者被登记到同一本地接入点(AP)。
然而,为了确保其它传统站点(即,不属于同一集合的传统站点)不使用辅信道,提出在复合信道中的各20MHz信道上复制保留这种复合信道的控制帧(例如,RTS帧/CTS帧)。
如先前所解决的,IEEE 802.11ac标准使得能够绑定多达4个或者甚至8个20MHz信道。由于信道的数量有限(在欧洲,5GHz频带中为19个),因此信道饱和成为问题。实际上,在人口密集的区域中,即使针对各无线LAN小区具有20MHz或40MHz的带宽使用,5GHz频带也无疑会趋于饱和。
802.11ax标准的发展试图增强密集环境中的无线信道的效率和使用。
从这个角度,可以考虑多用户(MU)传输特征,从而允许利用接入点在下行链路(DL)方向和上行链路(UL)方向这两者中的相对于不同用户的多个同时传输。在上行链路中,多用户传输可用于通过允许多个非AP站点向AP同时传输来降低冲突概率。
为了实际进行这种多用户传输,已经提出将授予的20MHz信道(400-1~400-4)分割成至少一个子信道、但优选为多个子信道410(基本子信道)(也被称为子载波或资源单元(RU)或“业务信道”),其中多个用户例如基于正交频分多址(OFDMA)技术而在频域中共享这些子信道410。
参考图4示出该情况。
在该示例中,将各20MHz信道(400-1、400-2、400-3或400-4)在频域中子分割成大小为5MHz的四个OFDMA子信道或RU 410。当然,分割20MHz信道的RU的数量可以不同于四个。例如,可以设置2~9个RU(因而各自的大小为10MHz~约2MHz)。在RU包括在更宽的复合信道(例如,80Mz)内时,也可以使RU宽度大于20MHz。
与MU下行链路OFDMA(其中AP可以直接向(PLCP头部内的特定指示所支持的)多个站点发送多个数据)相反,针对AP已采用触发机制来触发来自各非AP站点的MU上行链路通信。
为支持(AP先占的TXOP期间的)MU上行链路传输,802.11ax AP必须提供两个传统站点(即,非802.11ax站点)设置其NAV以及802.11ax客户端站点确定资源单元分配所用的信令信息。
在以下说明中,术语“传统”是指非802.11ax站点,其意味着不支持OFDMA通信的先前技术的802.11站点。
如图4的示例所示,AP向目标802.11ax站点发送触发帧(TF)430。在TF帧中通知目标复合信道的带宽或宽度,这意味着通知20MHz、40MHz、80MHz或160MHz值。在20MHz的主信道上发送TF帧,并且在20MHz的各其它信道上复制(重复)该TF帧,从而形成目标复合信道。由于针对控制帧的复制,可以预期,在主信道上接收TF帧(或其复制)的各附近传统站点,然后将其NAV设置为TF帧中所指定的值。这阻止了这些传统站点在TXOP期间访问目标复合信道中的信道。
基于AP的决定,触发帧TF可以定义多个资源单元(RU)410。OFDMA的多用户特征允许AP将不同的RU指派至不同的客户端站点以增加争用。这可以帮助减少802.11网络内的竞争和冲突。
如已经论述的,可以定义宽度大于20MHz的RU:作为示例,AP可以提供996频音的RU以覆盖80MHz的通信信道,因而在容量方面等同于单用户80MHz通信。因而,可以注意到,这样的80MHz通信在由AP所发出的触发帧触发的意义上,保持RU内的MU UL通信。
触发帧430可以指定“被调度”RU,这些“被调度”RU可以由AP为某些站点保留,在这种情况下,对于这些站点,不需要用于访问这些RU的竞争。在触发帧中指示这些RU及其相应的被调度站点。例如,以与各被调度RU相关联的方式添加站点标识符(诸如登记时被指派至各站点的关联ID(AID)等),以明确地指示被允许使用各被调度RU的站点。这种传输模式与传统EDCA机制是并发的,并且从EDCA队列210检索要发送至AP的上行链路数据。
除“被调度”RU外或者替代“被调度”RU,触发帧TF还可以指定“随机”RU。随机RU可以由BSS的站点随机访问。换句话说,TF中的由AP指定或分配的随机RU可以用作有意访问通信介质以发送数据的站点之间的竞争的基础。在两个或更多个站点尝试在同一RU上同时传输的情况下,发生冲突。可以使用等于0的AID来识别随机RU。
基于由802.11ax非AP站点用于RU竞争的附加退避计数器(OFDMA退避计数器、或者OBO计数器或RU计数器),可以针对802.11ax标准考虑随机分配过程,即以便允许这些802.11ax非AP站点在它们之间进行竞争以在随机RU上访问和发送数据。RU退避计数器不同于EDCA退避计数器。然而,假定在被访问OFDMA RU 410中传输的数据是从同一EDCA业务队列210提供的。
RU随机分配过程针对多个802.11ax站点中的具有(最初在RU竞争窗范围内抽取的)正RU退避值的站点,包括以下步骤:第一步骤,用于根据所接收到的触发帧来确定竞争可用的通信介质的子信道或RU(所谓的“随机RU”);第二步骤,用于核实所考虑的站点本地的RU退避值的值是否不大于被检测为可用的随机RU的数量;然后在成功核实的情况下,第三步骤,用于随机地选择被检测为可用的RU中的RU,然后发送数据。在没有核实第二步骤的情况下,(代替第三步骤)进行第四步骤,以按被检测为可用的随机RU的数量使RU退避计数器递减。
可以注意到,针对所接收到的各TF,不保证站点在随机RU上进行OFDMA传输。这是因为,至少RU退避计数器在触发帧的各接收时按所提出的随机RU的数量递减,由此使向后续触发帧的数据传输不同(取决于RU退避数的当前值和由各个进一步接收到的TF提供的随机RU的数量)
返回图4,从向RU的各种可能访问得到:这些RU中的一些RU不会被使用(410u),这是因为RU退避值OBO小于可用随机RU的数量的站点没有随机地选择这些随机RU其中之一,而一些其它RU发生冲突(如示例410c)(这是因为这些站点中的至少两个站点已随机地选择了同一随机RU)。这表明,由于随机确定要访问的随机RU,因此在一些RU上可能发生冲突,而其它RU可以保持空闲。
一旦站点使用了被调度和/或随机RU来向AP传输数据,则AP利用多用户确认(图中未示出)来进行应答,以确认各RU上的数据。
特别是在802.11ax标准所设想的密集环境中,包括被调度RU和随机RU这两者的MU上行链路(UL)介质访问方案与传统的EDCA访问方案相比被证明是非常高效的。这是因为,通过同时介质访问尝试所产生的冲突的数量和由于介质访问引起的开销这两者都减少。
然而,EDCA访问方案和MU UL OFDMA/RU访问方案必须共存,特别是允许传统802.11站点访问介质并且甚至允许802.11ax站点发起与其它非AP站点的通信。
尽管单独采用的EDCA访问方案在所有站点中都提供对介质的公平访问,但其与MUUL OFDMA/RU访问方案的关联引入了公平性的漂移。这是因为,与传统站点相比,802.11ax站点具有用以通过在授予AP的传输机会中所提供的资源单元来发送数据的附加机会。
为了恢复站点之间的一些公平性,已提出了解决方案。
例如,在2016年7月13日提交的共同未决的英国申请1612151.9中,在经由被访问的资源单元(即,经由UL OFDMA传输)成功传输数据时,将至少一个EDCA参数的当前值修改为不同的值(MU EDCA参数)。这是为了降低站点经由(传统EDCA)竞争访问通信信道的概率。
在该框架中,提出了用以在站点成功地使用MU UL机制来传输其数据时、立即降低站点的基于EDCA的传输(即,使用EDCA介质访问方案)的概率。该降低通过修改众所周知的EDCA参数集(其由AIFSN、CWmin和CWmax构成)来进行。
所提机制响应于在被访问的MU UL OFDMA资源单元中成功传输数据而将各传输业务队列设置成MU EDCA模式(或“MU模式”)。在已知为HEMUEDCATimer的预定持续时间内进行该设置。MU EDCA模式是将各个EDCA参数集修改为与在不同的传统EDCA模式中所使用的传统EDCA参数集不同的MU参数集的模式。
为了从传统EDCA竞争访问模式切换到MU EDCA模式,站点可以针对在被访问的资源单元中成功传输了一些数据的所有业务队列修改其EDCA参数集(AIFSN、CWmin和/或CWmax)。切换回到传统EDCA模式可以在HEMUEDCATimer到期时发生,注意:每当站点在AP所提供的新访问的资源单元期间再次传输(来自任意AC的)新数据时,该计时器被重置为其初始值。建议HEMUEDCATimer的初始化值高(例如,几十毫秒),以便包含MU UL传输的若干新机会。
EDCA参数集(即,四个业务队列的MU参数集)的修改值可以由接入点在(通常在将网络信息广播到站点的信标帧内发送的)专用信息元素中传输。
该文献提供如下的具体配置:针对处于MU EDCA模式的传输业务队列,倾向于不太频繁地进行对介质的EDCA访问。AP通过指示MU EDCA参数的集合中的AIFSN参数的特定值(通常为0)来指定该特定工作模式。这种特定值对于站点来说意味着该站点应针对其处于MU EDCA模式的AIFSN使用非常高的值,该值应等于AP所传输的HEMUEDCATimer(提示:与传统EDCA模式中的最差AIFS[i]的小于0.1毫秒相比,HEMUEDCATimer的值应为高、即约几十毫秒)。
遗憾地,通过极大修改EDCA参数并且特别是AIFSN值,用以控制公平性的漂移的已知机制降低了处于MU EDCA模式的各业务队列的队列退避计数器演变(递减)的机会,由此降低了这些队列退避计数器在确定队列的相对优先级时的高效使用。实际上,队列退避值由此不再反映哪个业务队列应具有EDCA的意义中的最高传输优先级(例如,在内部存储有最早数据)。
然后,站点不再可能遵守在802.11e标准中所述的QoS原则。
现在参考图5a说明该情况,其中图5a说明了如上述文献所述的实现MU EDCA模式的802.11ax网络的示例性场景。在该场景中,AP发送完全随机的第一触发帧(这意味着AP仅定义随机RU),之后发送完全被调度的第二触发帧(AP仅定义了被调度RU),以便AP对具有上行链路数据的站点进行轮询。
由于接收方(接入点)代表上行链路OFDMA中的非AP站点进行竞争,因此接入点应知晓哪些非AP站点具有上行链路包以及它们的缓冲器210的大小是多少这两个指示。实际上,如果为了上行链路OFDMA传输而对无上行链路包的非AP站点进行轮询,则浪费了用于MUUL OFDMA传输的所分配的资源单元,由此导致无线介质使用降级。
该标准提出可以利用来自802.11ax站点的缓冲区状态报告来支持接入点的高效MU UL操作。为此,在接收到包含缓冲区状态报告的请求指示的触发帧430-BSR时,802.11ax站点以在QoS控制字段200中包括队列大小子字段203的帧进行应答。缓冲区状态报告的指示可以是例如在触发帧内提供的“触发类型”,并且特定值指示这种缓冲区状态请求。触发帧430-BSR被视为该站点对缓冲区状态报告(BSR)的触发帧。
优选地,触发帧430-BSR由AP广播以到达BSS的所有站点,并且大部分甚至所有的资源单元都是随机类型的,以允许所有站点都具有提供队列大小报告的随机机会。另外,为了达到最多的站点,由触发帧430-+BSR提供最大数量的资源单元,也就是说以最窄的资源单元大小请求最宽的通信信道。
为了最小化TXOP 490的持续时间以获得缓冲区状态报告,在资源单元410-BSR内发送的帧应该是受限的并且具有相同的大小以避免低效填充。例如,QoS_Null帧似乎适合提供这种约束。该特定QoS数据帧包含具有队列大小信息但无数据有效载荷的QoS控制字段。
当前版本的IEEE 802.11ax在新的QoS控制字段(即HE控制)中(并且可能地在802.11ax帧的QoS控制字段的替换中)扩展队列大小信息203的使用,以通知站点的约数个并且优选所有的业务队列210(而不是在802.11e标准中提出的仅一个)。
一旦接入点获得了其BSS的一组站点的缓冲区报告,该接入点就可以通过被调度资源单元分配来专门轮询这些站点。使用触发帧430-D来传输该分配以进行数据传输。然后,具有所分配的资源单元的站点在更长的TXOP_TFdata 491期间和在这些站点的所分配的资源单元410-D内发射所缓冲的数据。由于复合信道的所有资源单元上的MU UL/DL OFDMA传输应在时间上对准,因此在所指派的资源单元内不能发送更多的数据的情况下,站点可以提供填充有效载荷411-D。例如,在没有缓冲更多数据供传输的情况下、或者在发射站点不想使任何剩余数据帧分裂的情况下,可能发生这种情况。
接入点能够根据所报告的站点需求来管理资源单元大小。接入点可以将TXOP时间段期间的资源单元调度到发送了报告的任何站点。
一旦站点使用了资源单元410-D来向接入点传输数据,接入点就利用多用户确认440进行应答以确认各资源单元上的数据。该ACK结束授予的TXOP时间段。
由于AP对给定业务队列的轮询以及来自该业务队列的数据的后续OFDMA传输,因此后续OFDMA传输可以切换到AIFSN被设置为HEMUEDCATimer的MU EDCA模式。仅(没有正传输的)其它业务队列仍能够使用EDCA方案来访问通信信道。
在AP(例如在信标帧的EDCA参数集信息中)提供的AIFSN值为零的情况下,不通过无线网络传输实现对无线网络的EDCA访问的访问类别的数据。这防止了站点的处于MUEDCA模式的业务队列访问介质。
在该图所示的该示例中,AP轮询了站点STA4以进行来自业务队列AC_VI的数据的传输(时隙410-D4)。由于切换到MU EDCA模式,因此只要HEMUEDCATimer未到期,业务队列AC_VI就不再能够请求EDCA访问。然而,站点STA4仍然可以请求对其它业务队列的EDCA访问(直到这些业务队列在下一MU UL传输出现的情况下在该下一MU UL传输中被提供为止)。这就是处于传统EDCA模式的业务队列AC_VO可以使用EDCA访问来实际访问通信信道、然后经由单用户传输495-SU(这是TXOP 492)将自身清空的原因。
图5b进一步详述上述的惩罚机制。
在该图中,四个值530表示与四个业务队列210相关联的队列退避计数器BC[AC](及其退避值)。图形代码用于区分队列退避计数器可以处于的不同状态。图形代码直接在该图中作为图例提供。
在所示的第一阶段(各阶段对应于从网络变得可用起直到授予TXOP结束为止的时间段),在BC[VI]到达零(虚线框中的计数器)时,站点502通过EDCA访问介质,而AP 501的最佳队列退避值仅达到4。在使队列退避值递减之前的黑色部分540对应于AIFS[AC](未示出这些黑色部分540的不同大小)。
然后,在授予TXOP 550期间发送来自AC[2](即,AC_VI的业务队列)的视频数据。针对AC_VI抽取新的队列退避值(黑框中的白色图形)。
在第二阶段,AP 501在其AIFS 540和其退避值710的倒计数之后首先访问网络,然后发送触发帧1300。TF 1300为站点502提供至少一个被调度RU。
TF 1300没有在相应字段中指示任何优选AC(图13所示的优选AC级别字段1330设置为0)。因此,站点502需要确定哪个AC队列具有用以选择MU UL OFDMA传输所用的相应数据的最高优先级。
为此,站点502选择具有最低当前退避计数器值的AC队列。在本示例中,由于(与VO队列相对应的)第一AC队列的关联队列退避值等于1(与用于其它AC队列的4、6和12相比),因此选择该第一AC队列。
因而,可以在被访问资源单元中传输(560)来自AC_VO的数据。
在数据的成功MU UL OFDMA传输560之后,相应业务队列进入MU EDCA模式,其中用一组MU值来修改该传输业务队列(这里为AC_VO)的EDCA参数集。在该图中使用粗线框示出处于MU EDCA模式的业务队列。
在该第二阶段期间,与传输业务队列AC_VO相关联的队列退避计数器531被冻结,这意味着队列退避计数器531不被更新并保持其先前值(这里为“1”)。
因而,第三阶段从以下开始:站点502通过在使队列退避值BC[i]530递减之前等待AIFS[i]计时器(565)结束,进入推迟传输状态。
对于具有更具限制性的EDCA参数(诸如非常高的AIFSN等)的处于MU EDCA模式的业务队列,AIFS 565的修改值使得相应队列退避值BC[AC]的递减不太频繁。因此,在AP 501在对介质进行基于EDCA的访问时发送新的触发帧1300-2的情况下,被提供了新的被调度RU的站点502确定哪个业务队列具有最低当前队列退避值。
再次地,这是具有退避值1的BC[3]。这意味着站点502再次在被访问的RU中传输(570)来自AC_VO的数据。
不久之后,如果数个业务队列、特别是如果所有的业务队列进入MU EDCA模式,则会阻止关联的队列退避值。因而,总是优先MU UL OFDMA传输所用的相同业务队列。不再满足基于退避的QoS要求。
应恢复由于MU UL OFDMA传输的情况下的冻结而导致的退避计数器的动态性的缺乏,使得这些退避计数器仍高效地反映AC队列的相对优先级。有利地,该恢复应维持惩罚方案以降低针对处于MU EDCA模式的AC队列的基于EDCA的传输概率,并且还应保持退避计数器的演变原理。
在该框架内,本发明提出在退避计数器到期时引入反应性对策的同时,特别是通过不惩罚AC队列的AIFSN来保持队列退避计数器的递减。
应当重申,只要由站点在超过相应的仲裁帧间间隙持续时间期间将通信信道侦听为空闲,队列退避计数器就随时间的经过而递减;在通信信道上的授予接入点的传输机会内由该接入点提供的被访问资源单元中传输任何业务队列中所存储的数据时,该业务队列从传统竞争模式切换到MU竞争模式。
为了在保持惩罚方案的同时高效地恢复退避计数器的动态性,因而本发明提出:在队列退避计数器其中之一到期时,站点基于关联业务队列的当前模式来判断是访问通信信道以传输该关联业务队列中所存储的数据、还是在没有在通信信道中传输来自该关联业务队列的数据的情况下抽取新的退避值以重置到期队列退避计数器。
实际上,如果当前模式是传统竞争模式,则站点访问通信信道以传输关联业务队列中所存储的数据。这是传统EDCA方案。否则,如果当前模式是MU竞争模式,则在没有在通信信道中传输来自关联业务队列的数据的情况下,抽取新的退避值以重置到期的队列退避计数器。
可以设想略微变形,诸如还使与是访问通信信道还是抽取新的退避值有关的判断基于关联业务队列中当前存储的数据。例如,仅在MU EDCA模式下在关联AC队列中没有存储意图用于非AP站点的数据的情况下,即使退避计数器到期也应用不传输数据的惩罚。
处于MU模式的非传输AC队列的退避计数器的恢复递减保证了EDCA退避计数器的老化特征的恢复,并由此保证了QoS的恢复。因此,EDCA退避的双重功能恢复,并且允许在站点的AC队列之间应用相对QoS优先级。
另外,在MU模式的情况下重置到期退避计数器而不传输数据的反应性对策确保了仍向处于这种MU模式的AC队列应用惩罚,以减少EDCA访问。
因而,本发明以与已知技术相反的方式起作用,其中这些已知技术基本上是用以避免退避计数器达到零以确保EDCA访问减少的预防措施。
如将进一步变得显而易见,本发明的方法更容易在标准环境中、并且特别是在802.11装置的传输状态机中实现。
现在参考图5c来例示本发明的一个实现的结果,其中图5c利用与图5b相同的序列说明了通过AC之间的基于相对EDCA的优先级来恢复QoS。
第一阶段保持不变。
在第二阶段期间,站点502从AP 501接收TF 1300。站点中的AC队列选择算法判断为业务队列AC_VO由于最低队列退避值而具有最高优先级(如图5b的示例那样)。来自AC_VO的数据(AC[3])发生了MU UL OFDMA传输。
在被访问RU中的数据的成功传输560之后,AC_VO进入MU EDCA模式(粗线框中的退避值),并且本发明的实施例提出从当前且未改变的关联竞争窗中为传输业务队列AC_VO选择新的退避值531(黑色框中的白色数字,这里具有值“15”)。
此外,在进入MU EDCA模式时,AIFS[AC_VO]不改变。这意味着由MU模式引起的惩罚不是通过EDCA参数的降级进行的。
接着,在第三阶段中,退避计数器考虑到它们各自的AIFS而递减。这里,即使AC_VO处于MU模式,AC_VO的退避计数器531也针对介质被侦听为空闲的各时隙递减了1。这是由于未被修改(或者在一些实施例中被非常轻微地惩罚)的值AIFS[AC_VO]而获得的。
再次地,站点502从AP 501接收TF 1300-2。该站点中的AC队列选择算法判断为业务队列AC_VI由于最低队列退避值而具有最高优先级(因为BC[VO]现在具有值14)。因而,来自AC_VO的数据发生了被访问RU中的MU UL OFDMA传输。
可以注意到,与图5b相比,由于为了重置AC_VO的退避计数器而抽取的新退避值532,在第三阶段中针对MU UL OFDMA传输,请求另一业务队列。因而,针对OFDMA传输业务队列,恢复业务队列之间的相对优先级。
在被访问RU中的数据的成功传输570之后,AC_VI也进入MU EDCA模式(粗线框中的退避值;而AC_VO已处于MU EDCA模式),并且针对传输业务队列AC_VI而从竞争窗抽取新的退避值532(黑色框中的白色数字,这里具有值“9”)。
接着,在第四阶段中,介质被侦听为空闲,并且退避计数器考虑到它们各自的AIFS而递减。这里,即使两个AC队列处于MU模式,AC_VO的退避计数器531也从14变为7,而AC_VI的退避计数器532从9变为2。
同时,AC_BE的退避计数器到期,由此导致传输来自AC_BE的数据(580)。针对到期退避计数器533,抽取新的退避值“15”。
接着,在第四阶段中,介质被侦听为空闲,并且退避计数器考虑到它们各自的AIFS而递减。这里,在SIFS时间段之后的前两个时隙期间,AC_VO的退避计数器531从7变为5,而AC_VI的退避计数器532到期。
在业务队列AC_VO当前处于MU模式时,在没有在通信信道中传输来自关联业务队列的数据的情况下,抽取新的退避值(在该示例中为“8”)以重置到期队列退避计数器532。结果,退避计数器的递减继续(实际上递减永不停止),特别是依次到期的AP的退避计数器。因而,站点502从AP 501接收新的TF1300-3,并且可以执行站点中的AC队列选择算法。
例如,站点判断为业务队列AC_VO由于最低队列退避值而具有最高优先级(因为BC[VI]同时已被重置)。因而,来自AC_VO的数据发生了被访问RU中的MU UL OFDMA传输590。
然而,在实施例中,可以保存MU模式中的任何AC队列的重置,并且该信息可以用于选择要传输的数据。例如,重置标志(图中未示出)可以与各业务队列相关联,其中每当在没有传输来自业务队列的数据的情况下抽取新的退避值以重置关联队列退避计数器时(即,在AC队列处于MU模式时),该重置标志启用(即,被设置为真(TRUE))。这例如是针对第五阶段期间的业务队列AC_VI的情况(该业务队列AC_VI用新的退避值“8”被重置)。
在这种情况下,站点在接收到TF 1300-3时,判断为业务队列AC_VI具有被设置为真的重置标志。因而,来自AC_VI的数据(如该图的示例所示的AC[2])发生了被访问RU中的MU UL OFDMA传输。这意味着,从基于与业务队列相关联的重置标志的启用或禁用状况所选择的至少一个业务队列中,检索在授予接入点的传输机会内由接入点所提供的资源单元中所传输的数据。特别地,从具有启用的重置标志的业务队列中检索在授予接入点的传输机会内由接入点提供的资源单元590中所传输的数据。
另一方面,每当传输来自业务队列的数据时,禁用重置标志(即,设置为假(FALSE))。在该示例中,在成功传输590之后重置AC_VI的重置标志。
根据该图所示的实施例,针对与传输业务队列AC_VI相关联的退避计数器531抽取新的退避值(黑框中的白色数字,这里具有值“11”)。
该示例性场景清楚地示出了EDCA退避的完整功能行为,因而恢复了QoS,特别是恢复了业务队列之间的基于动态相对EDCA的优先级。
图6示意性示出无线网络的通信装置600,其中该通信装置600被配置为实现本发明的至少一个实施例。通信装置600可以优选是诸如微计算机、工作站点或轻质便携式装置等的装置。通信装置600包括优选连接了以下组件的通信总线613:
·诸如微处理器等的表示为CPU的中央处理单元611;
·表示为ROM的只读存储器607,用于存储实现本发明所用的计算机程序;
·用于存储根据本发明实施例的方法的可执行代码以及寄存器的表示为RAM的随机存取存储器612,其中寄存器被配置为记录实现根据本发明的实施例的方法所需的变量和参数;以及
·至少一个通信接口602,其连接至传输数字数据包或帧或控制帧所经由的通信网络603,例如,根据802.11ax协议的无线通信网络。在CPU 611中所运行的软件应用的控制下,从RAM 612中的FIFO发送存储器向传输用网络接口写入帧,或者从接收用网络接口读取帧并将帧写入RAM 612中的FIFO接收存储器。
可选地,通信装置600还可以包括以下组件:
·诸如硬盘等的数据存储部件604,用于存储实现根据本发明的一个或多个实施例的方法所用的计算机程序;
·盘606所用的盘驱动器605,该盘驱动器被配置为从盘606读取数据或者将数据写到所述盘上;
·屏幕609,用于显示解码数据和/或通过键盘610或任何其它指示部件用作与用户的图形接口。
通信装置600可以可选地连接至诸如数字照相机608等的各种外围设备,其中各外围设备连接至输入/输出卡(未示出)以向通信装置600供给数据。
优选地,通信总线在通信装置600中所包括的或者连接至该通信装置600的各元件之间提供通信和互操作性。总线的表示不是限制性的,特别地,中央处理单元能够操作以直接地或者通过通信装置600的另一元件将指令通信至该通信装置600的任意元件。
盘606可以可选地由诸如致密盘(CD-ROM)(可重写或不可重写)、ZIP盘、USB密钥或存储卡等的任何信息介质替代,并且一般由信息存储部件替代,其中该信息存储部件可以由微计算机或微处理器读取,集成或不集成到设备中,可能可移除并且被配置为存储一个或多个程序,其中这一个或多个程序的执行使得能够实现根据本发明实施例的方法。
如前所述,可执行代码可以可选地存储在只读存储器607中、硬盘604上、或者诸如盘606等的可移除数字介质上。根据可选变形例,程序的可执行代码可以经由接口602通过通信网络603来接收,以在被执行之前存储在通信装置600的诸如硬盘604等的存储部件之一中。
中央处理单元611优选被配置为控制并引导根据本发明的程序的指令或软件代码的一部分的执行,其中这些指令存储在上述存储部件之一中。在通电时,存储在非易失性存储器中(例如,存储在硬盘604上或者存储在只读存储器607中)的程序被传送至包含程序的可执行代码以及用于存储实现本发明所需的变量和参数的寄存器的随机存取存储器612。
在优选实施例中,设备是使用软件来实现本发明的可编程设备。然而,可选地,本发明可以采用硬件(例如,采用专用集成电路或ASIC的形式)来实现。
图7是示意性示出被配置为至少部分执行本发明的通信装置或节点600(特别是站点101~107其中之一)的架构的框图。如图所示,站点600包括物理(PHY)层块703、MAC层块702以及应用层块701。
PHY层块703(例如,802.11标准化PHY层)具有如下的任务:格式化,在任意20MHz信道或复合信道上调制或从任意20MHz信道或复合信道解调,并因此经由所使用的无线传输信道100来发送或接收帧,这些帧是诸如以下等的802.11帧(例如,单用户帧)等:控制帧(RTS/CTS/ACK/触发帧)、基于20MHz宽度的与传统802.11站点或者与处于传统模式(诸如用于触发帧等)的802.11ax进行交互的MAC数据和管理帧、以及相对于该无线介质的优选具有比20MHz传统小的宽度(通常为2MHz或5MHz)的OFDMA类型的MAC数据帧。
MAC层块或控制器702优选包括实现传统802.11ax MAC操作的MAC802.11层704和用于至少部分执行本发明实施例的一个附加块705。MAC层块702可以可选地采用软件来实现,其中该软件被加载到RAM 612中并且由CPU 611来执行。
优选地,该附加块(被称为EDCA介质访问模块705)实现本发明的涉及站点600的部分,即记住以下:一旦向给定AC提供了资源单元中的成功传输,就针对该AC建立“MU模式”,从而继续AC的各退避计数器的递减,而不论关联业务队列的竞争模式如何(特别是无论是否处于MU模式),可选地记住处于MU模式的退避计数器何时被重置,并且一旦处于MU模式的AC退避降至零,还防止EDCA介质访问。
MAC 802.11层704和EDCA介质访问模块705彼此交互,以提供对如以下所述的双重模式(单用户EDCA和多用户UL OFDMA)的管理。
在该图的上部,应用层块701运行用于生成并接收数据包(例如,视频流的数据包)的应用。应用层块701表示根据ISO标准化的MAC层上方的所有堆叠层。
现在使用各种典型实施例来示出本发明的实施例。尽管所提出的示例使用AP所发送的触发帧430(参见图4)来进行多用户上行链路传输,但等同的机制可以用在集中式或自组织环境(即,无AP)中。这意味着,以下参考AP所述的操作可以由自组织环境中的任何站点进行。
主要通过考虑OFDMA资源单元在IEEE 802.11ax的上下文中说明这些实施例。然而,本发明的应用不限于IEEE 802.11ax上下文。
此外,本发明不必依赖于如802.11ax中所述的MU访问方案的使用。还可以使用定义允许站点同时访问同一介质的替代介质访问方案的任何其它RU访问方案。
图8示出根据本发明实施例的通信站点600的典型传输块。
如上所述,该站点包括信道访问模块并且可能地包括RU访问模块,这两者都在MAC层块702中实现。信道访问模块包括:
多个业务队列210,用于按不同的优先级来服务数据业务;
多个队列退避引擎211,其各自与各业务队列相关联,用于使用一组EDCA参数,特别是计算关联退避计数器竞争对至少一个通信信道的访问所要使用的各队列退避值,以传输各业务队列中所存储的数据。这是EDCA访问方案。
RU访问模块包括与队列退避引擎分开的RU退避引擎800,用于使用RU竞争参数,特别是计算RU退避计数器竞争对在(例如由AP发送的)所接收到的TF中定义的OFDMA随机资源单元的访问所要使用的RU退避值,以在OFDMA RU中传输任意业务队列中所存储的数据。RU退避引擎800与被称为OFDMA复用器801的传输模块相关联。例如,在以下所述的RU退避值达到零时,OFDMA复用器801负责选择要从AC队列210发送的数据。
传统AC队列退避寄存器沿着EDCA协议(信道竞争访问方案)驱动介质访问请求,同时并行地,RU退避引擎800将介质访问请求驱动到OFDMA多用户协议(RU竞争访问方案)上。
在这两个竞争访问方案共存时,站点基于退避值的计算来实现具有冲突避免的介质访问机制:
-队列退避计数器值,其对应于站点在访问介质之前在通信介质已被检测为空闲之后等待的(除AIFS时间段之外的)时隙的数量。不论处于降级状态还是非降级状态,这都是EDCA;
-RU退避计数器值,其对应于站点在访问介质之前在TXOP已在由RU构成的复合信道上被授予AP或任何其它站点之后检测到的空闲随机RU的数量。这是OFDMA。用以基于空闲随机RU的数量来对RU退避计数器进行倒计数的变形例可基于依赖于时间的倒计数。
图9使用流程图示出在接收到新的要传输的数据(来自上层(例如,应用层701)的MSDU包)时、站点600的MAC层702所进行的主要步骤。图9示出802.11上下文中的传统FIFO馈送。
在一开始,无业务队列210存储要传输的数据。结果,没有计算出队列退避值。认为相应的队列退避引擎或相应的AC(访问类别)不活动。在数据存储在业务队列中时,立即(根据相应的队列退避参数)计算队列退避值,并且认为关联的队列退避引擎或AC是活动的。
在站点具有准备好在介质上传输的数据时,该数据被存储在AC队列210其中之一中,并且应更新关联的退避。
现在提供详情。
在步骤901中,从装置上本地运行的应用(例如从应用层601)、从另一网络接口或者从任何其它数据源接收新的数据。该新的数据准备好由站点发送。
在步骤902中,站点确定该数据应存储在AC队列210的哪一个中。该操作通常通过(根据图2b所示的匹配)检查附加到该数据的TID(业务标识符)值来进行。
接着,步骤903将数据存储在所确定的AC队列中。这意味着数据存储在具有与数据相同的数据类型的AC队列中。
在步骤904中,利用与所确定的AC队列相关联的队列退避引擎来进行传统的802.11AC退避计算。
如果紧挨在步骤903的存储之前、所确定的AC队列为空(即,AC原本不活动),则需要计算相应的退避计数器的新的队列退避值。
因而,站点将队列退避值计算为等于在范围[0,CW]中选择的随机值,其中:CW是(如在802.11标准中所定义的并且例如根据如以下在步骤1080中所述的本发明的一些实施例所更新的)所考虑的访问类别的CW的当前值。应当重申,队列退避值将与AIFS相加,以便实现不同访问类别的相对优先级。CW是从选择范围[CWmin,CWmax]中选择的拥塞窗值,其中两个边界CWmin和CWmax取决于所考虑的访问类别。
结果,AC变为活动。
上述参数CW、CWmin、CWmax、AIFSN和退避值形成EDCA竞争参数和与各AC相关联的变量。这些值用于设置访问不同类别的数据的介质的相对优先级。
EDCA参数通常具有固定值(例如,CWmin、CWmax和AIFSN),而EDCA变量(CW和退避值)随时间和介质可用性而演变。如从以上容易明白,由于本发明,因而在应用惩罚MU模式时,不再需要降级EDCA参数。当然,仍可以修改这些EDCA参数,但这并不必要。
另外,可以由站点支持(如前面所述的)UL RU OFDMA的随机访问过程;在那种情况下,在需要的情况下,步骤904可以包括计算RU退避值。如果(例如,由于在前一步骤903之前在业务队列中不存在数据,因而)RU退避引擎800不活动、并且如果已接收到新的要寻址到AP的数据,则需要计算RU退避值。
RU退避值可以以与EDCA退避值类似的方式、即使用专用RU竞争参数(诸如专用竞争窗[0,CWO]和选择范围[CWOmin,CWOmax]等)来计算。
注意,一些实施例可以提供可以经由资源单元发送的(即,与MU UL OFDMA传输兼容的)数据和不能经由资源单元发送的数据之间的区别。可以在步骤902期间进行这样的决定,并且可以将相应的标记项添加到所存储的数据。
在这种情况下,仅在新存储的数据被标记为与MU UL OFDMA传输兼容(被调度或随机)时,才计算RU退避值。
在步骤904之后,图9的处理结束。
一旦数据存储在AC队列中,站点可以如以下参考图10所示通过EDCA访问方案、或者如以下参考图11所示通过AP经由一个或多个触发帧所提供的资源单元,来直接访问介质。
图10使用流程图示出根据本发明实施例的旨在处理传统竞争模式和MU竞争模式这两者的、基于传统EDCA介质访问方案来访问介质的步骤。特别地,在该示例中本发明的反应性对策由非AP站点600在步骤999中实现。
为了清楚,还绘制出图9的步骤。这是因为,AC[]队列中的数据存储是任何暂定EDCA介质访问的先决条件。
步骤1000~1020基于退避倒计数描述了EDCA机制中引入的用以降低共享无线介质上的冲突的传统等待。在步骤1000中,站点600对介质进行侦听以等待该介质变为可用(即,所检测到的能量低于主信道上的给定阈值)。
介质在(AIFS[i]时间段(至少为DIFS时间段,参见图2d)+一个时隙内)变为空闲的情况下,执行步骤1010,其中在该步骤1010中,站点600开始使所有的活动(非零)AC[]队列退避计数器减1。换句话说,站点针对通信信道被检测为空闲的各基本时间单元使队列退避值递减。
接着,在步骤1020中,站点600判断AC退避计数器至少之一是否达到0。
如果没有AC队列退避达到零,则站点600等待另一退避时隙(通常为9μs),并由此循环回到步骤1000,以便在下一退避时隙期间再次侦听介质。这使得可以一旦AC退避计数器各自的AIFS[i]已到期就立即在介质被侦听为空闲时在各新退避时隙处使AC退避计数器递减。
如果至少一个AC队列退避达到0(在图5c的场景中发生三次),则不会自动到达用于开始EDCA传输阶段的传统步骤1030。
根据本发明,站点应基于与到期队列退避计数器相关联的业务队列的当前模式,来判断是访问通信信道以(通过从步骤1030开始的传统EDCA过程)传输存储在关联业务队列中的数据、还是在没有在通信信道中传输来自关联业务队列的数据的情况下抽取新的退避值以重置到期队列退避计数器(这是本发明的一个改进,从而恢复处于MU模式的退避计数器的动态性)。
在所提出的实施例中,通过步骤1099实现该判断步骤,因而步骤1099修改EDCA状态机的通常行为,以便对处于MU模式的非AP站点600应用EDCA介质访问的惩罚。
因而,新测试1099判断与到期队列退避计数器相关联的业务队列是否处于惩罚MU模式。业务队列可能已被标记有设置为1的“MU模式”(以下进一步所述由步骤1140进行),从而使站点600容易知晓业务队列处于EDCA介质访问的惩罚模式下。
该方法的一个主要优点是仍能够重新使用标准退避递减机制的硬件/状态机,特别是在退避计数器达到零时最终启用以发起媒体访问请求的基本机制。利用本发明,该请求仅仅习惯于使用模式(MU模式开启或关闭)。新测试1099可以在硬件中容易地实现。
在测试1099中的肯定判断(当前模式处于MU模式)的情况下,站点将推迟任何EDCA介质尝试。结果,在不必通过EDCA访问传输数据的情况下,通过循环回到步骤904以重置到期退避计数器来抽取新的退避值。因此,无论“MU模式”如何,该步骤都重新引入EDCA退避管理。
在重置的情况下,可以启用与所涉及的业务队列相关联的重置标志(如以上在说明图5c的场景时所介绍的),以记住该业务队列在重置之前具有最高QoS这一事实。该标志将在步骤1030中使用以针对OFDMA传输选择最优先数据。
注意,在测试1099导致在没有EDCA传输的情况下重新抽取退避值时,不需要修改EDCA参数/变量CWmin、CWmax和当前CW。这是因为,由于不允许EDCA传输,因此对EDCA介质条件一无所知(基本上,这些值根据EDCA传输的正确行为而演变)。因此,对这些值的任何更新都是毫无意义和无用的。
可选地,仅在处于“MU模式”的相应业务队列花费了大量时间(例如,至少为HEMUEDCATimer值1425的数倍)的情况下,才可以更新这些EDCA参数/变量。这是因为过去建立的这些冻结值不再反映实际网络条件。因而,EDCA模式可以从标准化初始值开始,仿佛这是利用EDCA的初始(第一次)传输那样。换句话说,站点可以将与在至少参数寿命持续时间期间保持处于MU竞争模式的(优选地,各个)业务队列相关联的竞争参数集重置为默认参数集。例如,参数寿命持续时间可以对应于用于初始化MU模式计时器(即,HEMUEDCATimer的值)的预定持续时间的至少两倍(或更多倍)。
另一方面,在步骤1099中的否定判断(当前模式处于传统EDCA模式)的情况下,执行步骤1030,其中在该步骤1030中,站点600(更确切地为虚拟冲突处理程序212)选择具有零队列退避计数器并具有最高优先级的活动AC队列。这是图5c的第一阶段和第四阶段的情况。
在步骤1040中,从该选择的AC选择适当量的数据以进行传输。
接着,在步骤1050中,在例如成功进行了RTS/CTS交换以授予EDCA TXOP的情况下,站点600发起EDCA传输。由此,站点600在被授予的EDCA TXOP期间在介质上发送所选择的数据。
接着,在步骤1060处,站点600判断EDCA传输是否结束,在结束的情况下,执行步骤1070。
在步骤1070处,站点600基于传输的状况(肯定或否定的ack、或者没有接收到ack)来更新所选择的业务队列的EDCA竞争窗CW。通常,在传输失败的情况下,站点600使CW的值翻倍,直到CW达到依赖于数据的AC类型的最大值CWmax为止。另一方面,如果EDCA传输成功,则将竞争窗CW设置为同样依赖于数据的AC类型的最小值CWmin
再次,应当重申,由于本发明,CWmin和CWmax在传统竞争模式和MU竞争模式中可以相同,这意味着这两者在以下所述的步骤1170期间不会降级。当然,本发明在例如基于在AP所发出的管理帧(通常是信标帧)中接收到的“MU EDCA参数集”元素1420而切换到MU模式时,不禁止这些值降级(步骤1170)。在这种情况下,如果所考虑的业务队列处于MU模式,则参考降级的CWmin和CWmax来进行步骤1070。
注意,如果所传输的数据来自于重置标志被启用的业务队列,则禁用该标志。实际上,要抽取的新退避值将反映其新的相对优先级。
接着,如果在EDCA数据传输之后、所选择的业务队列不为空,则通过循环回到步骤904,从[0,CW]中随机地选择新的关联队列退避计数器。这意味着,在所访问的通信信道中传输了关联业务队列中所存储的数据之后,站点抽取新的退避值以重置到期队列退避计数器。
这样结束了图10的处理。
在以上已介绍的所提出的测试1099的略微变形中,用以判断是访问通信信道还是抽取新的退避值的测试1099还可以基于与到期业务队列相关联的业务队列中当前存储的数据。这是为了将惩罚方案调整到某些类型的数据,特别是为了保持与(触发了惩罚方案的)MU UL传输无关的数据的QoS公平性。
关注于非AP站点之间的对等(P2P或站点到站点)数据传输。
802.11e标准中发布的直接链路设置(DLS)允许在基本服务集内进行直接的站点到站点的帧传送。
随后,802.11z标准发布了隧道直接链路设置(TDLS),从而允许装置在无需来自接入点的支持的情况下进行更高效的直接站点到站点的帧传送。Wi-Fi联盟在2012年为TDLS添加了认证计划,并将该特征描述为使得站点在连接至传统基础设施网络时能够使一个站点直接链接至另一站点的技术。
更一般地,向独立BSS(IBSS)站点(也就是说,目的地未登记到任何BSS)的传输可被视为P2P通信。
DLS和TLDS这两者都要求站点与同一接入点相关联。结果,P2P组内的通信可被视为与基础设施网络的通信(包括接入点110的通信)并发发生。也就是说,P2P通信和BSS网络中同时涉及的站点的传输队列210提供了来自两个业务模式的数据。
结果,尽管802.11ax标准所设想的惩罚方案惩罚了向AP的上行链路业务,但该惩罚方案也阻止了用于P2P通信的任何传统EDCA访问。
为了面对该情形,可以如以上所提出的那样略微改变上述测试1099。
特别地,根据改变后的测试1099,如果当前模式是传统竞争模式或者如果关联业务队列中所包括的数据包括要寻址到与接入点不同的另一站点的数据(即,该数据是P2P数据),则该处理进入步骤1030,通过该步骤,站点访问通信信道以传输关联业务队列中所存储的数据。
相反,如果当前模式是MU竞争模式并且关联业务队列中所存储的数据不包括要寻址到与接入点不同的另一站点的数据(即,该数据是P2P数据),则该处理循环回到步骤904,这意味着在没有在通信信道中传输来自关联业务队列的数据的情况下,抽取新的退避值以重置到期队列退避计数器。
换句话说,按照如下修改测试1099:
-如果(MU模式活动)且(退避到期的AC队列不保持P2P业务),则测试结果为肯定(是);
-否则,测试结果为假并且进入步骤930。
如果在AC队列处于MU模式时由于存在P2P数据而导致测试1099的结果为假从而使得访问通信信道以传输数据,则与在下一被访问RU中可以发送的意图用于AP的数据相反,优先这种P2P数据的传输看起来是适当的。这意味着在选择数据的步骤1040期间,实现P2P标准:在向通信信道的访问的情况下,在被访问的通信信道中仅传输存储处于MU竞争模式的关联业务队列中所存储的并且要被寻址到与接入点不同的另一站点的数据。
用以区别P2P数据和意图用于AP的UL数据的各种方式可以由站点实现。例如,这两个类型的数据之间的区别可以使用目的地地址(接收器地址或者关于图2d的MAC数据帧的“地址1”字段)来进行:设置到AP的目的地地址识别UL数据;任何其它目的地地址识别P2P数据。可选地,直接路径中要传输至(T)DLS对等站点或IBSS的站点的即将发生的MAC帧被分配了设置为0的UPLINK_FLAG参数。设置为1的该UPLINK_FLAG参数指示仅向着AP的上行链路方向的数据。
由于本发明的该变形例,P2P业务仍可以由站点发射。
图11使用流程图示出在接收到用于定义RU的触发帧430时基于RU访问方案来访问资源单元(随机RU或被调度RU)的步骤。例如,这示出站点502在图5b的阶段2或3或5中的行为。
在步骤1110中,站点判断是否从通信网络中的接入点接收到触发帧430,其中该触发帧保留通信信道上的授予接入点的传输机会、并且定义形成通信信道的资源单元RU。如果接收到触发帧,则站点分析所接收到的触发帧的内容。
在步骤1120中,站点判断该站点是否可以在所接收的触发帧中定义的RU其中之一上传输数据。该判断可以涉及特别是关于RU的类型的两个条件中的一个或这两个。
通过分析所接收到的TF的内容,站点判断所定义的RU是否是由接入点指派给该站点的被调度资源单元。这可以通过在所接收到的TF中查找自身的AID来进行,该AID将与要用于传输的特定被调度RU相关联。
此外,通过分析所接收到的TF的内容,站点判断在TF中是否定义了一个或多个随机RU、即使用(包括上述的RU退避值800的)专用RU竞争参数通过竞争正进行访问的RU。在这种情况下,站点还判断(特别是在RU退避值800小于当前TF中可用的随机RU的数量的情况下)其当前RU退避值是否允许选择一个随机RU。
如果将一个被调度RU指派给该站点、或者允许站点访问一个随机RU,则该站点确定要使用的随机/被调度RU的大小,并且执行步骤1130。否则,站点基于在所接收到的触发帧中所定义的随机资源单元的数量来使RU退避值800递减,并且在站点不能访问由所接收到的TF所定义的任何RU(被调度或随机)时,该处理结束。
在步骤1130中,站点选择要发送的数据所选自的业务队列210中的至少一个,并将所选择的队列的数据添加到传输缓冲器,直到数据量达到所选择的要使用的资源单元的大小为止。
由于根据本发明的EDCA退避计数器倒计数的恢复并因而由于各个退避值的动态性,于是退避值可被用作用于应用优先级选择的手段。例如,这可以通过选择具有最低关联队列退避值的业务队列210(或多个队列)来进行。因而,业务队列的选择取决于EDCA退避的值(该方法保证了站点遵守EDCA原则,然后确保了针对该站点的数据的正确QoS)。
在变形例中,AP可以在触发帧参数内指示优先AC。因而,站点可以作为代替选择与如下的数据类型相关联的非空业务队列,其中该数据类型匹配与要传输要选择的数据的资源单元相关联的数据类型。这种指定的数据类型可以是由AP例如在AC优选级别字段设置为1时使用图13的优选AC字段1340在触发帧中所指示的业务队列。
在该变形例中,从利用接入点指示的优选业务队列中,检索在授予接入点的传输机会内由接入点所提供的资源单元中传输的数据。并且优选业务队列指示包括在从接入点接收到的触发帧中,该触发帧保留通信信道上的授予接入点的传输机会并且定义资源单元RU,从而形成包括被访问资源单元的通信信道。
在基于以上介绍的重置标志的另一变形例中(在描述图5c的场景时或在从新测试1099循环回到步骤904时),站点可以优选从同时重置的业务队列中(即,自最后一次OFDMA传输起,在不存在来自业务队列的任何传输的情况下)选择数据。这是为了在相对优先级因退避计数器重置而略微降级之前、优先由于退避值而在给定时间具有最高优先级的这些数据。
如果从重置标志启用的业务队列中选择数据,则应禁用相同的重置标志,使得该业务队列的相对优先级仅由关联退避值给出。
还注意,在处理P2P业务的情况下,步骤1130可以局限于UL数据(即,意图用于AP的数据)的选择。
接着,在步骤1140,站点可以存储所选择的业务队列是传输业务队列这一事实。例如,所选择的(即,在第一次发生步骤1130时选择的)第一业务队列可以被记忆为主业务队列,并且其它所选择的业务队列可被记忆为辅业务队列。
在步骤1150中,站点判断传输缓冲器中所存储的数据量是否足以填充所选择的资源单元。
如果不是,则在资源单元中仍存在供附加数据用的空间,以服务另一AC队列。可以使用如以上针对其余业务队列所定义的相同标准来确定第二AC队列(被称为辅AC)。因而,该过程循环回到步骤1130,其中在该步骤1130期间,选择另一业务队列。以这种方式,传输缓冲器被逐步填充以达到所选择的资源单元大小。
因而,可以注意到,在MU UL OFDMA传输期间可以涉及同一站点的多个传输业务队列,从而使得多个队列进入MU EDCA模式。
在避免混合来自两个或更多个业务队列的数据(即,从单个业务队列选择所选择的RU的数据)的变形例中,可以添加填充数据以完全填充所选择的RU。这是为了确保整个RU持续时间具有可由传统站点检测到的能量。
根据实现特定数据聚合规则的另一变形例,如果所选择的第一个业务队列不具有足以完全填充被访问的资源单元的数据,则可以选择来自更高优先级业务队列的数据。
一旦传输缓冲器对于所选择的RU为满,则步骤1160发起传输缓冲器中所存储的数据向AP的MU UL OFDMA传输。MU UL OFDMA传输是基于所接收到的触发帧中所定义的并且特别是在RU定义中的OFDMA子信道和调制。
接着,一旦进行了传输、并且优选在成功传输(即,从AP接收到确认)时,步骤1140中识别出的传输队列进入MU模式。一个或多个传输队列可能已处于MU模式。
可以利用HEMUEDCATimer来初始化MU模式计时器,其中该MU模式计时器随着时间的推移逐渐流逝。注意,如果在新传输1160相继结束时MU模式计时器已流逝(这意味着站点已处于MU EDCA模式),则再次将MU模式计时器重新初始化为HEMUEDCATimer以保持站点在下一HEMUEDCATimer时间段内处于MU EDCA模式。
因而,可以进行步骤1170以确定要应用于一个或多个业务队列的一个或多个EDCA参数的一个或多个新值,以便在适当的情况下将该新值或这些新值修改为惩罚值。
如上所述,由于在实施例中惩罚方案现在通过EDCA状态机的新步骤1099完全实现,因此(与现有技术文献相比)步骤1170现在是可选的。
不修改EDCA参数意味着:MU竞争模式使用与传统竞争模式相同的仲裁帧间间隙持续时间,并且此外MU竞争模式使用与传统竞争模式相同的下边界CWmin和/或相同的上边界CWmax,其中CWmin和CWmax这两者定义了选择竞争窗的大小的选择范围。
使用相同的值有利地减少了AP在信标帧中传输参数所使用的带宽。实际上,可以大大减少“MU EDCA参数集”元素1420,以仅通知HEMUEDCATimer值。换句话说,可以从1420中去除字段1421~1424。
另外,可以注意到,随着EDCA退避值现在再次随时间的经过而演变,进行数个业务队列的定期轮询,因而用以退出MU模式的唯一MU模式计时器足以高效地驱动站点。
接着,实现可选步骤1180,从而还恢复退避计数器所支持的QoS特征,这使得更频繁地重新计算退避值。
在该可选步骤中,针对各传输业务队列,即使其当前退避值并未降至零,也可以抽取新的EDCA退避值。这是为了保持业务队列之间的相对优先级(重新抽取值很有可能作为其它业务队列上的待定队列的上限,因此对于接下来的传输,优先其它队列)。
例如,站点针对被访问资源单元中传输的至少一个业务队列计算或抽取新的退避值以重置关联队列退避计数器。这是在图5c的场景的第二阶段和第三阶段结束时的退避计数器531和532的情况。
在第一实施例中,仅针对在被访问资源单元的开始处传输数据的传输业务队列来计算新的队列退避值。优选地,仅步骤1140中识别出的主业务队列涉及以新的队列退避值的重置。
在第二实施例中,针对在步骤1140中识别出的各传输业务队列,计算新的队列退避值。
可以注意到,即使重新抽取一些退避值(并因此重置相应的退避计数器),这些值仍将再次递减并由此提供达到零的新机会,在这种情况下将再次进行测试1099以根据当前竞争模式进行工作。
尽管本发明的上述实施例提供了UL MU资源单元上使用被调度访问和随机访问这两者的情况下的惩罚方案,但可以仅设想仅响应于被调度RU中的成功传输而应用惩罚方案。这在如下的意义上是有动机的:关于AP行为(如果AP事实上决定授予(调度)针对给定站点的UL访问,则)将应用惩罚MU EDCA参数(1150)。对于随机被访问RU,AP没有指定任何特定站点(即,没有明确证实正在优先一个站点等),因此惩罚不会被视为应用于EDCA访问模式。
图12使用流程图示出上述示例中用以切换回到传统EDCA模式的站点管理。该管理是基于上述的HEMUEDCATimer。实际上,只要该MU模式计时器没有期满,站点就保持处于MUEDCA模式。
因而,在步骤1210中,检查HEMUEDCATimer是否期满/到期、即达到值0。
在肯定的情况下,在步骤1220中,站点例如通过针对所有的业务队列将“MU模式”标志设置为0,切换回到EDCA模式。
在本实施例中,所有的降级业务队列都共享相同的预定降级持续时间HEMUEDCATimer,使得所有的降级业务队列同时退出降级的MU EDCA模式。该退出可以意味着在MU模式包含降级EDCA参数的情况下恢复传统EDCA参数。
注意,由于针对站点的各新的MU UL OFDMA成功传输而重新初始化MU模式计时器,因此MU模式计时器的到期仅在如下情况下发生:在预定降级持续时间HEMUEDCATimer内授予AP的后续TXOP内AP所提供的任何RU中,没有从站点传输数据。
接着,该处理在步骤1230中结束。
图13示出如在802.11ax草案标准中定义的触发帧的结构。
触发帧1300包括被称为用户信息字段的专用字段1310。该字段包含“触发依赖公共信息”字段1320,该字段1320包含“AC优选级别”字段1330和“优选AC”字段1340。
优选AC字段1330是指示AC队列(0~3的值)的2位字段,其中来自该AC队列的数据应由站点在触发帧中的分配给该站点的RU上发送。
AC优选级别字段1330是指示优选AC字段1340的值是否有意义的位。如果字段1340被设置为1,则站点在步骤1130选择数据时应考虑优选AC字段1340。如果字段1330被设置为0,则不论优选AC字段1340的值如何,都允许站点发送来自任何AC队列的数据。
在802.11ax标准中定义触发帧的其它字段。
AP还可以负责广播EDCA模式和MU模式(在该MU模式具有降级参数值的情况下)这两者的EDCA参数。AP优选使用专用于配置802.11小区中的所有站点的众所周知的信标帧来进行广播。注意,如果AP无法广播EDCA参数,则站点被配置为回落到如在802.11ax标准中定义的默认值。
图14a示出用于描述信标帧中的传统EDCA参数的标准化信息元素1410的结构。
字段1411、1412、1413、1414描述与各业务队列210相关联的参数。对于各业务队列,子字段1415包括EDCA参数:作为在开始减小关联的退避值之前的延迟的AIFSN、作为最小CWmin和最大CWmax竞争窗的值的ECWmin和ECWmax、以及最后的作为802.11装置的最大传输数据时间的TXOP极限。
信息元素的所有其它字段都是在802.11标准中描述的字段。
该标准化信息元素1410由站点使用以在传统EDCA模式中配置自身。
图14b示出根据本发明的用于传输MU模式的参数值的专用信息元素1420的示例性结构,其中该专用信息元素1420包括可能的降级EDCA参数(在存在的情况下)和HEMUEDCATimer值(始终存在)。专用信息元素1420可以包括在AP所发送的信标帧中。
专用信息元素1420针对各AC队列包括处于MU模式的站点所要使用的降级EDCA参数(1421、1422、1423、1424)。专用信息元素1420还包括指定HEMUEDCATimer的值的子字段1425。
各子字段1421、1422、1423、1424包括相应业务队列的降级AIFSN值(在存在的情况下)、以及降级ECWmin值和降级ECWmax值(可以与传统EDCA值相同)。AIFSN字段的值0指示AIFS等于在MU EDCA计时器子字段1425中设置的HEMUEDCATimer值。
当然,如果MU模式使用传统EDCA参数,则可以省略字段1421、1422、1423、1424,由此减少带宽使用。
MU EDCA计时器子字段1425以8个TU(时间单位是等于1024μs的时间的测量)为单位指示HEMUEDCATimer值。
在该示例中,在由接入点为了将与通信网络有关的网络信息广播至多个站点而周期性地传输的信标帧内,传输非降级值和降级值(在存在的情况下)的集合、以及HEMUEDCATimer值。在变形例中,这些值可以包括在探测响应帧或(重新)关联响应帧中。
尽管以上已经参考特定实施例说明了本发明,但本发明不限于这些特定实施例,并且本领域技术人员将明白存在于本发明的范围内的修改。
许多其它修改和变形在参考仅以示例方式给出并且并不意图限制本发明范围的前述例示实施例时向精通本技术的人员表明这些修改和改变仅是由所附权利要求书来确定的。特别地,在适当情况下,可以互换来自不同实施例的不同特征。
在权利要求书中,词语“包括”没有排除其它元件或步骤,并且不定冠词“a”或“an”没有排除多个。在相互不同的从属权利要求中陈述不同的特征的仅有事实并不表明不能有利地使用这些特征的组合。

Claims (50)

1.一种通信设备,用于与构建符合IEEE 802.11系列标准的无线网络的基站进行通信,所述通信设备包括:
第一传输部件,用于经由由所述基站针对正交频分多址通信即OFDMA通信指派的资源单元来传输访问类别的数据;以及
控制部件,用于进行控制,使得在所述第一传输部件成功传输了所述访问类别的数据时,禁用在多用户增强型分布式信道访问模式即MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输并持续预定持续时间,而启用在传统EDCA模式中要被寻址到与所述基站不同的其它站点的访问类别的数据的传输。
2.根据权利要求1所述的通信设备,其中,要被寻址到与所述基站不同的其它站点的访问类别的数据的传输是与到所述基站的上行链路业务不同的对等业务。
3.根据权利要求1所述的通信设备,其中,用于要被寻址到与所述基站不同的其它站点的访问类别的数据的传输的对等组与所述基站所构建的无线网络维持并行。
4.根据权利要求1所述的通信设备,其中,所述访问类别的数据的传输是在没有所述基站的支持的情况下进行的。
5.根据权利要求1所述的通信设备,其中,所述通信设备和所述其它站点与相同基站相关联。
6.根据权利要求1所述的通信设备,其中,所述预定持续时间是由HEMUEDCATimer指定的。
7.根据权利要求1所述的通信设备,其中,在接收到来自所述基站的确认的情况下,所述访问类别的数据被认为由所述第一传输部件成功传输。
8.根据权利要求1所述的通信设备,其中,所述控制部件被配置成使得在所述预定持续时间到期时,启用在所述传统EDCA模式中要被寻址到所述基站的访问类别的数据的传输。
9.根据权利要求1所述的通信设备,还包括第二传输部件,所述第二传输部件用于使用由下边界值和上边界值定义的竞争窗来在所述传统EDCA模式中传输所述访问类别的数据。
10.根据权利要求1所述的通信设备,其中,所述控制部件被配置成使得即使在启用在所述MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输的情况下,与所述访问类别不同的访问类别的数据的传输也不被控制为在所述MU EDCA模式中进行。
11.根据权利要求1所述的通信设备,其中,所述访问类别是语音即AC_VO、视频即AC_VI、尽力而为即AC_BE或后台即AC_BG。
12.根据权利要求1所述的通信设备,还包括:
接收部件,用于接收包括所述资源单元的信息的符合IEEE 802.11系列标准的触发帧,
其中,在接收到所述触发帧时,所述第一传输部件传输所述访问类别的数据。
13.根据权利要求1所述的通信设备,其中,所述传统EDCA模式是符合IEEE 802.11ax之前的IEEE 802.11标准的EDCA模式。
14.一种通信方法,包括:
在与构建符合IEEE 802.11系列标准的无线网络的基站进行通信的站点处,
经由由所述基站针对正交频分多址通信即OFDMA通信指派的资源单元来传输访问类别的数据;以及
进行控制,使得在成功传输了所述访问类别的数据时,禁用在多用户增强型分布式信道访问模式即MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输并持续预定持续时间,而启用在传统EDCA模式中要被寻址到与所述基站不同的其它站点的访问类别的数据的传输。
15.根据权利要求14所述的通信方法,其中,要被寻址到与所述基站不同的其它站点的访问类别的数据的传输是与到所述基站的上行链路业务不同的对等业务。
16.根据权利要求14所述的通信方法,其中,用于要被寻址到与所述基站不同的其它站点的访问类别的数据的传输的对等组与所述基站所构建的无线网络维持并行。
17.根据权利要求14所述的通信方法,其中,所述访问类别的数据的传输是在没有所述基站的支持的情况下进行的。
18.根据权利要求14所述的通信方法,其中,所述通信设备和所述其它站点与相同基站相关联。
19.根据权利要求14所述的通信方法,其中,所述预定持续时间是由HEMUEDCATimer指定的。
20.根据权利要求14所述的通信方法,其中,在接收到来自所述基站的确认的情况下,所述访问类别的数据被认为成功传输。
21.根据权利要求14所述的通信方法,其中,在所述预定持续时间到期时,启用在所述传统EDCA模式中要被寻址到所述基站的访问类别的数据的传输。
22.根据权利要求14所述的通信方法,还包括:使用由下边界值和上边界值定义的竞争窗来在所述传统EDCA模式中传输所述访问类别的数据。
23.根据权利要求14所述的通信方法,其中,即使在启用在所述MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输的情况下,与所述访问类别不同的访问类别的数据的传输也不被控制为在所述MU EDCA模式中进行。
24.根据权利要求14所述的通信方法,其中,所述访问类别是语音即AC_VO、视频即AC_VI、尽力而为即AC_BE或后台即AC_BG。
25.根据权利要求14所述的通信方法,还包括:
接收包括所述资源单元的信息的符合IEEE 802.11系列标准的触发帧,
其中,在接收到所述触发帧时,传输所述访问类别的数据。
26.根据权利要求14所述的通信方法,其中,所述传统EDCA模式是符合IEEE 802.11ax之前的IEEE 802.11标准的EDCA模式。
27.一种非暂时性计算机可读介质,其存储程序,所述程序在由装置中的微处理器或计算机系统执行时使所述装置进行根据权利要求14所述的通信方法。
28.一种基站,用于构建符合IEEE 802.11系列标准的无线网络,所述基站包括:
第一接收部件,用于经由由所述基站针对正交频分多址通信即OFDMA通信指派的资源单元来从第一站点接收访问类别的数据;以及
控制部件,用于进行控制,使得在所述第一站点成功传输了所述访问类别的数据时,禁用在多用户增强型分布式信道访问模式即MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输并持续预定持续时间,而启用在传统EDCA模式中要被寻址到与所述基站不同的第二站点的访问类别的数据的传输。
29.根据权利要求28所述的基站,其中,要被寻址到与所述基站不同的第二站点的访问类别的数据的传输是与到所述基站的上行链路业务不同的对等业务。
30.根据权利要求28所述的基站,其中,用于要被寻址到与所述基站不同的第二站点的访问类别的数据的传输的对等组与所述基站所构建的无线网络维持并行。
31.根据权利要求28所述的基站,其中,所述第一站点和所述第二站点与相同基站相关联。
32.根据权利要求28所述的基站,其中,所述预定持续时间是由HEMUEDCATimer指定的。
33.根据权利要求28所述的基站,其中,所述控制部件被配置成使得在所述预定持续时间到期时,启用在所述传统EDCA模式中要被寻址到所述基站的访问类别的数据的传输。
34.根据权利要求28所述的基站,还包括:
第二接收部件,用于使用由下边界值和上边界值定义的竞争窗来在所述传统EDCA模式中接收所述访问类别的数据。
35.根据权利要求28所述的基站,其中,所述控制部件被配置成使得即使在启用在所述MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输的情况下,与所述访问类别不同的访问类别的数据的传输也不被控制为在所述MU EDCA模式中进行。
36.根据权利要求28所述的基站,其中,所述访问类别是语音即AC_VO、视频即AC_VI、尽力而为即AC_BE或后台即AC_BG。
37.根据权利要求28所述的基站,还包括:
传输部件,用于传输包括所述资源单元的信息的符合IEEE 802.11系列标准的触发帧,
其中,在传输所述触发帧时,所述第一接收部件接收所述访问类别的数据。
38.根据权利要求28所述的基站,其中,所述传统EDCA模式是符合IEEE802.11ax之前的IEEE 802.11标准的EDCA模式。
39.一种通信方法,包括:
在用于构建符合IEEE 802.11系列标准的无线网络的基站处,
经由由所述基站针对正交频分多址通信即OFDMA通信指派的资源单元来从第一站点接收访问类别的数据;以及
进行控制,使得在成功接收到所述访问类别的数据时,禁用在多用户增强型分布式信道访问模式即MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输并持续预定持续时间,而启用在传统EDCA模式中要被寻址到与所述基站不同的其它站点的访问类别的数据的传输。
40.根据权利要求39所述的通信方法,其中,要被寻址到与所述基站不同的其它站点的访问类别的数据的传输是与到所述基站的上行链路业务不同的对等业务。
41.根据权利要求39所述的通信方法,其中,用于要被寻址到与所述基站不同的其它站点的访问类别的数据的传输的对等组与所述基站所构建的无线网络维持并行。
42.根据权利要求39所述的通信方法,其中,所述第一站点和所述其它站点与相同基站相关联。
43.根据权利要求39所述的通信方法,其中,所述预定持续时间是由HEMUEDCATimer指定的。
44.根据权利要求39所述的通信方法,其中,在所述预定持续时间到期时,启用在所述传统EDCA模式中要被寻址到所述基站的访问类别的数据的传输。
45.根据权利要求39所述的通信方法,还包括:
使用由下边界值和上边界值定义的竞争窗来在所述传统EDCA模式中接收所述访问类别的数据。
46.根据权利要求39所述的通信方法,其中,即使在启用在所述MU EDCA模式中要被寻址到所述基站的访问类别的数据的传输的情况下,与所述访问类别不同的访问类别的数据的传输也不被控制为在所述MU EDCA模式中进行。
47.根据权利要求39所述的通信方法,其中,所述访问类别是语音即AC_VO、视频即AC_VI、尽力而为即AC_BE或后台即AC_BG。
48.根据权利要求39所述的通信方法,还包括:
传输包括所述资源单元的信息的符合IEEE 802.11系列标准的触发帧,
其中,在传输所述触发帧时,接收所述访问类别的数据。
49.根据权利要求39所述的通信方法,其中,所述传统EDCA模式是符合IEEE 802.11ax之前的IEEE 802.11标准的EDCA模式。
50.一种非暂时性计算机可读介质,其存储程序,所述程序在由装置中的微处理器或计算机系统执行时使所述装置进行根据权利要求39所述的通信方法。
CN202310173844.5A 2016-10-28 2017-10-27 通信设备、基站、通信方法和计算机可读介质 Pending CN116156664A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB1618262.8A GB2555455B (en) 2016-10-28 2016-10-28 QoS management for multi-user EDCA transmission mode in 802.11ax networks
GB1618262.8 2016-10-28
CN201780066921.XA CN109923930B (zh) 2016-10-28 2017-10-27 802.11ax网络中针对多用户EDCA传输模式的QoS管理
PCT/EP2017/077611 WO2018078101A1 (en) 2016-10-28 2017-10-27 QoS MANAGEMENT FOR MULTI-USER EDCA TRANSMISSION MODE IN 802.11AX NETWORKS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780066921.XA Division CN109923930B (zh) 2016-10-28 2017-10-27 802.11ax网络中针对多用户EDCA传输模式的QoS管理

Publications (1)

Publication Number Publication Date
CN116156664A true CN116156664A (zh) 2023-05-23

Family

ID=57963549

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201780066921.XA Active CN109923930B (zh) 2016-10-28 2017-10-27 802.11ax网络中针对多用户EDCA传输模式的QoS管理
CN202310169623.0A Pending CN116073976A (zh) 2016-10-28 2017-10-27 基站、通信方法和计算机可读介质
CN202310173844.5A Pending CN116156664A (zh) 2016-10-28 2017-10-27 通信设备、基站、通信方法和计算机可读介质

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201780066921.XA Active CN109923930B (zh) 2016-10-28 2017-10-27 802.11ax网络中针对多用户EDCA传输模式的QoS管理
CN202310169623.0A Pending CN116073976A (zh) 2016-10-28 2017-10-27 基站、通信方法和计算机可读介质

Country Status (12)

Country Link
US (2) US11032852B2 (zh)
EP (3) EP4301086A3 (zh)
JP (3) JP6766259B2 (zh)
KR (1) KR102274129B1 (zh)
CN (3) CN109923930B (zh)
BR (1) BR112019006766A2 (zh)
ES (2) ES2912311T3 (zh)
FI (1) FI3965521T3 (zh)
GB (1) GB2555455B (zh)
RU (1) RU2715418C1 (zh)
SG (1) SG11201902913UA (zh)
WO (1) WO2018078101A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294032B1 (en) * 2015-05-07 2021-03-10 Kabushiki Kaisha Toshiba, Inc. Wireless communication terminal and wireless communication method
EP3293902B1 (en) 2015-05-07 2023-05-31 International Semiconductor Group Wireless communication device
JP6583535B2 (ja) * 2016-03-11 2019-10-02 日本電気株式会社 無線lanシステム、無線lan基地局、無線lan端末、通信方法
GB2555455B (en) 2016-10-28 2020-02-26 Canon Kk QoS management for multi-user EDCA transmission mode in 802.11ax networks
GB2575330B (en) * 2018-07-06 2021-02-24 Canon Kk Direct link and downlink transmissions in trigger-based multi-user transmissions
CN110719649B (zh) * 2018-07-12 2023-02-10 华为技术有限公司 一种信道接入的方法及装置
US11102740B2 (en) 2018-08-31 2021-08-24 Samsung Electronics Co., Ltd. System and method for providing a synchronized mode for WLAN operation in a WLAN band
WO2020083265A1 (en) 2018-10-26 2020-04-30 Huawei Technologies Co., Ltd. Channel access mechanism for random access channel in unlicensed spectrum
JP7140001B2 (ja) * 2019-03-01 2022-09-21 日本電信電話株式会社 無線通信システム及び無線通信方法
GB2582027B (en) * 2019-03-08 2021-06-09 Canon Kk Backoff management for EDCA transmission in 802.11AX networks
GB2582813B (en) * 2019-04-04 2022-02-16 Canon Kk Backoff management for intra-queue priority transmission in communication networks
US11516802B2 (en) * 2019-10-07 2022-11-29 Plume Design, Inc. Resource unit reservation in Wi-Fi networks
US11395243B2 (en) * 2019-10-16 2022-07-19 Cisco Technology, Inc. Increasing synchronization of virtual reality scene elements with software defined network (SDN) originated information
CN114930952A (zh) * 2020-01-10 2022-08-19 日本电信电话株式会社 基站、终端以及无线通信方法
US20230033744A1 (en) * 2020-01-10 2023-02-02 Nippon Telegraph And Telephone Corporation Terminal apparatus, base station, communication method, and communication program
US11051320B1 (en) 2020-03-05 2021-06-29 Hewlett Packard Enterprise Development Lp Intelligent scheduling of Wi-Fi services for applications
CN114257602B (zh) * 2020-09-11 2023-04-28 极米科技股份有限公司 触发终端执行点对点业务的方法、装置及存储介质
CN114338558A (zh) * 2020-10-10 2022-04-12 中兴通讯股份有限公司 一种调度方法、装置和电子设备
US11558759B2 (en) 2020-10-28 2023-01-17 Hewlett Packard Enterprise Development Lp Systems and methods for minimizing latency and contention using QoS frame scheduling information
US11477817B2 (en) 2020-11-17 2022-10-18 Hewlett Packard Enterprise Development Lp Systems and methods for prioritized channel access for 802.11ax clients in BSS with mixed clients
CN112566269B (zh) * 2021-02-23 2021-05-11 乐鑫信息科技(上海)股份有限公司 一种在无线局域网wlan中的上行传输方法和站点设备
CN117378264A (zh) * 2021-05-27 2024-01-09 松下电器(美国)知识产权公司 终端、基站及通信方法
KR20240009977A (ko) * 2021-06-22 2024-01-23 주식회사 윌러스표준기술연구소 공유 txop을 사용하는 무선 통신 방법 및 이를 사용하는무선 통신 단말
US11968732B2 (en) * 2021-10-15 2024-04-23 Microsoft Technology Licensing, Llc Mixed standard accessory device communication utilizing host-coordinated transmission
CN114126008B (zh) * 2021-10-26 2024-04-12 浙江大华技术股份有限公司 一种提升传输性能的方法、装置、系统和可读存储介质
WO2023094225A1 (en) * 2021-11-26 2023-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Per traffic class configuration of channel access method
CN116437364B (zh) * 2022-11-25 2024-01-30 华中科技大学 一种非授权频段5g新空口多址接入机制切换方法及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560461B1 (ko) * 2003-12-18 2006-03-13 한국전자통신연구원 무선랜 시스템의 동작 파라미터 조정 방법
US20060062189A1 (en) 2004-09-21 2006-03-23 Nokia Corporation Wireless transceiver, circuit module, and method for setting channel access time
US8600336B2 (en) * 2005-09-12 2013-12-03 Qualcomm Incorporated Scheduling with reverse direction grant in wireless communication systems
CN101784082A (zh) * 2009-12-22 2010-07-21 中兴通讯股份有限公司 无线局域网内增强服务质量的方法及装置
CN102802171B (zh) * 2011-05-25 2016-06-22 华为技术有限公司 用于无线通信系统的退避方法和退避设备
US9191970B2 (en) * 2012-01-09 2015-11-17 Qualcomm Incorporated System and method of communication using distributed channel access parameters
US9185726B2 (en) 2012-01-09 2015-11-10 Qualcomm Incorporated System and method of communication using distributed channel access parameters
JP5972840B2 (ja) * 2013-08-09 2016-08-17 日本電信電話株式会社 無線通信システム、無線端末および無線通信方法
US9295074B2 (en) 2013-09-10 2016-03-22 Samsung Electronics Co., Ltd. Acknowledgement, error recovery and backoff operation of uplink multi-user multiple-input-multiple-output communication in wireless networks
US20150281980A1 (en) 2014-04-01 2015-10-01 Qualcomm Incorporated Edca adjustment for poor performance nodes
US9706534B2 (en) 2014-12-03 2017-07-11 Intel IP Corporation Apparatus, method, and computer readable media for uplink transmission opportunity in a high-efficiency wireless local-area network
US9942925B2 (en) * 2015-01-07 2018-04-10 Qualcomm, Incorporated Station contention behavior in uplink multiple user protocols
US20160262173A1 (en) * 2015-03-03 2016-09-08 Samsung Electronics Co., Ltd Methods for uplink channel access in wireless local area networks
CN110062477B (zh) * 2015-12-25 2020-07-24 华为技术有限公司 一种接入方法及装置
GB2555142B (en) 2016-10-21 2019-09-04 Canon Kk Enhanced management of ACs in multi-user EDCA transmission mode in wireless networks
GB2575555B (en) 2016-10-21 2020-07-08 Canon Kk Enhanced management of ACs in multi-user EDCA transmission mode in wireless networks
GB2555455B (en) 2016-10-28 2020-02-26 Canon Kk QoS management for multi-user EDCA transmission mode in 802.11ax networks

Also Published As

Publication number Publication date
ES2967239T3 (es) 2024-04-29
EP3965521A1 (en) 2022-03-09
EP4301086A3 (en) 2024-03-20
ES2912311T3 (es) 2022-05-25
JP7307847B2 (ja) 2023-07-12
US20210259026A1 (en) 2021-08-19
EP3965521B1 (en) 2023-12-20
GB201618262D0 (en) 2016-12-14
CN109923930B (zh) 2023-02-28
WO2018078101A1 (en) 2018-05-03
US20190274171A1 (en) 2019-09-05
JP6766259B2 (ja) 2020-10-07
SG11201902913UA (en) 2019-05-30
JP2023115340A (ja) 2023-08-18
CN109923930A (zh) 2019-06-21
CN116073976A (zh) 2023-05-05
US11032852B2 (en) 2021-06-08
GB2555455B (en) 2020-02-26
JP7187512B2 (ja) 2022-12-12
BR112019006766A2 (pt) 2019-07-02
RU2715418C1 (ru) 2020-02-28
FI3965521T3 (fi) 2024-02-13
JP2022173484A (ja) 2022-11-18
EP3533279B1 (en) 2022-04-27
KR102274129B1 (ko) 2021-07-08
EP4301086A2 (en) 2024-01-03
GB2555455A (en) 2018-05-02
EP3533279A1 (en) 2019-09-04
KR20190073455A (ko) 2019-06-26
JP2021002851A (ja) 2021-01-07
JP2019536334A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
JP7307847B2 (ja) 802.11axネットワークにおけるマルチユーザーEDCA送信モードのQoS管理
JP7005720B2 (ja) 無線ネットワークにおけるマルチユーザーedca送信モードにおけるacの拡張型管理
JP7105971B2 (ja) リソースユニットを実装するieee802.11ネットワークにおける修復された公平性
GB2581264A (en) QOS management for multi-user EDCA transmission mode in 802.11ax networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination