CN116121063B - Biochip for realizing magnetic field regulation and temperature monitoring and preparation method thereof - Google Patents
Biochip for realizing magnetic field regulation and temperature monitoring and preparation method thereof Download PDFInfo
- Publication number
- CN116121063B CN116121063B CN202211727360.2A CN202211727360A CN116121063B CN 116121063 B CN116121063 B CN 116121063B CN 202211727360 A CN202211727360 A CN 202211727360A CN 116121063 B CN116121063 B CN 116121063B
- Authority
- CN
- China
- Prior art keywords
- magnetic field
- chip
- temperature monitoring
- local
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 27
- 230000033228 biological regulation Effects 0.000 title claims abstract description 26
- 238000000018 DNA microarray Methods 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims abstract description 50
- 238000012806 monitoring device Methods 0.000 claims abstract description 32
- 230000001105 regulatory effect Effects 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000004113 cell culture Methods 0.000 claims abstract description 9
- 230000008859 change Effects 0.000 claims abstract description 7
- 238000009826 distribution Methods 0.000 claims description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 238000003491 array Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 abstract description 10
- 230000019522 cellular metabolic process Effects 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 abstract description 3
- 230000001276 controlling effect Effects 0.000 abstract 1
- 238000013461 design Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000011160 research Methods 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/46—Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/16—Microfluidic devices; Capillary tubes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/12—Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明涉及生物芯片研发技术领域,特别是涉及一种实现磁场调控与温度监测的生物芯片及其制备方法。The invention relates to the technical field of biochip research and development, in particular to a biochip for realizing magnetic field regulation and temperature monitoring and a preparation method thereof.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
在生物基础研究领域中,进行一些单细胞或细胞集群的磁感应性能实验研究过程中,需要能产生微米尺度的局部微磁场的技术或装置。In the field of biological basic research, in the process of experimental research on the magnetic induction performance of some single cells or cell clusters, technologies or devices that can generate local micro-magnetic fields at the micron scale are needed.
传统的磁场发生装置往往利用铁芯、线圈、极头等组成闭合磁路,通电的线圈能产生磁场,被线圈环绕的铁芯在外部线圈磁场的作用下可被磁化,以增加磁通。当控制电源电流的大小和方向后,产生的磁场也会随之改变,从而提供可控性强且稳定的磁场。该方式下产生的磁场多为强磁场,并且装置的占用空间过大,方向和强度的控制过于繁琐,缺乏磁场梯度调控,所形成的局部磁场往往在厘米甚至更大的范围,无法精确快速调节磁场的方向、强度、梯度等性能,不适用于单细胞或少量细胞集群的磁感应性能研究领域。Traditional magnetic field generators often use iron cores, coils, poles, etc. to form a closed magnetic circuit. The energized coil can generate a magnetic field, and the iron core surrounded by the coil can be magnetized under the action of the magnetic field of the external coil to increase the magnetic flux. When the magnitude and direction of the power supply current are controlled, the generated magnetic field will also change accordingly, thus providing a highly controllable and stable magnetic field. The magnetic field generated in this way is mostly a strong magnetic field, and the device occupies too much space, the control of direction and intensity is too complicated, and the magnetic field gradient is lacking. The local magnetic field formed is often in the range of centimeters or even larger, which cannot be adjusted accurately and quickly. The direction, strength, gradient and other properties of the magnetic field are not suitable for the research field of magnetic induction properties of single cells or a small number of cell clusters.
目前少有的磁场芯片主要通过一些硬磁性材料:如Nd-FeB等加工制造成永磁体外置或集成于芯片,或是通过在芯片内部加入一些镍和铁粉等易被磁化的软磁体,在芯片外部放置外加磁场磁化芯片等。此类方式满足了体积小和易于集成在芯片内部的优点,但是在对磁场进行自定义强度、方向等的调节精度和速度还有待提高;更重要的是,目前的磁场芯片不具备在毫米尺度内实现多磁场的功能,无法在单一光学显微视场内同时观察不同磁场中细胞行为的差异,导致其并无法应用于单细胞或细胞集群磁感应性能研究等生物医学研究中。At present, the rare magnetic field chips are mainly processed by some hard magnetic materials: such as Nd-FeB, etc. to make permanent magnets external or integrated in the chip, or by adding some soft magnets such as nickel and iron powder inside the chip, which are easy to be magnetized. An external magnetic field is placed outside the chip to magnetize the chip, etc. This type of method satisfies the advantages of small size and easy integration inside the chip, but the adjustment accuracy and speed of customizing the strength and direction of the magnetic field need to be improved; more importantly, the current magnetic field chip does not have the ability to adjust the magnetic field at the millimeter scale. The function of realizing multiple magnetic fields within a single optical microscope field cannot simultaneously observe the difference in cell behavior in different magnetic fields, so it cannot be applied to biomedical research such as the study of the magnetic induction performance of single cells or cell clusters.
此外,细胞相应磁场的行为往往在新陈代谢方面也有体现,同时芯片磁场的产生往往伴随热量的产生,所以实时的温度监测也是单细胞或细胞集群磁感应性能研究芯片的必备功能,然而现有的芯片磁场发生装置并不具备温度实时监测这一功能。In addition, the behavior of cells corresponding to the magnetic field is often reflected in the metabolism. At the same time, the generation of the magnetic field of the chip is often accompanied by the generation of heat. Therefore, real-time temperature monitoring is also an essential function of the chip for the study of the magnetic induction performance of single cells or cell clusters. However, the existing chips The magnetic field generating device does not have the function of real-time temperature monitoring.
发明内容Contents of the invention
为了解决上述问题,本发明提出了一种实现磁场调控与温度监测的生物芯片及其制备方法,实现微米尺度上局部磁场的方向、强度和梯度的可调,同时还可以监测局部温度变化,以明确细胞代谢变化,用于单细胞或细胞集群的磁感应性能研究等生物医学领域。In order to solve the above problems, the present invention proposes a biochip and its preparation method for magnetic field regulation and temperature monitoring, which can realize the adjustment of the direction, intensity and gradient of the local magnetic field on the micron scale, and can also monitor the local temperature change at the same time. To clarify changes in cell metabolism, it is used in biomedical fields such as the study of magnetic induction properties of single cells or cell clusters.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
第一方面,本发明提供一种实现磁场调控与温度监测的生物芯片,包括:培养芯片、片上局部磁场调控装置和片上局部温度监测装置;In the first aspect, the present invention provides a biochip for magnetic field control and temperature monitoring, including: a culture chip, an on-chip local magnetic field control device, and an on-chip local temperature monitoring device;
所述片上局部磁场调控装置由亚微米和微米尺度的金属导线制备,所述片上局部温度监测装置由亚微米尺度的热电偶阵列制备;The on-chip local magnetic field regulation device is made of sub-micron and micron-scale metal wires, and the on-chip local temperature monitoring device is made of sub-micron-scale thermocouple arrays;
所述培养芯片包括基底,所述基底上设有显微观察窗,显微观察窗内制备有片上局部磁场调控装置和片上局部温度监测装置,两者中间夹有绝热层,在片上局部温度监测装置上覆盖绝缘层,绝缘层上设有细胞培养池。The culture chip includes a base, the base is provided with a microscopic observation window, and an on-chip local magnetic field regulating device and an on-chip local temperature monitoring device are prepared in the microscopic observation window, with a heat insulating layer sandwiched between the two, and the local temperature monitoring on the chip The device is covered with an insulating layer, and a cell culture pool is arranged on the insulating layer.
作为可选择的实施方式,所述基底采用两面包覆有氮化硅层的硅片。As an optional embodiment, the substrate is a silicon wafer covered with silicon nitride layers on both sides.
作为可选择的实施方式,所述氮化硅层的厚度为20μm-500μm。As an optional implementation manner, the thickness of the silicon nitride layer is 20 μm-500 μm.
作为可选择的实施方式,所述硅片的厚度为0.5mm。As an optional implementation manner, the thickness of the silicon wafer is 0.5mm.
作为可选择的实施方式,所述绝热层和绝缘层均采用HfO2绝缘层,厚度为5-10nm。As an optional implementation manner, both the heat insulating layer and the insulating layer are HfO 2 insulating layers with a thickness of 5-10 nm.
作为可选择的实施方式,所述片上局部磁场调控装置用于产生均匀磁场或梯度磁场,通过改变金属导线的空间位置和通过金属导线的电流方向与大小,对磁场的方向、大小和梯度进行调节。As an optional implementation, the on-chip local magnetic field regulating device is used to generate a uniform magnetic field or a gradient magnetic field, and adjust the direction, magnitude and gradient of the magnetic field by changing the spatial position of the metal wire and the direction and magnitude of the current passing through the metal wire .
作为可选择的实施方式,通过改变金属导线的粗细、改变施加在金属导线上的电压大小来改变金属导线的电流大小。As an optional embodiment, the current of the metal wire is changed by changing the thickness of the metal wire and changing the voltage applied to the metal wire.
作为可选择的实施方式,所产生的磁场的尺度范围为亚微米级别至毫米级别。As an optional implementation, the generated magnetic field has a scale ranging from a submicron level to a millimeter level.
作为可选择的实施方式,所述片上局部磁场调控装置产生的磁场为局部稳恒磁场或局部交变磁场。As an optional implementation manner, the magnetic field generated by the on-chip local magnetic field regulating device is a local constant magnetic field or a local alternating magnetic field.
作为可选择的实施方式,通过改变金属导线电流的方向、大小和金属导线构型来分别调节局部稳恒磁场的方向、场强与梯度。As an optional implementation, the direction, field strength and gradient of the local steady-state magnetic field are respectively adjusted by changing the direction and magnitude of the metal wire current and the configuration of the metal wire.
作为可选择的实施方式,通过改变金属导线电流的大小和频率来分别调节局部交变磁场的幅值和频率。As an alternative embodiment, the magnitude and frequency of the local alternating magnetic field are adjusted respectively by changing the magnitude and frequency of the metal wire current.
作为可选择的实施方式,所述金属导线对称分布在显微观察窗上,按核定距离平行布设,互不接触。As an optional implementation manner, the metal wires are symmetrically distributed on the microscopic observation window, arranged in parallel at a predetermined distance, and do not touch each other.
作为可选择的实施方式,所述金属导线的构型包括对称双环型、回路双环型和平行线型。As an optional implementation manner, the configurations of the metal wires include symmetrical double ring type, loop double ring type and parallel line type.
作为可选择的实施方式,所述热电偶采用Pd-Cr热电偶。As an optional implementation, the thermocouple is a Pd-Cr thermocouple.
第二方面,本发明提供一种实现磁场调控与温度监测的生物芯片的制备方法,包括:In a second aspect, the present invention provides a method for preparing a biochip for magnetic field regulation and temperature monitoring, including:
由亚微米和微米尺度的金属导线制备得到片上局部磁场调控装置;An on-chip local magnetic field control device is prepared from sub-micron and micron-scale metal wires;
由亚微米尺度的热电偶阵列制备得到片上局部温度监测装置;An on-chip local temperature monitoring device is prepared from a submicron-scale thermocouple array;
在基底上设显微观察窗,在显微观察窗内制备片上局部磁场调控装置和片上局部温度监测装置;A microscopic observation window is provided on the substrate, and an on-chip local magnetic field regulation device and an on-chip local temperature monitoring device are prepared in the microscopic observation window;
在局部磁场调控装置和片上局部温度监测装置中间夹绝热层;An insulating layer is sandwiched between the local magnetic field regulating device and the on-chip local temperature monitoring device;
在片上局部温度监测装置上覆盖绝缘层;An insulating layer is covered on the on-chip local temperature monitoring device;
在绝缘层上设细胞培养池。A cell culture pool is arranged on the insulating layer.
与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:
本发明提出一种微纳米尺度上实现磁场调控与温度监测于一体的生物芯片,包括多组产生局部微磁场的金属导线设计,通过改变金属导线的空间位置和通过金属导线的电流方向、大小,实现高精度微调磁场的方向、大小和梯度的功能,既实现了微纳米尺度微磁场的产生,并可对磁场的方向、强度和梯度进行细微调控,也实现了对单细胞温度及周围环境温度进行高精度、高时空分辨率的实时监测。The present invention proposes a biochip that integrates magnetic field regulation and temperature monitoring at the micro-nano scale, including multiple sets of metal wire designs that generate local micro-magnetic fields. By changing the spatial position of the metal wires and the direction and size of the current passing through the metal wires, Realize the function of fine-tuning the direction, size and gradient of the magnetic field with high precision. It not only realizes the generation of micro-nano-scale micro-magnetic field, but also fine-tunes the direction, strength and gradient of the magnetic field. It also realizes the temperature control of single cells and the surrounding environment. Carry out real-time monitoring with high precision and high temporal and spatial resolution.
本发明减小了可调控磁场的空间范围,能够在同一光学窗口内观察单细胞/集群在不同磁场分布下的行为模式,并能通过原位高时空、高精度的热电偶温度监测获得单细胞/集群响应磁场作用的生理变化,适用于生物医学领域上单细胞/集群磁感应研究的微流控芯片。The invention reduces the spatial range of the adjustable magnetic field, can observe the behavior patterns of single cells/clusters under different magnetic field distributions in the same optical window, and can obtain single cells through in-situ high-temporal and high-precision thermocouple temperature monitoring /cluster responds to the physiological changes of the magnetic field, and is suitable for microfluidic chips in the study of single cell/cluster magnetic induction in the field of biomedicine.
本发明实现了在微纳米尺度上的局部磁场发生、调控与温度场监测功能,避免了繁琐的工艺,降低了磁场发生装置的成本和面积,可广泛应用于单细胞或细胞集群的磁感应性能研究等生物医学研究中。The invention realizes the functions of local magnetic field generation, regulation and temperature field monitoring on the micro-nano scale, avoids cumbersome processes, reduces the cost and area of the magnetic field generation device, and can be widely used in the study of magnetic induction properties of single cells or cell clusters and other biomedical research.
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Advantages of additional aspects of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings constituting a part of the present invention are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations to the present invention.
图1为本发明实施例1提供的生物芯片俯视图;Fig. 1 is the top view of the biochip provided by Embodiment 1 of the present invention;
图2为本发明实施例1提供的生物芯片侧视图;Fig. 2 is a side view of the biochip provided by Embodiment 1 of the present invention;
图3为本发明实施例1提供的生物芯片成品图;Fig. 3 is the finished product picture of the biochip provided by Embodiment 1 of the present invention;
图4为本发明实施例1提供的平行线型设计的微磁场分布与梯度调控原理示意图;Fig. 4 is a schematic diagram of the principle of micro-magnetic field distribution and gradient regulation of the parallel linear design provided by Embodiment 1 of the present invention;
图5(a)-图5(b)为本发明实施例1提供的圆环型设计的微磁场均匀分布原理和场强计算示意图;Fig. 5 (a)-Fig. 5 (b) is the micro-magnetic field uniform distribution principle and the schematic diagram of field strength calculation of the annular design provided by embodiment 1 of the present invention;
图6(a)为本发明实施例1提供的回路双环型微磁场与热电偶分布示意图;Figure 6(a) is a schematic diagram of the loop double-ring micro-magnetic field and thermocouple distribution provided by Embodiment 1 of the present invention;
图6(b)-图6(c)为本发明实施例1提供的回路双环型设计同时构建强度可变均匀磁场和空白磁场的原理示意图;Figure 6(b)-Figure 6(c) is a schematic diagram of the principle of simultaneously constructing a variable-intensity uniform magnetic field and a blank magnetic field in the loop double-loop design provided by Embodiment 1 of the present invention;
图7(a)为本发明实施例1提供的对称双环型微磁场与热电偶分布示意图;Figure 7(a) is a schematic diagram of the symmetrical double-ring micro-magnetic field and thermocouple distribution provided by Embodiment 1 of the present invention;
图7(b)-图7(d)为本发明实施例1提供的对称双环型设计同时构建反向、强度可变均匀磁场和空白磁场的原理示意图;Figure 7(b)-Figure 7(d) is a schematic diagram of the principle of simultaneously constructing a reverse, variable-intensity uniform magnetic field and a blank magnetic field in the symmetrical double-ring design provided by Embodiment 1 of the present invention;
图8(a)为本发明实施例1提供的平行线型微磁场与热电偶分布示意图;Figure 8(a) is a schematic diagram of the distribution of parallel linear micro-magnetic fields and thermocouples provided in Example 1 of the present invention;
图8(b)-图8(c)为本发明实施例1提供的平行线型设计同时构建反向、强度可变均匀磁场和空白磁场的原理示意图;Figure 8(b)-Figure 8(c) is a schematic diagram of the principle of parallel line design provided by Embodiment 1 of the present invention to simultaneously construct a reverse, variable-intensity uniform magnetic field and a blank magnetic field;
其中,1、基底,2、PDMS,3、细胞培养池,4、氮化硅悬空平台,5、HfO2绝缘层,6、热电偶,7、Cr亚微米条带,8、Pd亚微米条带,9、磁场发生装置,10、热电偶的Cr引线,11、磁场发生装置引线,12、热电偶的Pd引线,13、对称双环型微磁场装置,14、平行线型微磁场装置,15、回路双环型微磁场装置。Among them, 1. Substrate, 2. PDMS, 3. Cell culture pool, 4. Silicon nitride suspended platform, 5. HfO2 insulating layer, 6. Thermocouple, 7. Cr submicron strips, 8. Pd submicron strips , 9, magnetic field generating device, 10, Cr lead wire of thermocouple, 11, lead wire of magnetic field generating device, 12, Pd lead wire of thermocouple, 13, symmetrical double-ring micro-magnetic field device, 14, parallel linear micro-magnetic field device, 15, Loop double ring micro-magnetic field device.
具体实施方式Detailed ways
下面结合附图与实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present invention. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terminology used here is only for describing specific embodiments, and is not intended to limit exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that the terms "comprising" and "having" and any variations thereof are intended to cover a non-exclusive Comprising, for example, a process, method, system, product, or device comprising a series of steps or units is not necessarily limited to those steps or units explicitly listed, but may include steps or units not explicitly listed or for these processes, methods, Other steps or units inherent in a product or equipment.
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。In the case of no conflict, the embodiments and the features in the embodiments of the present invention can be combined with each other.
实施例1Example 1
如图1-图3所示,本实施例提供一种微纳米尺度上实现磁场调控与温度监测于一体的生物芯片,用于生物医学领域的单细胞或集群磁感应研究等;具体包括:基于微流控技术的培养芯片、片上局部磁场调控装置和片上局部温度监测装置;As shown in Figures 1 to 3, this embodiment provides a biochip that integrates magnetic field regulation and temperature monitoring at the micro-nano scale, and is used for single-cell or cluster magnetic induction research in the biomedical field; specifically includes: micro-based Fluidic technology culture chip, on-chip local magnetic field control device and on-chip local temperature monitoring device;
所述片上局部磁场调控装置由亚微米和微米尺度的金属线条制备,所述片上局部温度监测装置由亚微米尺度的热电偶阵列制备;The on-chip local magnetic field regulation device is made of sub-micron and micron-scale metal lines, and the on-chip local temperature monitoring device is made of sub-micron-scale thermocouple arrays;
所述培养芯片包括基底,所述基底上设有显微观察窗,显微观察窗内制备有片上局部磁场调控装置和片上局部温度监测装置,两者中间夹有绝热层,在片上局部温度监测装置上覆盖绝缘层,绝缘层上设有细胞培养池。The culture chip includes a base, the base is provided with a microscopic observation window, and an on-chip local magnetic field regulating device and an on-chip local temperature monitoring device are prepared in the microscopic observation window, with a heat insulating layer sandwiched between the two, and the local temperature monitoring on the chip The device is covered with an insulating layer, and a cell culture pool is arranged on the insulating layer.
如图1所示,虚线所在的圆圈为标定线,虚线内是磁场发生和温度监测的功能区域,用于产生局部微磁场和温度监测,标定线内的器件个数可调,多个生物芯片可排列构成矩阵以实现高精度大范围调节微磁场和温度。如图2所示,功能器件制备在氮化硅悬空平台的透明显微观察窗上,在PDMS围成的细胞培养池中进行工作。As shown in Figure 1, the circle where the dotted line is located is the calibration line, and the dotted line is the functional area of magnetic field generation and temperature monitoring, which is used to generate local micro-magnetic fields and temperature monitoring. The number of devices in the calibration line is adjustable, and multiple biochips It can be arranged to form a matrix to achieve high-precision and large-scale adjustment of micro-magnetic field and temperature. As shown in Figure 2, the functional devices are prepared on the transparent microscopic observation window of the silicon nitride suspended platform, and work in the cell culture pool surrounded by PDMS.
在本实施例中,所述基底1采用两面包覆有氮化硅层的硅片。In this embodiment, the substrate 1 is a silicon wafer coated with a silicon nitride layer on both sides.
作为可选择的一种实施方式,所述氮化硅层的厚度为20μm-500μm。As an optional implementation manner, the thickness of the silicon nitride layer is 20 μm-500 μm.
作为可选择的一种实施方式,所述硅片的厚度为0.5mm。As an optional implementation manner, the thickness of the silicon wafer is 0.5 mm.
在本实施例中,在所述基底1上腐蚀出若干个毫米尺度的氮化硅悬空平台4作为观察细胞行为的透明显微观察窗;所述氮化硅悬空平台4一方面提供光学观察细胞行为的窗口,一方面减少热量耗散提高温度传感元件的敏感性。In this embodiment, several millimeter-scale silicon nitride suspended platforms 4 are etched on the substrate 1 as transparent microscopic observation windows for observing cell behavior; on the one hand, the silicon nitride suspended platforms 4 provide optical observation of cells The behavior of the window on the one hand reduces heat dissipation and improves the sensitivity of the temperature sensing element.
在本实施例中,所述显微观察窗内制备有用于产生强度、梯度、方向可控的微米范围磁场的片上局部磁场调控装置和片上局部温度监测装置,片上局部磁场调控装置和片上局部温度监测装置中间夹有绝热层,片上局部温度监测装置的上方覆盖一层绝缘层,防止培养液环境下对装置功能的干预,减少装置导体的漏电,在绝缘层的上方设有由PDMS制备的细胞培养池3。In this embodiment, an on-chip local magnetic field regulating device and an on-chip local temperature monitoring device for generating a micron-range magnetic field with controllable intensity, gradient and direction are prepared in the microscopic observation window, and an on-chip local magnetic field regulating device and an on-chip local temperature monitoring device are prepared. There is a thermal insulation layer in the middle of the monitoring device, and an insulating layer is covered above the local temperature monitoring device on the chip to prevent the interference of the device function in the culture medium environment and reduce the leakage of the device conductor. Cells prepared by PDMS are arranged above the insulating layer. Culture pool 3.
作为可选择的一种实施方式,所述绝热层和绝缘层均采用HfO2绝缘层5,由HfO2分子沉积而成,厚度为5-10nm;As an optional implementation mode, both the heat insulating layer and the insulating layer are made of HfO 2 insulating layer 5, deposited by HfO 2 molecules, with a thickness of 5-10 nm;
作为绝热层,在保证电绝缘的情况下,尽可能拉近功能元件(磁场发生装置和温度监测装置)与细胞间的距离,使待测细胞(集群)尽可能处于磁场中心;As a thermal insulation layer, under the condition of ensuring electrical insulation, the distance between the functional elements (magnetic field generating device and temperature monitoring device) and the cells is shortened as much as possible, so that the cells (clusters) to be tested are located in the center of the magnetic field as much as possible;
作为绝缘层,可防止培养液对装置功能的干预,避免装置导体漏电的同时,提高热电偶测温的温度分辨率,缩短响应时间。As an insulating layer, it can prevent the culture medium from interfering with the device function, avoid device conductor leakage, improve the temperature resolution of the thermocouple temperature measurement, and shorten the response time.
在本实施例中,所述片上局部磁场调控装置由亚微米和微米尺度的金属导线制备,包括多组产生局部磁场的金属导线构型设计,且有规律的分布在氮化硅悬空平台上,在电流通过时产生各种实验所需的均匀磁场或梯度磁场,且通过改变金属导线的空间位置和通过金属导线的电流的方向与大小,实现对磁场的方向、大小和梯度的高精度微调。In this embodiment, the on-chip local magnetic field control device is made of sub-micron and micron-scale metal wires, including multiple sets of metal wire configuration designs that generate local magnetic fields, and are regularly distributed on the silicon nitride suspended platform, When the current passes through, the uniform magnetic field or gradient magnetic field required for various experiments is generated, and by changing the spatial position of the metal wire and the direction and magnitude of the current passing through the metal wire, high-precision fine-tuning of the direction, magnitude and gradient of the magnetic field is realized.
作为可选择的一种实施方式,通过改变金属导线的粗细、改变施加在金属导线上的电压大小等方法来实现改变金属导线的电流大小。As an alternative embodiment, the current magnitude of the metal wire can be changed by changing the thickness of the metal wire, changing the voltage applied to the metal wire, and other methods.
作为可选择的一种实施方式,所述金属导线为金、铂、钯、铬等稳定低阻的金属导电材料;如图2中的Cr亚微米条带7和Pd亚微米条带8。As an optional implementation, the metal wires are stable and low-resistance metal conductive materials such as gold, platinum, palladium, chromium, etc.; as shown in Cr submicron strips 7 and Pd submicron strips 8 in FIG. 2 .
作为可选择的一种实施方式,所述金属导线对称分布在氮化硅悬空平台上,各金属条带按核定距离平行布设,互不接触,避免了电流的互相干扰,同时方便了磁场的调控。As an optional implementation, the metal wires are symmetrically distributed on the silicon nitride suspended platform, and the metal strips are arranged in parallel according to the approved distance without contacting each other, which avoids mutual interference of currents and facilitates the regulation of the magnetic field. .
作为可选择的一种实施方式,所述片上局部磁场调控装置可实现毫米范围内两种至多种不同磁场分布的构建,能针对不同的实验需求产生不同的磁场;其中,产生局部磁场的金属导线构型设计包括但不限于对称双环型、回路双环型、平行线型等,可以在较小区域同时实现不同的磁场分布,有助于实验变量控制和结果对比。As an optional implementation, the on-chip local magnetic field control device can realize the construction of two to multiple different magnetic field distributions within the millimeter range, and can generate different magnetic fields for different experimental requirements; wherein, the metal wires that generate the local magnetic field The configuration design includes but is not limited to symmetrical double ring type, loop double ring type, parallel line type, etc., which can realize different magnetic field distributions in a small area at the same time, which is helpful for experimental variable control and result comparison.
作为可选择的一种实施方式,所述局部磁场为局部稳恒磁场或局部交变磁场。As an optional implementation manner, the local magnetic field is a local steady magnetic field or a local alternating magnetic field.
更进一步地,所述局部稳恒磁场的方向、场强与梯度均可调可表征,分别通过改变金属导线电流的方向、大小和金属导线构型来实现。Furthermore, the direction, field strength and gradient of the local steady magnetic field are all adjustable and characterizable, which is realized by changing the direction, magnitude and configuration of the metal wire current respectively.
更进一步地,所述局部交变磁场的幅值和频率均可调可表征,通过改变金属导线电流的大小和频率来实现。Furthermore, the amplitude and frequency of the local alternating magnetic field are both adjustable and characterizable, which is realized by changing the magnitude and frequency of the metal wire current.
作为可选择的一种实施方式,所述局部磁场的尺度范围小至亚微米级别,大可达毫米级别。As an optional implementation manner, the scale range of the local magnetic field is as small as a submicron level and as large as a millimeter level.
在本实施例中,所述片上局部温度监测装置由亚微米尺度的热电偶阵列制备,位于磁场发生装置的上层,能够将热电偶处的温度转化为金属条带间的电压输出,从而达到测温目的。In this embodiment, the on-chip local temperature monitoring device is made of a submicron-scale thermocouple array, which is located on the upper layer of the magnetic field generating device, and can convert the temperature at the thermocouple into the voltage output between the metal strips, so as to achieve the measurement warm purpose.
作为可选择的一种实施方式,所述热电偶6分布在磁场发生装置9的周围,以监测各代表性位置和细胞新陈代谢的温度变化。As an optional implementation, the thermocouples 6 are distributed around the magnetic field generating device 9 to monitor the temperature changes of representative locations and cell metabolism.
作为可选择的一种实施方式,所述热电偶6采用Pd-Cr热电偶。As an optional implementation, the thermocouple 6 is a Pd-Cr thermocouple.
作为可选择的一种实施方式,所述热电偶6的测温精度达20mK。As an optional implementation, the temperature measurement accuracy of the thermocouple 6 is up to 20mK.
作为可选择的一种实施方式,所述热电偶6的时间分辨率率高,可以实时监测金属导线附近的温度变化。As an optional implementation manner, the thermocouple 6 has a high time resolution and can monitor the temperature change near the metal wire in real time.
为了更好的计算和控制各微磁场构型的局部磁场调控,本实施例为每种微磁场构型设计了局部磁场的磁场强度、方向、梯度的仿真计算软件模型,以根据实际要求调控局部微磁场,如图4和图5(a)-图5(b)分别是为平行线型和圆环型设计的微磁场分布与梯度调控原理示意图。其中,图4是两平行导线间距为20μm,线宽均为10μm,导线内电流为10毫安时,在平行导线垂直截面上不同高度h上的磁场分布情况;图5(a)-图5(b)中,在距离中心点1/4、1/2、3/4的距离上,磁场强度分别上升为4%、24%和90%,即线圈中心区域的磁场分布比较均匀,靠近导线不同位置处的磁场梯度则可调节。In order to better calculate and control the local magnetic field adjustment of each micro-magnetic field configuration, this embodiment designs a simulation calculation software model of the magnetic field strength, direction, and gradient of the local magnetic field for each micro-magnetic field configuration, so as to regulate the local magnetic field according to actual requirements. Micro-magnetic fields, as shown in Fig. 4 and Fig. 5(a)-Fig. 5(b), are schematic diagrams of micro-magnetic field distribution and gradient control principles designed for parallel linear and circular types, respectively. Wherein, Fig. 4 shows that the distance between two parallel conductors is 20 μm, the line width is 10 μm, and when the current in the conductor is 10 mA, the magnetic field distribution on different heights h on the vertical section of the parallel conductors; Fig. 5 (a) - Fig. 5 In (b), at the distances of 1/4, 1/2, and 3/4 from the center point, the magnetic field strength increases to 4%, 24%, and 90% respectively, that is, the magnetic field distribution in the central area of the coil is relatively uniform, close to the wire The magnetic field gradient at different positions is adjustable.
图6(a)-图6(c)、图7(a)-图7(d)、图8(a)-图8(c)是三种典型的微磁场构型及其所形成的多磁场示意图,以图7(a)-图7(d)的对称双环型设计为例,说明多磁场同时实现的原理及应用。Figure 6(a)-Figure 6(c), Figure 7(a)-Figure 7(d), Figure 8(a)-Figure 8(c) are three typical micro-magnetic field configurations and the multi- The schematic diagram of the magnetic field, taking the symmetrical double-ring design in Figure 7(a)-Figure 7(d) as an example, illustrates the principle and application of simultaneous realization of multiple magnetic fields.
在某次细胞磁感应特性的研究中,探究同类细胞在不同磁场强度、方向、梯度下的行为及生理变化。以上研究要求需要满足以下条件:(1)除了直接观测细胞行为,芯片上应具备能实时反映细胞代谢变化的传感器;(2)为确保严格的单一变量,要求在同一观察视场(不超过1平方毫米的范围内)下,同时实现多种磁场分布,磁场实时调控,以及作为对照组的空白磁场。In a study of the magnetic induction characteristics of cells, the behavior and physiological changes of the same kind of cells were explored under different magnetic field strengths, directions, and gradients. The above research requirements need to meet the following conditions: (1) In addition to direct observation of cell behavior, the chip should have sensors that can reflect changes in cell metabolism in real time; In the range of square millimeters), various magnetic field distributions can be realized simultaneously, the magnetic field can be adjusted in real time, and a blank magnetic field is used as a control group.
图7(a)-图7(d)所示的对称双环型的微磁场设计便可满足上述要求:The symmetrical double-ring micro-magnetic field design shown in Figure 7(a)-Figure 7(d) can meet the above requirements:
(1)图7(a)给出了对称双环型微磁场的设计构型与热电偶分布图,4个薄膜热电偶分别制备在微磁场的四个典型区域,以监测不同区域中细胞的温度变化,温度变化反映细胞代谢情况。(1) Figure 7(a) shows the design configuration and thermocouple distribution diagram of the symmetrical double-ring micro-magnetic field. Four thin-film thermocouples are prepared in four typical areas of the micro-magnetic field to monitor the temperature of cells in different areas. Changes in temperature reflect cell metabolism.
(2)图7(b)-图7(d)给出电流的3种方向组合情况下的局部多种磁场分布的实现原理。当电流方向如图7(b)与图7(c)所示,则可以同时实现3种不同的磁场区域,如图7(b)所示,区域1是方向朝下的准均匀磁场,区域2是作为空白对照组的无磁场区,区域3是磁场方向朝上的准均匀磁场,强度相对区域1较弱;当如图7(d)所示的电流方向相反时,则区域1-3的磁场分布会发生改变,即磁场方向通过电流方向调控,磁场强度通过电流大小调控,磁场梯度通过电流方向和大小共同调控。(2) Fig. 7(b)-Fig. 7(d) show the realization principle of various local magnetic field distributions under the combination of three directions of current. When the current direction is shown in Figure 7(b) and Figure 7(c), three different magnetic field regions can be realized at the same time, as shown in Figure 7(b), region 1 is a quasi-uniform magnetic field facing downward, and region 2 is a non-magnetic field area as a blank control group, and area 3 is a quasi-uniform magnetic field with an upward magnetic field direction, and its strength is weaker than that of area 1; when the current direction is opposite as shown in Figure 7 (d), then area 1-3 The distribution of the magnetic field will change, that is, the direction of the magnetic field is regulated by the direction of the current, the strength of the magnetic field is regulated by the magnitude of the current, and the gradient of the magnetic field is regulated by the direction and magnitude of the current.
实施例2Example 2
本实施例提出一种上述实现磁场调控与温度监测的生物芯片的制备方法,包括:This embodiment proposes a preparation method of the aforementioned biochip for magnetic field regulation and temperature monitoring, including:
由亚微米和微米尺度的金属导线制备得到片上局部磁场调控装置;An on-chip local magnetic field control device is prepared from sub-micron and micron-scale metal wires;
由亚微米尺度的热电偶阵列制备得到片上局部温度监测装置;An on-chip local temperature monitoring device is prepared from a submicron-scale thermocouple array;
在基底上设显微观察窗,在显微观察窗内制备片上局部磁场调控装置和片上局部温度监测装置;A microscopic observation window is provided on the substrate, and an on-chip local magnetic field regulation device and an on-chip local temperature monitoring device are prepared in the microscopic observation window;
在局部磁场调控装置和片上局部温度监测装置中间夹绝热层;An insulating layer is sandwiched between the local magnetic field regulating device and the on-chip local temperature monitoring device;
在片上局部温度监测装置上覆盖绝缘层;An insulating layer is covered on the on-chip local temperature monitoring device;
在绝缘层上设细胞培养池。A cell culture pool is arranged on the insulating layer.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it is not a limitation to the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211727360.2A CN116121063B (en) | 2022-12-30 | 2022-12-30 | Biochip for realizing magnetic field regulation and temperature monitoring and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211727360.2A CN116121063B (en) | 2022-12-30 | 2022-12-30 | Biochip for realizing magnetic field regulation and temperature monitoring and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116121063A CN116121063A (en) | 2023-05-16 |
CN116121063B true CN116121063B (en) | 2023-08-04 |
Family
ID=86294997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211727360.2A Active CN116121063B (en) | 2022-12-30 | 2022-12-30 | Biochip for realizing magnetic field regulation and temperature monitoring and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116121063B (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000054882A1 (en) * | 1999-03-15 | 2000-09-21 | Aviva Biosciences Corporation | Individually addressable micro-electromagnetic unit array chips |
EP1462174A1 (en) * | 2003-03-28 | 2004-09-29 | Interuniversitair Microelektronica Centrum Vzw | Method for the controlled transport of magnetic beads and device for executing said method |
AU2004315392A1 (en) * | 2004-01-29 | 2005-08-18 | Narvalus S.R.L. | Biochip electroporator and its use in multi-site, single-cell electroporation |
CN101858886A (en) * | 2010-05-14 | 2010-10-13 | 中山大学 | A kind of marine bacterial virus magnetic sensing detection instrument and method thereof |
CN101879467A (en) * | 2010-06-04 | 2010-11-10 | 武汉大学 | A microfluidic chip controlled by a micromagnetic field and its manufacturing method |
CN102936754A (en) * | 2012-11-22 | 2013-02-20 | 清华大学 | Cellular array chip based on adjustable micromagnetic field |
CN205774568U (en) * | 2016-07-07 | 2016-12-07 | 辽宁工业大学 | A kind of micro flow control chip device |
CN108426650A (en) * | 2018-03-16 | 2018-08-21 | 京东方科技集团股份有限公司 | Temperature-sensing element and temperature-detecting device, temperature checking method including it |
CN109193966A (en) * | 2018-10-12 | 2019-01-11 | 华中科技大学 | A kind of magnet coupled resonant type wireless power transfer of micro-fluidic chip |
CN109746064A (en) * | 2019-01-28 | 2019-05-14 | 武汉纺织大学 | A gradient magnetic field microfluidic chip |
CN110646260A (en) * | 2019-09-24 | 2020-01-03 | 大连海事大学 | A three-dimensional rotating device and method based on AC/DC coupled electric field |
CN111208119A (en) * | 2020-02-25 | 2020-05-29 | 北京京东方传感技术有限公司 | Digital microfluidic chemiluminescence detection chip, detection method and detection device |
CN212669647U (en) * | 2020-01-17 | 2021-03-09 | 中国科学技术大学 | A microfluidic chip for the analysis of the magnetic load of magnetically labeled cells |
CN112877213A (en) * | 2021-03-29 | 2021-06-01 | 中北大学 | Neuron directional growth and nerve terahertz signal excitation integrated chip |
CN113289562A (en) * | 2021-05-28 | 2021-08-24 | 北京京东方技术开发有限公司 | Microfluidic chip, analysis device and control method of microfluidic chip |
CN114471752A (en) * | 2020-10-27 | 2022-05-13 | 京东方科技集团股份有限公司 | Chip and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6798200B2 (en) * | 2002-06-03 | 2004-09-28 | Long-Sheng Fan | Batch-fabricated gradient and RF coils for submicrometer resolution magnetic resonance imaging and manipulation |
-
2022
- 2022-12-30 CN CN202211727360.2A patent/CN116121063B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000054882A1 (en) * | 1999-03-15 | 2000-09-21 | Aviva Biosciences Corporation | Individually addressable micro-electromagnetic unit array chips |
EP1462174A1 (en) * | 2003-03-28 | 2004-09-29 | Interuniversitair Microelektronica Centrum Vzw | Method for the controlled transport of magnetic beads and device for executing said method |
AU2004315392A1 (en) * | 2004-01-29 | 2005-08-18 | Narvalus S.R.L. | Biochip electroporator and its use in multi-site, single-cell electroporation |
CN101858886A (en) * | 2010-05-14 | 2010-10-13 | 中山大学 | A kind of marine bacterial virus magnetic sensing detection instrument and method thereof |
CN101879467A (en) * | 2010-06-04 | 2010-11-10 | 武汉大学 | A microfluidic chip controlled by a micromagnetic field and its manufacturing method |
CN102936754A (en) * | 2012-11-22 | 2013-02-20 | 清华大学 | Cellular array chip based on adjustable micromagnetic field |
CN205774568U (en) * | 2016-07-07 | 2016-12-07 | 辽宁工业大学 | A kind of micro flow control chip device |
CN108426650A (en) * | 2018-03-16 | 2018-08-21 | 京东方科技集团股份有限公司 | Temperature-sensing element and temperature-detecting device, temperature checking method including it |
CN109193966A (en) * | 2018-10-12 | 2019-01-11 | 华中科技大学 | A kind of magnet coupled resonant type wireless power transfer of micro-fluidic chip |
CN109746064A (en) * | 2019-01-28 | 2019-05-14 | 武汉纺织大学 | A gradient magnetic field microfluidic chip |
CN110646260A (en) * | 2019-09-24 | 2020-01-03 | 大连海事大学 | A three-dimensional rotating device and method based on AC/DC coupled electric field |
CN212669647U (en) * | 2020-01-17 | 2021-03-09 | 中国科学技术大学 | A microfluidic chip for the analysis of the magnetic load of magnetically labeled cells |
CN111208119A (en) * | 2020-02-25 | 2020-05-29 | 北京京东方传感技术有限公司 | Digital microfluidic chemiluminescence detection chip, detection method and detection device |
CN114471752A (en) * | 2020-10-27 | 2022-05-13 | 京东方科技集团股份有限公司 | Chip and preparation method thereof |
CN112877213A (en) * | 2021-03-29 | 2021-06-01 | 中北大学 | Neuron directional growth and nerve terahertz signal excitation integrated chip |
CN113289562A (en) * | 2021-05-28 | 2021-08-24 | 北京京东方技术开发有限公司 | Microfluidic chip, analysis device and control method of microfluidic chip |
Also Published As
Publication number | Publication date |
---|---|
CN116121063A (en) | 2023-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3244226B1 (en) | Single chip z-axis linear magnetoresistive sensor assembly with calibration and initialization coils | |
Chen et al. | Development and characterization of surface micromachined, out-of-plane hot-wire anemometer | |
CN101814860B (en) | Vibration-driven composite micropower supply based on piezoelectric effect and electromagnetic induction | |
TW200428475A (en) | Imprint lithography for superconductor devices | |
WO2019201229A1 (en) | 3d direct-writing aluminum oxide ceramic film heat-flow sensor and manufacturing method therefor | |
CN112484800B (en) | Thermal reactor type gas mass flow sensor and preparation method thereof | |
CN103439674A (en) | Minitype orthogonal exciting fluxgate sensor | |
CN116121063B (en) | Biochip for realizing magnetic field regulation and temperature monitoring and preparation method thereof | |
CN101547529B (en) | A micro induction heater | |
CN104614690B (en) | A kind of miniature array fluxgate sensor | |
CN118330518B (en) | Method for manufacturing fluxgate sensor chip and fluxgate sensor chip | |
CN108007580A (en) | High-temperature heat flux sensor based on SiC thermoelectric materials and preparation method thereof | |
CN109437089B (en) | Fabrication process of micro-electric field sensor with cantilever beam structure | |
CN109828223A (en) | A kind of Fbg Sensor For Measuring Magnetic Field calibration system and method | |
CN213544440U (en) | Transmission electron microscope high-resolution in-situ suspended temperature difference pressurizing chip | |
TW202137634A (en) | Field programmable analog array | |
Wang et al. | Silicon molding techniques for integrated power MEMS inductors | |
Liu et al. | Flexible Electromagnetic Tactile Sensor Based on Double‐Layer High‐Density MEMS Coils and Tilted Magnetic Column Array | |
CN111106525B (en) | VECSEL laser chip packaging structure and method for avoiding magnetic field interference | |
CN211182795U (en) | VECSE L laser chip packaging structure capable of avoiding magnetic field interference | |
Mamleyev et al. | Fabrication Process of Conventional and Unconventional 3D Microcoils Based on 2D Array of SU-8 Microposts Structure | |
Wang et al. | Development of bismuth metallic Hall sensors for the HL-2A tokamak magnetic measurements | |
Liu et al. | A novel preparation method of micron Ta2O5 film based on temperature-controlled thermal bubble resistor and its properties study | |
CN214374466U (en) | Inductive reactance type oil liquid detection device with polymerization magnetic field | |
CN214743496U (en) | MEMS mass flow controller based on electromagnetic control valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |