CN116115828B - 一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用 - Google Patents

一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用 Download PDF

Info

Publication number
CN116115828B
CN116115828B CN202310149341.4A CN202310149341A CN116115828B CN 116115828 B CN116115828 B CN 116115828B CN 202310149341 A CN202310149341 A CN 202310149341A CN 116115828 B CN116115828 B CN 116115828B
Authority
CN
China
Prior art keywords
gelatin
chitosan
lignosulfonate
hydrogel
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310149341.4A
Other languages
English (en)
Other versions
CN116115828A (zh
Inventor
金永灿
谷一辉
姜波
吴文娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202310149341.4A priority Critical patent/CN116115828B/zh
Publication of CN116115828A publication Critical patent/CN116115828A/zh
Application granted granted Critical
Publication of CN116115828B publication Critical patent/CN116115828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/10Materials or treatment for tissue regeneration for reconstruction of tendons or ligaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种壳聚糖‑木质素磺酸盐‑明胶有机水凝胶及其制备方法与应用,以壳聚糖和明胶作为凝胶骨架,通过木质素磺酸盐(SL)耦合加强凝胶网络结构,从而改善壳聚糖‑明胶复合水凝胶的柔韧性和机械性能。本发明通过木质素磺酸盐和乙二醇改善的水凝胶具有高柔韧性、高机械性能的特点,有望作为一种新型的生物医学承重材料服务于人体韧带,软骨和细胞培养支架等领域。本发明的原料来源丰富,成本低廉,制备工艺简单,可实施性强,在组织工程、细胞支架,柔性能源器件等领域的应用存在巨大潜力。

Description

一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与 应用
技术领域
本发明属于生物医学功能材料领域,具体涉及一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用。
背景技术
水凝胶的设计和建造在生物医学领域的广泛应用,如药物输送、细胞支架和组织工程,已经引起了广泛的关注。由于生物质材料固有的生物相容性和生物可降解性,由基于纤维素、木质素、半纤维素、蛋白质和甲壳素的物理交联网络组成的水凝胶正在为多功能的应用场景铺平道路。然而,大多数生物质凝胶表现出较弱的机械性能,如低断裂强度、韧性和模量。因此,生物质凝胶的应用主要是不需要强大的机械性能,如伤口敷料,药物输送和传感器。改善水凝胶的机械性能可以拓宽其在生物医学承重材料中的应用。到目前为止,满足生物医学应用的所有要求的承重材料的合成仍然是一个很大的挑战。生物相容性和生物降解性对承重材料至关重要,而且材料还必须有足够的强度,以便能够抵抗物理压力并支持病人的正常活动。
近年来,人们看到提供了多种方法来改善水凝胶的结构,以增加其强度和韧性。其中,最有效的手段是提高网络的均匀性和利用能量消散机制。构建均匀的凝胶网络可以避免应力集中,在一定程度上提高抗压强度和韧性。由于缺乏有效的能量耗散机制,对韧性的改善是有限的。能量耗散是利用非共价键之间的弱相互作用,一个典型的案例是构建具有异质结构和互补特性的双网凝胶。高度交联的刚性框架通过断键有效地耗散能量,而稀疏交联的韧性框架可以承受广泛的应变,然而增加刚性往往以牺牲韧性为代价。
发明内容
发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供一种通过构建非共价键的连接网络来形成坚硬的壳聚糖-木质素磺酸盐-明胶(C-SL-G)有机水凝胶,形成具有相同或相似能量耗散机制的多个网络,拓展其在生物医学承重材料(如韧带、软骨和细胞培养支架)的应用。
为了实现上述目的,本发明采取的技术方案如下:
一种壳聚糖-木质素磺酸盐-明胶(C-SL-G)有机水凝胶,以壳聚糖和明胶作为凝胶骨架,通过木质素磺酸盐(SL)耦合加强凝胶网络结构,从而改善壳聚糖-明胶复合水凝胶的柔韧性和机械性能。
具体地,本发明壳聚糖-木质素磺酸盐-明胶(C-SL-G)有机水凝胶,它的压缩强度不低于20MPa,压缩韧性不低于1.54MJ/m3,压缩模量不低于0.06MPa。
进一步地,本发明还提供上述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,包括如下步骤:
(1)制备壳聚糖明胶水凝胶;
(2)将木质素磺酸盐溶于乙二醇中,得到木质素磺酸盐乙二醇溶液;
(3)将步骤(1)壳聚糖明胶水凝胶浸泡于步骤(2)得到的木质素磺酸盐乙二醇溶液中,充分置换反应即得。
具体地,步骤(1)中,所述的壳聚糖明胶水凝胶通过如下步骤制备:
S1:将壳聚糖和明胶一同加入到水中,充分搅拌得到壳聚糖明胶水溶液;
S2:向步骤S1中获得的壳聚糖明胶水溶液中加入乙酸,搅拌均匀后,转移至模具中并除泡,经凝胶化即得。
优选地,步骤S1中,所述的壳聚糖脱乙酰度≥95%,粘度100~200mPa.s;
所述的明胶为微生物学用明胶,胶强度~250g Bloom,分子量范围是10000~70000;
壳聚糖和明胶在水中的总质量浓度为16~20%,壳聚糖的质量浓度在2~4%,明胶的质量浓度在14~16%。
优选地,步骤S2中,所述乙酸的添加量为壳聚糖明胶水溶液体积的1~2%;采用机械搅拌均匀,搅拌温度45~65℃,搅拌转速200~400r/min,搅拌时间10~30min;采用加热除泡的方式,温度控制在45~65℃,随后密封放置6~12h。
优选地,步骤(2)中,所述木质素磺酸盐的磺化度为1.2~2.9mmol/g。
优选地,步骤(2)中,所述木质素磺酸盐乙二醇溶液中,木质素磺酸盐的浓度为0.001g/mL~0.1g/ml,进一步地优选为0.01g/mL。
优选地,步骤(3)中,将得到的壳聚糖明胶水凝胶浸泡于木质素磺酸盐乙二醇溶液中密封保存,浸泡时环境温度控制在20~30℃,浸泡时间不少于6h。
更进一步地,本发明还要求保护上述壳聚糖-木质素磺酸盐-明胶有机水凝胶在作为生物医学承重材料中的用途。
有益效果:
本发明在木质素磺酸盐乙二醇(SL-EG)溶液中,应用可行的“浸泡”方法将弱的壳聚糖明胶复合水凝胶转化为硬而韧的壳聚糖-木质素磺酸盐-明胶(C-SL-G)连网有机水凝胶。木质素磺酸盐(SL)含有相当数量的磺酸和羟基,可以通过氢键和静电作用与壳聚糖或明胶中的氨基形成两个双网络,并通过与壳聚糖和明胶中的氨基同时作用耦合加强凝胶网络。壳聚糖、明胶和SL表现出良好的生物相容性和生物降解性,静电和氢键的协同可恢复能量耗散机制为开发坚韧的联合网络生物医学水凝胶提供了一个新的方向,有望作为一种新型的生物医学承重材料服务于人体韧带,软骨和细胞培养支架等领域。并且原料来源丰富,成本低廉,制备工艺简单,可实施性强,在组织工程、细胞支架,柔性能源器件等领域的应用存在巨大潜力。
附图说明
下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。
图1为实施例1制备的C-SL-G有机水凝胶的压缩应力-应变曲线。
图2为实施例1制备的C-SL-G有机水凝胶的压缩模量和韧性。
图3为实施例1制备的C-SL-G有机水凝胶在恒定应变(ε=0.8)下,不同的松弛时间的循环应力应变曲线。
图4为实施例1制备的C-SL-G有机水凝胶在恒定应变(ε=0.8)下,不同的松弛时间对应的总韧性和耗散韧性。
图5为实施例1制备的C-SL-G有机水凝胶在恒定应变(ε=0.8)下的50次循环应力应变曲线。
图6为实施例1制备的C-SL-G有机水凝胶的拉伸应力-应变曲线。
图7为实施例1制备的C-SL-G有机水凝胶的拉伸模量和韧性。
图8为实施例2制备的C-SL-G有机水凝胶的压缩应力-应变曲线。
图9为实施例2制备的C-SL-G有机水凝胶的压缩模量和韧性。
图10为实施例2制备的C-SL-G有机水凝胶的拉伸应力-应变曲线。
图11为实施例2制备的C-SL-G有机水凝胶的拉伸模量和韧性。
图12为实施例1、2制备的C-SL-G有机水凝胶的细胞毒性。
具体实施方式
根据下述实施例,可以更好地理解本发明。
实施例1
(1)制备壳聚糖明胶水凝胶
将所需数量的壳聚糖(3%,w/v)和明胶(15%,w/w)溶解在无菌蒸馏水中,在60℃下搅拌,然后加入乙酸(1%,v/v),继续搅拌10min。然后将溶液倒入特氟隆模具中,密封并置于60℃的烤箱中加热,以去除气泡。随后,将原壳聚糖明胶复合水凝胶在8℃下保持48h,形成原壳聚糖明胶复合水凝胶。
(2)制备木质素磺酸盐(SL)
SL1是通过磺化针叶木质素大分子中芳香环的C5位置而制备的。简单地说,将10g碱木质素放入高压玻璃烧瓶中,加入50mL氢氧化钠溶液(0.8M),在400转/分的磁力搅拌下溶解,然后加入1.5mL甲醛,在70℃磁力搅拌(400r/min)1.5h后,加入2g亚硫酸钠,在95℃加热3h,得到SL1。SL1中磺酸基的含量为2.9mmol/g。
(3)磺化度表征木质素磺甲基化程度
将上述制备的SL1溶液稀释至5wt.%,依次通过阴阳离子交换树脂,以除去溶液中低分子无机酸和钠离子。用0.3mol/L NaOH溶液对1g/L SL1溶液进行电导滴定,在电导率NaOH用量滴定曲线上出现磺酸基拐点。计算得出磺甲基化木质素磺化度为2.9mmol/g。
(4)制备质素磺酸盐乙二醇(SL-EG)溶液
将步骤(2)得到的SL溶于EG中,用保鲜膜密封并在室温下磁力搅拌4h以上,所制备的SL-EG溶液浓度为0.001~0.1g/mL。
(5)制备壳聚糖-磺化木质素-明胶(C-SL-G)有机水凝胶
将步骤(1)预先形成的水凝胶在室温下浸入步骤(4)获得的SL-EG溶液(0.001~0.1g/mL)6h,得到C-SL-G有机水凝胶。
(6)压缩测试表征水凝胶的力学性能
表1是实施例1中不同浓度下制备的C-SL-G有机水凝胶的压缩强度、模量和韧性。
表1
C-G C-G-EG C-SL1-0.001-G C-SL1-0.005-G C-SL1-0.01-G C-SL1-0.05-G C-SL1-0.01-G
压缩强度(MPa) 0.52 12.9 20 40.5 53.3 35.2 23.8
压缩弹性模量(MPa) 0.019 0.052 0.06 0.1 0.2 0.29 0.076
压缩韧性(MJ/m3) 0.05 0.87 1.63 3.2 3.5 2.8 1.54
图1、2分别为实施例1制备的C-SL-G水凝胶的压缩应力-应变曲线及其压缩韧性和压缩模量,压缩速度保持在5mm/min。从图可知,水凝胶的抗压强度在应变为0.99时达到最大值53.3MPa,比原来的壳聚糖明胶水凝胶(0.52MPa)高约100倍。压缩韧性也得到了明显的提高,例如,壳聚糖明胶水凝胶的压缩韧性从0.05M/m3提高到C-SL1-0.01-G和C-SL1-0.05-G有机水凝胶的3.5MJ/m3和2.8MJ/m3,分别提高了约70和56倍。壳聚糖明胶复合水凝胶的压缩弹性模量从0.019MPa增加到C-SL1-0.01-G和C-SL1-0.05-G有机水凝胶的0.2MPa和0.29MPa。
图3、4分别为实施例1制备的C-SL-G水凝胶在恒定应变下(0.8)不同松弛时间的循环压缩应力-应变曲线及其对应的总韧性和耗散韧性,图5为实施例1制备的C-SL-G有机水凝胶在恒定应变下(0.8)的50次循环应力应变曲线,我们用后一条滞后曲线相对于前一条滞后曲线的面积来表示恢复效率。从图可知,在连续五个不同的时间内,水凝胶的恢复能力始终保持在较高的水平(>88%)。
图6、7分别为实施例1制备的C-SL-G水凝胶的拉伸应力-应变曲线及其拉伸韧性和拉伸模量,拉伸速度保持在10mm/min。从图可知,C-SL-G有机水凝胶的最佳应力值为0.34MPa,应变达到230%。与壳聚糖明胶水凝胶(0.0097MPa)和C-G-EG水凝胶(0.05MPa)相比,拉伸强度分别达到34倍和6倍以上的提升,应变增加2~3倍。其中,C-G-EG水凝胶为将原始壳聚糖明胶(C-G)水凝胶直接浸泡在乙二醇溶液中,不含木质素磺酸盐。
此外,C-G-EG、C-SL1-0.01-G和C-SL1-0.05-G有机水凝胶的拉伸韧性分别从0.55MJ/m3提高到2.5MJ/m3、25.6MJ/m3和31.0MJ/m3,增强了约4.5倍、46倍和56倍。C-G-EG、C-SL1-0.01-G和C-SL1-0.05-G有机水凝胶的弹性模量从0.25KPa增加到0.63KPa、0.86KPa、1.52KPa。
综上可知,C-SL-G有机水凝胶具有优异的强韧性和抗疲劳性能。
(7)MTT测试表征水凝胶的细胞毒性
图12为实施例1制备的C-SL-G有机水凝胶的细胞存活率柱状图。从图中可知,在C-SL-G有机水凝胶上培养24和48h的小鼠胚胎成纤维细胞3T3-L1显示出很高的存活率。从数量上看,在C-SL1-0.01-G有机水凝胶上培养24和48h的小鼠胚胎成纤维细胞的存活率分别为86.8%、98.5%。细胞存活率普遍高于85%,综上可知,生物衍生的C-SL-G有机水凝胶在体外具有良好的细胞相容性。
实施例2
(1)制备壳聚糖明胶水凝胶
将所需数量的壳聚糖(3%,w/v)和明胶(15%,w/w)溶解在无菌蒸馏水中,在60℃下搅拌,然后加入乙酸(1%,v/v),继续搅拌10min。然后将溶液倒入特氟隆模具中,密封并置于60℃的烤箱中加热,以去除气泡。随后,将原壳聚糖明胶复合水凝胶在8℃下保持48h,形成原壳聚糖明胶复合水凝胶。
(2)制备木质素磺酸盐(SL)
SL2是通过对芳香环C5的磺化和对碱木质素大分子中的侧链C的磺化来制备的。简而言之,将0.4mL甲醛(37%)、5.0g亚硫酸钠和10g碱木质素与30mL的去离子水在一个100mL的不锈钢反应器中混合。在油浴中把反应器加热到140℃,并保持3h,得到SL2。其中磺酸基的含量为1.2mmol/g。
(3)磺化度表征木质素磺甲基化程度
将上述制备的SL2溶液稀释至5wt.%,依次通过阴阳离子交换树脂,以除去溶液中低分子无机酸和钠离子。用0.3mol/L NaOH溶液对1g/L SL2溶液进行电导滴定,在电导率NaOH用量滴定曲线上出现磺酸基拐点。计算得出磺甲基化木质素磺化度为1.2mmol/g。
(4)制备质素磺酸盐乙二醇(SL-EG)溶液
将步骤(2)得到的SL溶于EG中,用保鲜膜密封并在室温下磁力搅拌4h以上,所制备的SL-EG溶液浓度为0.01~0.05g/mL。
(5)制备壳聚糖-磺化木质素-明胶(C-SL-G)有机水凝胶
将步骤(1)预先形成的水凝胶在室温下浸入步骤(4)获得的SL-EG溶液(0.01~0.05g/mL)6h,得到C-SL-G有机水凝胶。
(6)压缩测试表征水凝胶的力学性能
图8、9分别为实施例2制备的C-SL-G有机水凝胶的压缩应力-应变曲线及其压缩韧性和压缩模量,压缩速度保持在5mm/min。从图可知,水凝胶的抗压强度在应变为0.99时达到最大值48.3MPa,比原来的壳聚糖明胶水凝胶(0.52MPa)高约93倍。压缩韧性也得到了明显的提高,例如,壳聚糖明胶水凝胶的压缩韧性从0.05MJ/m3提高到C-SL2-0.01-G和C-SL2-0.05-G有机水凝胶的3.16MJ/m3和2.25MJ/m3,分别提高了约63和45倍。壳聚糖明胶复合水凝胶的压缩弹性模量从0.019MPa增加到C-SL2-0.01-G和C-SL2-0.05-G有机水凝胶的0.22MPa和0.32MPa,分别提高了约12和17倍。
图10、11分别为实施例1制备的C-SL-G有机水凝胶的拉伸应力-应变曲线及其拉伸韧性和拉伸模量,拉伸速度保持在10mm/min。从图可知,C-SL-G有机水凝胶的最佳应力值为0.30MPa,应变达到210%。与壳聚糖明胶水凝胶(0.01MPa)和C-G-EG水凝胶(0.05MPa)相比,拉伸强度分别达到30倍和6倍以上的提升,应变增加2~3倍。此外,C-G-EG、C-SL2-0.01-G和C-SL2-0.05-G有机水凝胶的拉伸韧性分别从0.55MJ/m3提高到2.5MJ/m3、18.7MJ/m3和22.7MJ/m3,增强了约4.5倍、34倍和41倍。C-G-EG、C-SL2-0.01-G和C-SL2-0.05-G有机水凝胶的弹性模量从0.25KPa增加到0.63KPa、1.06KPa、1.77KPa,增强了约2.5倍、4.2倍和7倍。
综上可知,C-SL2-G有机水凝胶具有优异的强韧性。
(6)MTT测试表征水凝胶的细胞毒性
图12为实施例2制备的壳聚糖-磺化木质素-明胶有机水凝胶的细胞存活率柱状图。从图中可知,在C-SL2-G有机水凝胶上培养24和48h的小鼠胚胎成纤维细胞3T3-L1显示出很高的存活率。从数量上看,在C-SL2-0.01-G有机水凝胶上培养24和48h的小鼠胚胎成纤维细胞的存活率分别为102.9%和118.1%。细胞存活率普遍高于100%,综上可知,生物衍生的C-SL-G有机水凝胶在体外具有良好的细胞相容性。
本发明提供了一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用的思路及方法,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本实施例中未明确的各组成部分均可用现有技术加以实现。

Claims (9)

1.一种壳聚糖-木质素磺酸盐-明胶有机水凝胶,其特征在于,以壳聚糖和明胶作为凝胶骨架,通过木质素磺酸盐耦合加强凝胶网络结构;所述的壳聚糖-木质素磺酸盐-明胶有机水凝胶通过如下步骤制备得到:
(1)制备壳聚糖明胶水凝胶;
(2)将木质素磺酸盐溶于乙二醇中,得到木质素磺酸盐乙二醇溶液;
(3)将步骤(1)壳聚糖明胶水凝胶浸泡于步骤(2)得到的木质素磺酸盐乙二醇溶液中,充分反应即得;
所述的壳聚糖-木质素磺酸盐-明胶有机水凝胶的压缩强度不低于20 MPa,压缩韧性不低于1.54 MJ/m3,压缩模量不低于0.06 MPa。
2.权利要求1所述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,其特征在于,包括如下步骤:
(1)制备壳聚糖明胶水凝胶;
(2)将木质素磺酸盐溶于乙二醇中,得到木质素磺酸盐乙二醇溶液;
(3)将步骤(1)壳聚糖明胶水凝胶浸泡于步骤(2)得到的木质素磺酸盐乙二醇溶液中,充分反应即得。
3.根据权利要求2所述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,其特征在于,步骤(1)中,所述的壳聚糖明胶水凝胶通过如下步骤制备:
S1:将壳聚糖和明胶一同加入到水中,充分搅拌得到壳聚糖明胶水溶液;
S2:向步骤S1中获得的壳聚糖明胶水溶液中加入乙酸,搅拌均匀后,转移至模具中并除泡,经凝胶化即得。
4.根据权利要求3所述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,其特征在于,步骤S1中,所述的壳聚糖脱乙酰度≥95%,粘度100~200 mPa.s;
所述的明胶为微生物学用明胶,胶强度~250 g Bloom,分子量范围是10000~70000;
壳聚糖和明胶在水中的总质量浓度为16~20%;其中,壳聚糖的质量浓度在2~4%,明胶的质量浓度在14~16%。
5.根据权利要求3所述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,其特征在于,步骤S2中,所述乙酸的添加量为壳聚糖明胶水溶液体积的1~2 %;采用机械搅拌均匀,搅拌温度45~65 ℃,搅拌转速200~400 r/min,搅拌时间10~30 min;采用加热的方式除泡,温度控制在45~65 ℃,随后密封放置6~12 h。
6.根据权利要求2所述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,其特征在于,步骤(2)中,所述木质素磺酸盐的磺化度在1.2~2.9 mmol/g。
7.根据权利要求2所述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,其特征在于,步骤(2)中,所述木质素磺酸盐乙二醇溶液中,木质素磺酸盐的浓度为0.001~0.1g/ml。
8.根据权利要求2所述壳聚糖-木质素磺酸盐-明胶有机水凝胶的制备方法,其特征在于,步骤(3)中,将得到的壳聚糖明胶水凝胶浸泡于木质素磺酸盐乙二醇溶液中密封保存,浸泡时环境温度控制在20~30 ℃,浸泡时间不少于6 h。
9.权利要求1所述壳聚糖-木质素磺酸盐-明胶有机水凝胶在制备人体韧带、软骨或细胞培养支架中的用途。
CN202310149341.4A 2023-02-22 2023-02-22 一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用 Active CN116115828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310149341.4A CN116115828B (zh) 2023-02-22 2023-02-22 一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310149341.4A CN116115828B (zh) 2023-02-22 2023-02-22 一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN116115828A CN116115828A (zh) 2023-05-16
CN116115828B true CN116115828B (zh) 2024-01-19

Family

ID=86302736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310149341.4A Active CN116115828B (zh) 2023-02-22 2023-02-22 一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116115828B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117183041B (zh) * 2023-07-11 2024-06-07 南京林业大学 明胶-木质素磺酸木质复合声学振膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110118489A1 (en) * 2008-05-22 2011-05-19 Schmidt Jacob J Membrane precursors and membranes formed therefrom
CN110092921A (zh) * 2019-05-22 2019-08-06 陕西科技大学 一种力学性能可调控的高强度木质素水凝胶的制备方法
CN114344565A (zh) * 2022-01-04 2022-04-15 陕西科技大学 一种壳聚糖-明胶骨修复支架及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110118489A1 (en) * 2008-05-22 2011-05-19 Schmidt Jacob J Membrane precursors and membranes formed therefrom
CN110092921A (zh) * 2019-05-22 2019-08-06 陕西科技大学 一种力学性能可调控的高强度木质素水凝胶的制备方法
CN114344565A (zh) * 2022-01-04 2022-04-15 陕西科技大学 一种壳聚糖-明胶骨修复支架及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Controlled enzymatic hydrolysis and synthesis of lignin cross-linked chitosan functional hydrogels;Beer B, 等;INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES;第161卷;1440-1446 *
Tailoring Physical Properties of Dual-Network Acrylamide Hydrogel Composites by Engineering Molecular Structures of the Cross-linked Network;Son D, 等;ACS OMEGA;第7卷(第34期);30028-30039 *

Also Published As

Publication number Publication date
CN116115828A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
Zhu et al. Research progress in bio-based self-healing materials
CN116115828B (zh) 一种壳聚糖-木质素磺酸盐-明胶有机水凝胶及其制备方法与应用
Li et al. Robust protein hydrogels from silkworm silk
Xie et al. A fully biobased encapsulant constructed of soy protein and cellulose nanocrystals for flexible electromechanical sensing
CN106188442B (zh) 一种壳聚糖衍生物水凝胶及其制备方法
Zhou et al. Recent development in applications of cellulose nanocrystals for advanced polymer-based nanocomposites by novel fabrication strategies
Zhang et al. Starch-based rehealable and degradable bioplastic enabled by dynamic imine chemistry
CN111195508B (zh) 一种结构有序壳聚糖/纳米纤维素复合气凝胶及其制备方法
CN112957525B (zh) 一种纳米羟基磷灰石/丝素蛋白/纤维素复合气凝胶及其制备方法
CN113150337B (zh) 一种基于磷酸溶液再生纤维素膜及其制备方法
CN109734842A (zh) 一种透明导电柔性细菌纤维素复合材料及其制备方法
CN110669231B (zh) 一种高强韧仿生肌肉水凝胶材料及其制备方法和应用
CN108252081B (zh) 一种丝瓜络/碳基纳米颗粒协同改性聚合物导电复合材料的制备方法及应用
CN110746616A (zh) 一种含苯硼酸的纤维素水凝胶及其制备方法和应用
Dai et al. Fabrication of anisotropic silk fibroin-cellulose nanocrystals cryogels with tunable mechanical properties, rapid swelling, and structural recoverability via a directional-freezing strategy
Gong et al. Preparation of hemicellulose nanoparticle-containing ionic hydrogels with high strength, self-healing, and UV resistance and their applications as strain sensors and asymmetric pressure sensors
CN112661988A (zh) 一种无离子交联的海藻酸钠互穿网络水凝胶的制备方法
CN113292743B (zh) 一种可注射高耐压高强度抗冻京尼平交联明胶水凝胶及其制备方法
Ju et al. Strong silk fibroin/PVA/chitosan hydrogels with high water content inspired by straw rammed earth brick structures
Yang et al. From biomass to vitrimers: Latest developments in the research of lignocellulose, vegetable oil, and naturally-occurring carboxylic acids
CN113788971A (zh) 一种脱蛋白天然橡胶/壳聚糖复合膜及其制备方法
CN110904688A (zh) 一种纤维表面处理的环保浸渍体系及其制备方法
CN111363191A (zh) 一种微观形貌可控的壳聚糖气凝胶及其制备方法
CN111607844A (zh) 一种基于改性透明质酸的超分子纳米纤维的制备方法
CN115044078A (zh) 一种木质素/壳聚糖季铵盐复合膜及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant