CN116069100A - Band gap reference circuit, chip and electronic equipment - Google Patents
Band gap reference circuit, chip and electronic equipment Download PDFInfo
- Publication number
- CN116069100A CN116069100A CN202211702446.XA CN202211702446A CN116069100A CN 116069100 A CN116069100 A CN 116069100A CN 202211702446 A CN202211702446 A CN 202211702446A CN 116069100 A CN116069100 A CN 116069100A
- Authority
- CN
- China
- Prior art keywords
- transistor
- coupled
- electrode
- voltage
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
- G05F1/561—Voltage to current converters
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
技术领域technical field
本公开的实施例涉及集成电路技术领域,具体地,涉及带隙基准电路、芯片及电子设备。Embodiments of the present disclosure relate to the technical field of integrated circuits, in particular, to bandgap reference circuits, chips and electronic devices.
背景技术Background technique
带隙基准电路作为对温度变化不敏感的基准源,被广泛应用于集成电路中。在带隙基准电路内部,通过正温度系数电压/电流和负温度系数电压/电流的叠加,可以实现较低温度系数的电压/电流。然而现有的带隙基准电路内部存在非线性温度系数的电压/电流。为了实现更低温度系数的电压/电流,除了对线性温度系数项进行补偿外,还需要进行高阶曲率的温度补偿。Bandgap reference circuits are widely used in integrated circuits as reference sources that are insensitive to temperature changes. Inside the bandgap reference circuit, a voltage/current with a lower temperature coefficient can be realized by superimposing the voltage/current with a positive temperature coefficient and the voltage/current with a negative temperature coefficient. However, there is a voltage/current with a nonlinear temperature coefficient inside the existing bandgap reference circuit. In order to achieve a voltage/current with a lower temperature coefficient, in addition to compensating for the linear temperature coefficient term, temperature compensation for high-order curvature is also required.
发明内容Contents of the invention
本文中描述的实施例提供了一种带隙基准电路、芯片及电子设备。Embodiments described herein provide a bandgap reference circuit, chip and electronic device.
根据本公开的第一方面,提供了一种带隙基准电路。该带隙基准电路包括:带隙基准核心电路、电流镜像电路、电压控制电路、电流源电路、第一分流电路、以及第二分流电路。其中,带隙基准核心电路被配置为:生成核心电流,并根据核心电流生成基准电压。电流镜像电路被配置为:生成核心电流的镜像电流,并经由第一节点向电压控制电路提供镜像电流。电压控制电路被配置为:使得第一节点的电压具有负温度系数,并根据镜像电流来控制第一节点的电压的温度变化率。电流源电路被配置为:生成恒定电流,并经由第二节点向第一分流电路和第二分流电路二者共同提供恒定电流。第一分流电路被配置为:根据第三节点的电压和恒定电流来生成第一分流。其中,第三节点是带隙基准核心电路内具有负温度系数的节点。第二分流电路被配置为:根据第一节点的电压和恒定电流来生成第二分流,并向带隙基准核心电路提供第二分流以使得核心电流被减小第二分流的大小。其中,第三节点的电压的温度变化率小于第一节点的电压的温度变化率,从而使得第二分流具有正温度系数。According to a first aspect of the present disclosure, a bandgap reference circuit is provided. The bandgap reference circuit includes: a bandgap reference core circuit, a current mirror circuit, a voltage control circuit, a current source circuit, a first shunt circuit, and a second shunt circuit. Wherein, the bandgap reference core circuit is configured to: generate a core current, and generate a reference voltage according to the core current. The current mirror circuit is configured to: generate a mirror current of the core current, and provide the mirror current to the voltage control circuit via the first node. The voltage control circuit is configured to make the voltage of the first node have a negative temperature coefficient, and to control the temperature change rate of the voltage of the first node according to the mirror current. The current source circuit is configured to generate a constant current and provide the constant current to both the first shunt circuit and the second shunt circuit in common via the second node. The first shunt circuit is configured to generate a first shunt according to the voltage of the third node and the constant current. Wherein, the third node is a node with a negative temperature coefficient in the bandgap reference core circuit. The second shunt circuit is configured to: generate a second shunt according to the voltage of the first node and the constant current, and provide the second shunt to the bandgap reference core circuit so that the core current is reduced by the magnitude of the second shunt. Wherein, the temperature change rate of the voltage at the third node is smaller than the temperature change rate of the voltage at the first node, so that the second shunt has a positive temperature coefficient.
在本公开的一些实施例中,带隙基准核心电路包括:第一晶体管至第五晶体管、第一电阻器至第四电阻器、以及运放。其中,第一晶体管的控制极耦接第二晶体管的控制极和运放的输出端。第一晶体管的第一极耦接第一电压端。第一晶体管的第二极耦接运放的第一输入端、第一电阻器的第一端和第二电阻器的第一端。第二晶体管的第一极耦接第一电压端。第二晶体管的第二极耦接运放的第二输入端、第三电阻器的第一端以及第四晶体管的控制极和第二极。第三晶体管的控制极耦接第三晶体管的第二极和第二电阻器的第二端。第三晶体管的第一极耦接第二电压端。第四晶体管的第一极耦接第二电压端。第一电阻器的第二端耦接第二电压端。第三电阻器的第二端耦接第二电压端。第五晶体管的控制极耦接第一晶体管的控制极。第五晶体管的第一极耦接第一电压端。第五晶体管的第二极耦接第四电阻器的第一端和输出电压端。第四电阻器的第二端耦接第二电压端。其中,第三节点是运放的任意一个输入端。In some embodiments of the present disclosure, the bandgap reference core circuit includes: first to fifth transistors, first to fourth resistors, and an operational amplifier. Wherein, the control electrode of the first transistor is coupled to the control electrode of the second transistor and the output terminal of the operational amplifier. The first pole of the first transistor is coupled to the first voltage end. The second pole of the first transistor is coupled to the first input terminal of the operational amplifier, the first terminal of the first resistor and the first terminal of the second resistor. The first pole of the second transistor is coupled to the first voltage end. The second pole of the second transistor is coupled to the second input terminal of the operational amplifier, the first terminal of the third resistor, and the control pole and the second pole of the fourth transistor. The control electrode of the third transistor is coupled to the second electrode of the third transistor and the second terminal of the second resistor. The first pole of the third transistor is coupled to the second voltage end. The first pole of the fourth transistor is coupled to the second voltage end. The second end of the first resistor is coupled to the second voltage end. The second end of the third resistor is coupled to the second voltage end. The control electrode of the fifth transistor is coupled to the control electrode of the first transistor. The first pole of the fifth transistor is coupled to the first voltage end. The second pole of the fifth transistor is coupled to the first terminal of the fourth resistor and the output voltage terminal. The second end of the fourth resistor is coupled to the second voltage end. Wherein, the third node is any input terminal of the operational amplifier.
在本公开的一些实施例中,电流镜像电路包括:第六晶体管。其中,第六晶体管的控制极耦接第一晶体管的控制极。第六晶体管的第一极耦接第一电压端。第六晶体管的第二极耦接第一节点。In some embodiments of the present disclosure, the current mirror circuit includes: a sixth transistor. Wherein, the control electrode of the sixth transistor is coupled to the control electrode of the first transistor. The first pole of the sixth transistor is coupled to the first voltage terminal. The second pole of the sixth transistor is coupled to the first node.
在本公开的一些实施例中,电压控制电路包括:第七晶体管。其中,第七晶体管的控制极耦接第七晶体管的第二极。第七晶体管的第一极耦接第二电压端。In some embodiments of the present disclosure, the voltage control circuit includes: a seventh transistor. Wherein, the control electrode of the seventh transistor is coupled to the second electrode of the seventh transistor. The first pole of the seventh transistor is coupled to the second voltage terminal.
在本公开的一些实施例中,电流源电路包括:第八晶体管。其中,第八晶体管的控制极耦接第一晶体管的控制极。第八晶体管的第一极耦接第一电压端。第八晶体管的第二极耦接第二节点。In some embodiments of the present disclosure, the current source circuit includes: an eighth transistor. Wherein, the control electrode of the eighth transistor is coupled to the control electrode of the first transistor. The first pole of the eighth transistor is coupled to the first voltage terminal. The second pole of the eighth transistor is coupled to the second node.
在本公开的一些实施例中,第一分流电路包括:第九晶体管。其中,第九晶体管的控制极耦接第三节点。第九晶体管的第一极耦接第二节点。In some embodiments of the present disclosure, the first shunt circuit includes: a ninth transistor. Wherein, the control electrode of the ninth transistor is coupled to the third node. The first pole of the ninth transistor is coupled to the second node.
第九晶体管的第二极耦接第一节点。The second pole of the ninth transistor is coupled to the first node.
在本公开的一些实施例中,第二分流电路包括:第十晶体管和第十一晶体管。其中,第十晶体管的控制极耦接第一节点。第十晶体管的第一极耦接第二节点。第十晶体管的第二极耦接运放的第二输入端。第十一晶体管的控制极耦接第一节点。第十一晶体管的第一极耦接第二节点。第十一晶体管的第二极耦接运放的第一输入端。In some embodiments of the present disclosure, the second shunt circuit includes: a tenth transistor and an eleventh transistor. Wherein, the control electrode of the tenth transistor is coupled to the first node. The first pole of the tenth transistor is coupled to the second node. The second pole of the tenth transistor is coupled to the second input end of the operational amplifier. The control electrode of the eleventh transistor is coupled to the first node. The first pole of the eleventh transistor is coupled to the second node. The second pole of the eleventh transistor is coupled to the first input terminal of the operational amplifier.
根据本公开的第二方面,提供了一种带隙基准电路。该带隙基准电路包括:第一晶体管至第十一晶体管、第一电阻器至第四电阻器、以及运放。其中,第一晶体管的控制极耦接第二晶体管的控制极和运放的输出端。第一晶体管的第一极耦接第一电压端。第一晶体管的第二极耦接运放的第一输入端、第一电阻器的第一端和第二电阻器的第一端。第二晶体管的第一极耦接第一电压端。第二晶体管的第二极耦接运放的第二输入端、第三电阻器的第一端以及第四晶体管的控制极和第二极。第三晶体管的控制极耦接第三晶体管的第二极和第二电阻器的第二端。第三晶体管的第一极耦接第二电压端。第四晶体管的第一极耦接第二电压端。第一电阻器的第二端耦接第二电压端。第三电阻器的第二端耦接第二电压端。第五晶体管的控制极耦接第一晶体管的控制极。第五晶体管的第一极耦接第一电压端。第五晶体管的第二极耦接第四电阻器的第一端和输出电压端。第四电阻器的第二端耦接第二电压端。第六晶体管的控制极耦接第一晶体管的控制极。第六晶体管的第一极耦接第一电压端。第六晶体管的第二极耦接第七晶体管的控制极和第二极。第七晶体管的第一极耦接第二电压端。第八晶体管的控制极耦接第一晶体管的控制极。第八晶体管的第一极耦接第一电压端。第八晶体管的第二极耦接第九晶体管的第一极、第十晶体管的第一极和第十一晶体管的第一极。第九晶体管的控制极耦接运放的任意一个输入端。第九晶体管的第二极耦接第六晶体管的第二极。第十晶体管的控制极耦接第十一晶体管的控制极和第六晶体管的第二极。第十晶体管的第二极耦接运放的第二输入端。第十一晶体管的第二极耦接运放的第一输入端。According to a second aspect of the present disclosure, a bandgap reference circuit is provided. The bandgap reference circuit includes: first to eleventh transistors, first to fourth resistors, and an operational amplifier. Wherein, the control electrode of the first transistor is coupled to the control electrode of the second transistor and the output terminal of the operational amplifier. The first pole of the first transistor is coupled to the first voltage end. The second pole of the first transistor is coupled to the first input terminal of the operational amplifier, the first terminal of the first resistor and the first terminal of the second resistor. The first pole of the second transistor is coupled to the first voltage terminal. The second pole of the second transistor is coupled to the second input terminal of the operational amplifier, the first terminal of the third resistor, and the control pole and the second pole of the fourth transistor. The control electrode of the third transistor is coupled to the second electrode of the third transistor and the second terminal of the second resistor. The first pole of the third transistor is coupled to the second voltage terminal. The first pole of the fourth transistor is coupled to the second voltage terminal. The second end of the first resistor is coupled to the second voltage end. The second end of the third resistor is coupled to the second voltage end. The control electrode of the fifth transistor is coupled to the control electrode of the first transistor. The first pole of the fifth transistor is coupled to the first voltage end. The second pole of the fifth transistor is coupled to the first terminal of the fourth resistor and the output voltage terminal. The second end of the fourth resistor is coupled to the second voltage end. The control electrode of the sixth transistor is coupled to the control electrode of the first transistor. The first pole of the sixth transistor is coupled to the first voltage end. The second pole of the sixth transistor is coupled to the control pole and the second pole of the seventh transistor. The first pole of the seventh transistor is coupled to the second voltage end. The control electrode of the eighth transistor is coupled to the control electrode of the first transistor. The first pole of the eighth transistor is coupled to the first voltage end. The second pole of the eighth transistor is coupled to the first pole of the ninth transistor, the first pole of the tenth transistor and the first pole of the eleventh transistor. The control electrode of the ninth transistor is coupled to any input terminal of the operational amplifier. The second pole of the ninth transistor is coupled to the second pole of the sixth transistor. The control electrode of the tenth transistor is coupled to the control electrode of the eleventh transistor and the second electrode of the sixth transistor. The second pole of the tenth transistor is coupled to the second input end of the operational amplifier. The second pole of the eleventh transistor is coupled to the first input end of the operational amplifier.
根据本公开的第三方面,提供了一种芯片。该芯片包括根据本公开的第一方面或第二方面所述的带隙基准电路。According to a third aspect of the present disclosure, a chip is provided. The chip includes the bandgap reference circuit according to the first aspect or the second aspect of the present disclosure.
根据本公开的第四方面,提供了一种电子设备。该电子设备包括根据本公开的第三方面所述的芯片。According to a fourth aspect of the present disclosure, an electronic device is provided. The electronic device includes the chip according to the third aspect of the present disclosure.
附图说明Description of drawings
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例的附图进行简要说明,应当知道,以下描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制,其中:In order to more clearly illustrate the technical solutions of the embodiments of the present disclosure, the drawings of the embodiments will be briefly described below. It should be known that the drawings described below only relate to some embodiments of the present disclosure, rather than limiting the present disclosure. in:
图1是一种带隙基准电路的示例性电路图;Fig. 1 is an exemplary circuit diagram of a bandgap reference circuit;
图2是用于图1所示的带隙基准电路的一些信号的波形图;FIG. 2 is a waveform diagram of some signals used in the bandgap reference circuit shown in FIG. 1;
图3是根据本公开的实施例的带隙基准电路的示意性框图;3 is a schematic block diagram of a bandgap reference circuit according to an embodiment of the present disclosure;
图4是根据本公开的实施例的带隙基准电路的示例性电路图;以及4 is an exemplary circuit diagram of a bandgap reference circuit according to an embodiment of the present disclosure; and
图5是用于图4所示的带隙基准电路的一些信号的波形图。FIG. 5 is a waveform diagram of some signals used in the bandgap reference circuit shown in FIG. 4 .
在附图中,最后两位数字相同的标记对应于相同的元素。需要注意的是,附图中的元素是示意性的,没有按比例绘制。In the drawings, symbols with the same last two digits correspond to the same elements. It should be noted that elements in the drawings are schematic and not drawn to scale.
具体实施方式Detailed ways
为了使本公开的实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开的实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域技术人员在无需创造性劳动的前提下所获得的所有其它实施例,也都属于本公开保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present disclosure clearer, the technical solutions of the embodiments of the present disclosure will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present disclosure, not all of them. Based on the described embodiments of the present disclosure, all other embodiments obtained by those skilled in the art without creative efforts also fall within the protection scope of the present disclosure.
除非另外定义,否则在此使用的所有术语(包括技术和科学术语)具有与本公开主题所属领域的技术人员所通常理解的相同含义。进一步将理解的是,诸如在通常使用的词典中定义的那些的术语应解释为具有与说明书上下文和相关技术中它们的含义一致的含义,并且将不以理想化或过于正式的形式来解释,除非在此另外明确定义。如在此所使用的,将两个或更多部分“连接”或“耦接”到一起的陈述应指这些部分直接结合到一起或通过一个或多个中间部件结合。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosed subject matter belongs. It will be further understood that terms such as those defined in commonly used dictionaries should be interpreted as having meanings consistent with their meanings in the context of the specification and related technologies, and will not be interpreted in an idealized or overly formal manner, Unless otherwise expressly defined herein. As used herein, the statement that two or more parts are "connected" or "coupled" together shall mean that the parts are joined together directly or through one or more intermediate components.
在本公开的所有实施例中,由于金属氧化物半导体(MOS)晶体管的源极和漏极是对称的,并且N型晶体管和P型晶体管的源极和漏极之间的导通电流方向相反,因此在本公开的实施例中,将MOS晶体管的受控中间端称为控制极,将MOS晶体管的其余两端分别称为第一极和第二极。此外,为便于统一表述,在上下文中,将双极型晶体管(BJT)的基极称为控制极,将BJT的发射极称为第一极,将BJT的集电极称为第二极。另外,诸如“第一”和“第二”的术语仅用于将一个部件(或部件的一部分)与另一个部件(或部件的另一部分)区分开。In all the embodiments of the present disclosure, since the source and the drain of the metal oxide semiconductor (MOS) transistor are symmetrical, and the conduction current direction between the source and the drain of the N-type transistor and the P-type transistor is opposite , therefore, in the embodiments of the present disclosure, the controlled intermediate terminal of the MOS transistor is called the control pole, and the remaining two ends of the MOS transistor are respectively called the first pole and the second pole. In addition, for the convenience of unified expression, in the context, the base of the bipolar transistor (BJT) is called the control electrode, the emitter of the BJT is called the first electrode, and the collector of the BJT is called the second electrode. In addition, terms such as "first" and "second" are only used to distinguish one element (or a part of a element) from another element (or another part of a element).
图1示出一种带隙基准电路100的示例性电路图。在图1的示例中,晶体管M1、晶体管M2、晶体管Q3、晶体管Q4、晶体管M5、电阻器R1、电阻器R2、电阻器R3、电阻器R4以及运放Amp构成带隙基准核心电路。晶体管M6、晶体管Q7、电阻器R5和电阻器R6构成补偿电路。其中,晶体管M1、晶体管M2和晶体管M5是PMOS晶体管。晶体管Q3、晶体管Q4和晶体管Q7是NPN双极型晶体管。FIG. 1 shows an exemplary circuit diagram of a
流过晶体管M5的电流(即,流过晶体管M1或M2的电流)为核心电流Icore。核心电流Icore流过电阻器R4,从而在电阻器R4的第一端生成基准电压Vref。晶体管M6生成流过晶体管M1的电流的镜像电流。通过将电阻器R5和电阻器R6的电阻值设置成相等可使得流过电阻器R5和电阻器R6的电流相等,在图1中由INL表示。晶体管Q3、晶体管Q4和晶体管Q7是NPN双极型晶体管,它们的基极发射极电压具有负温度系数。由于运放Amp的两个输入端虚短,两个输入端处的电压相等。因此,电阻器R2两端的电压都具有负温度系数。通过设置晶体管Q3和晶体管Q4的参数可使得流过电阻器R2的电流IPATA具有正温度系数。流过电阻器R2的电流IPATA等于分别流过晶体管Q3和晶体管Q4的电流。由于晶体管Q4的基极发射极电压具有负温度系数,因此流过电阻器R3的电流具有负温度系数。流过晶体管Q4的电流IPATA与流过电阻器R3的电流的温度系数相反,从而使得流过晶体管M1或晶体管M2的电流的温度系数相比于电流IPATA的温度系数更小,因此,流过晶体管Q7的电流ICT的温度系数更小。The current flowing through the transistor M5 (ie, the current flowing through the transistor M1 or M2 ) is the core current Icore. The core current Icore flows through the resistor R4, thereby generating the reference voltage Vref at the first end of the resistor R4. Transistor M6 generates a current mirror of the current flowing through transistor M1. The currents flowing through the resistors R5 and R6 can be made equal by setting the resistance values of the resistors R5 and R6 equal, indicated by INL in FIG. 1 . Transistor Q3, transistor Q4, and transistor Q7 are NPN bipolar transistors whose base-emitter voltages have negative temperature coefficients. Since the two input terminals of the operational amplifier Amp are virtual short, the voltages at the two input terminals are equal. Therefore, the voltage across resistor R2 has a negative temperature coefficient. By setting the parameters of the transistor Q3 and the transistor Q4, the current I PATA flowing through the resistor R2 can have a positive temperature coefficient. The current I PATA flowing through resistor R2 is equal to the current flowing through transistor Q3 and transistor Q4 respectively. Since the base-emitter voltage of transistor Q4 has a negative temperature coefficient, the current flowing through resistor R3 has a negative temperature coefficient. The temperature coefficient of the current I PATA flowing through transistor Q4 is opposite to that of the current flowing through resistor R3, so that the temperature coefficient of the current flowing through transistor M1 or transistor M2 is smaller than the temperature coefficient of current I PATA , so that the current flowing The temperature coefficient of current I CT through transistor Q7 is smaller.
根据双极型晶体管的特性,流过双极型晶体管的电流的温度系数越小,则双极型晶体管的基极发射极电压的温度变化率越大。因此,晶体管Q7的基极发射极电压的温度变化率大于晶体管Q4的基极发射极电压的温度变化率。也就是说,随着温度升高,晶体管Q7的基极电压下降得比晶体管Q4的基极电压更快。因此,电流INL具有正温度系数。电流INL的流向如图1所示。参考图2可见,在核心电流Icore具有负温度系数的情况下,电流INL能够实现曲率补偿的目的。补偿后的核心电流Icorr相比于补偿前的核心电流Icore随温度T的变化更小,因此更加稳定。According to the characteristics of the bipolar transistor, the smaller the temperature coefficient of the current flowing through the bipolar transistor is, the larger the temperature change rate of the base-emitter voltage of the bipolar transistor is. Therefore, the temperature change rate of the base-emitter voltage of transistor Q7 is greater than the temperature change rate of the base-emitter voltage of transistor Q4. That is, as the temperature increases, the base voltage of transistor Q7 drops faster than the base voltage of transistor Q4. Therefore, current INL has a positive temperature coefficient. The flow direction of the current INL is shown in FIG. 1 . Referring to FIG. 2 , it can be seen that in the case that the core current Icore has a negative temperature coefficient, the current I NL can achieve the purpose of curvature compensation. Compared with the core current Icore before compensation, the core current Icorr after compensation changes less with the temperature T, so it is more stable.
然而由于元器件材料和工艺等的差异,带隙基准电路100的核心电流Icore有可能具有正温度系数。图1所示的带隙基准电路100只能对补偿前是负温度系数的核心电流Icore(对应负温度系数的基准电压)进行补偿,如果要对正温度系数的核心电流Icore(对应正温度系数的基准电压)进行补偿,需要将INL变为负温度系数或者使得图1中电流INL的流向被反向。而通过改变电阻器R5和电阻器R6的电阻值无法实现,所以图1所示的结构不能对正温度系数的基准电压进行补偿。However, the core current Icore of the
本公开的实施例提出了一种能够对正温度系数的基准电压进行补偿的带隙基准电路。图3示出根据本公开的实施例的带隙基准电路300的示意性框图。该带隙基准电路300包括:带隙基准核心电路310、电流镜像电路320、电压控制电路330、电流源电路340、第一分流电路350、以及第二分流电路360。Embodiments of the present disclosure propose a bandgap reference circuit capable of compensating a reference voltage with a positive temperature coefficient. FIG. 3 shows a schematic block diagram of a
带隙基准核心电路310耦接电流镜像电路320、第一分流电路350以及第二分流电路360。带隙基准核心电路310被配置为:生成核心电流Icore,并根据核心电流Icore生成基准电压Vref。The bandgap
电流镜像电路320耦接带隙基准核心电路310。电流镜像电路320经由第一节点N1耦接电压控制电路330和第二分流电路360。电流镜像电路320被配置为:生成核心电流Icore的镜像电流ICT,并经由第一节点N1向电压控制电路330提供镜像电流ICT。The
电压控制电路330经由第一节点N1耦接电流镜像电路320和第二分流电路360。电压控制电路330被配置为:使得第一节点N1的电压具有负温度系数,并根据镜像电流ICT来控制第一节点N1的电压的温度变化率。在本公开的一些实施例中,镜像电流ICT的温度系数接近于0。镜像电流ICT的温度系数越低则第一节点N1的电压的温度变化率越高。The voltage control circuit 330 is coupled to the
电流源电路340经由第二节点N2耦接第一分流电路350以及第二分流电路360。电流源电路340被配置为:生成恒定电流ISUM,并经由第二节点N2向第一分流电路350和第二分流电路360二者共同提供恒定电流ISUM。恒定电流ISUM限定了流过第一分流电路350和第二分流电路360二者的电流之和。The
第一分流电路350被配置为:根据第三节点N3的电压和恒定电流ISUM来生成第一分流INT1。其中,第三节点N3是带隙基准核心电路310内具有负温度系数的节点。The
第二分流电路360被配置为:根据第一节点N1的电压和恒定电流ISUM来生成第二分流INT2,并向带隙基准核心电路310提供第二分流INT2以使得核心电流Icore被减小第二分流INT2的大小。其中,第三节点N3的电压的温度变化率小于第一节点N1的电压的温度变化率,从而使得第二分流INT2具有正温度系数。The second shunt circuit 360 is configured to: generate a second shunt INT2 according to the voltage of the first node N1 and the constant current I SUM , and provide the second shunt INT2 to the bandgap
由于第三节点N3的电压的温度变化率小于第一节点N1的电压的温度变化率,因此,第一分流INT1的温度变化率小于第二分流INT2的温度变化率。在第一分流INT1与第二分流INT2的总和被限定为恒定电流ISUM的情况下,由于第一分流INT1与第二分流INT2的大小比例的改变,随着温度升高,第一分流INT1下降而第二分流INT2上升。这样第二分流INT2具有正温度系数。通过从核心电流Icore中减去第二分流INT2的大小,可使得具有正温度系数的核心电流Icore(对应正温度系数的基准电压Vref)具有负温度系数项的补偿,从而使得带隙基准电路300的输出更加稳定。Since the temperature change rate of the voltage of the third node N3 is smaller than the temperature change rate of the voltage of the first node N1, the temperature change rate of the first branch INT1 is smaller than the temperature change rate of the second branch INT2 . In the case that the sum of the first shunt INT1 and the second shunt INT2 is limited to a constant current I SUM , due to the change of the size ratio of the first shunt INT1 and the second shunt INT2 , as the temperature rises, the second shunt One shunt INT1 falls and the second shunt INT2 rises. Thus the second substream INT2 has a positive temperature coefficient. By subtracting the size of the second shunt INT2 from the core current Icore, the core current Icore (corresponding to the reference voltage Vref with a positive temperature coefficient) with a positive temperature coefficient can be compensated with a negative temperature coefficient term, so that the bandgap reference circuit The output of the 300 is more stable.
在本公开的一些实施例中,带隙基准电路300还可包括启动电路(在图3中未示出)。启动电路耦接带隙基准核心电路310,用于在启动阶段向带隙基准核心电路310提供启动电流。启动电路在带隙基准电路300进入稳定工作状态后可停止提供启动电流。由于启动电路是带隙基准电路中常设置的电路,因此在本公开中不进一步赘述。In some embodiments of the present disclosure, the
图4示出根据本公开的实施例的带隙基准电路400的示例性电路图。带隙基准核心电路410包括:第一晶体管M1至第五晶体管M5、第一电阻器R1至第四电阻器R4、以及运放Amp。其中,第一晶体管M1的控制极耦接第二晶体管M2的控制极和运放Amp的输出端。第一晶体管M1的第一极耦接第一电压端V1。第一晶体管M1的第二极耦接运放Amp的第一输入端、第一电阻器R1的第一端和第二电阻器R2的第一端。第二晶体管M2的第一极耦接第一电压端V1。第二晶体管M2的第二极耦接运放Amp的第二输入端、第三电阻器R3的第一端以及第四晶体管M4的控制极和第二极。第三晶体管M3的控制极耦接第三晶体管M3的第二极和第二电阻器R2的第二端。第三晶体管M3的第一极耦接第二电压端V2。第四晶体管M4的第一极耦接第二电压端V2。第一电阻器R1的第二端耦接第二电压端V2。第三电阻器R3的第二端耦接第二电压端V2。第五晶体管M5的控制极耦接第一晶体管M1的控制极。第五晶体管M5的第一极耦接第一电压端V1。第五晶体管M5的第二极耦接第四电阻器R4的第一端和输出电压端Vref。第四电阻器R4的第二端耦接第二电压端V2。在本公开的一些实施例中,第三节点N3是运放Amp的任意一个输入端。在图4的示例中,第三节点N3是运放Amp的反相输入端。但是本领域技术人员应理解第三节点N3也可以是运放Amp的同相输入端。FIG. 4 shows an exemplary circuit diagram of a
电流镜像电路420包括:第六晶体管M6。其中,第六晶体管M6的控制极耦接第一晶体管M1的控制极。第六晶体管M6的第一极耦接第一电压端V1。第六晶体管M6的第二极耦接第一节点N1。The
电压控制电路430包括:第七晶体管M7。其中,第七晶体管M7的控制极耦接第七晶体管M7的第二极。第七晶体管M7的第一极耦接第二电压端V2。The
电流源电路440包括:第八晶体管M8。其中,第八晶体管M8的控制极耦接第一晶体管M1的控制极。第八晶体管M8的第一极耦接第一电压端V1。第八晶体管M8的第二极耦接第二节点N2。在图4的示例中,可通过设置第八晶体管M8的宽长比与第一晶体管M1的宽长比的比例来使得流过第八晶体管M8的电流小于流过第一晶体管M1的电流。在图4示例的替代实施例中,第八晶体管M8的控制极也可耦接偏置电压端。可通过设置来自偏置电压端的偏置电压的大小来使得流过第八晶体管M8的电流小于流过第一晶体管M1的电流。流过第八晶体管M8的电流可根据需要补偿的电流大小来具体设置。在本公开的一些实施例中,流过第八晶体管M8的电流小于流过第一晶体管M1的电流的百分之一。The
第一分流INT1电路450包括:第九晶体管M9。其中,第九晶体管M9的控制极耦接第三节点N3。第九晶体管M9的第一极耦接第二节点N2。第九晶体管M9的第二极耦接第一节点N1。The first
第二分流INT2电路460包括:第十晶体管M10和第十一晶体管M11。其中,第十晶体管M10的控制极耦接第一节点N1。第十晶体管M10的第一极耦接第二节点N2。第十晶体管M10的第二极耦接运放Amp的第二输入端。第十一晶体管M11的控制极耦接第一节点N1。第十一晶体管M11的第一极耦接第二节点N2。第十一晶体管M11的第二极耦接运放Amp的第一输入端。The second
在图4的示例中,从第一电压端V1输入高电压信号,第二电压端V2接地。第一晶体管M1、第二晶体管M2、第五晶体管M5、第六晶体管M6、第八晶体管M8至第十一晶体管M11是PMOS晶体管。第三晶体管Q3、第四晶体管Q4和第七晶体管Q7是NPN双极型晶体管。运放Amp的第一输入端是运放Amp的同相输入端。运放Amp的第二输入端是运放Amp的反相输入端。第一电阻器R1的电阻值等于第三电阻器R3的电阻值。本领域技术人员应理解,基于上述发明构思对图4所示的电路进行的变型也应落入本公开的保护范围之内。在该变型中,上述晶体管和电压端也可以具有与图4所示的示例不同的设置。In the example of FIG. 4, a high voltage signal is input from the first voltage terminal V1, and the second voltage terminal V2 is grounded. The first transistor M1, the second transistor M2, the fifth transistor M5, the sixth transistor M6, the eighth transistor M8 to the eleventh transistor M11 are PMOS transistors. The third transistor Q3, the fourth transistor Q4 and the seventh transistor Q7 are NPN bipolar transistors. The first input terminal of the operational amplifier Amp is the non-inverting input terminal of the operational amplifier Amp. The second input terminal of the operational amplifier Amp is the inverting input terminal of the operational amplifier Amp. The resistance value of the first resistor R1 is equal to the resistance value of the third resistor R3. Those skilled in the art should understand that modifications to the circuit shown in FIG. 4 based on the above inventive concepts should also fall within the protection scope of the present disclosure. In this variant, the aforementioned transistors and voltage terminals may also have a different arrangement than the example shown in FIG. 4 .
在图4的示例中,第三晶体管Q3、第四晶体管Q4和第七晶体管Q7是NPN双极型晶体管,它们的基极发射极电压具有负温度系数。由于运放的两个输入端虚短,两个输入端处的电压相等。因此,第二电阻器R2两端的电压都具有负温度系数。通过设置第三晶体管Q3和第四晶体管Q4的参数可使得流过第二电阻器R2的电流IPATA具有正温度系数。流过第二电阻器R2的电流IPATA等于分别流过第三晶体管Q3和第四晶体管Q4的电流。由于第四晶体管Q4的基极发射极电压具有负温度系数,因此流过第三电阻器R3的电流具有负温度系数。流过第四晶体管Q4的电流IPATA与流过第三电阻器R3的电流的温度系数相反,从而使得流过第一晶体管M1或第二晶体管M2的电流的温度系数相比于电流IPATA的温度系数更小,因此,流过第七晶体管Q7的电流ICT的温度系数更小。In the example of FIG. 4 , the third transistor Q3 , the fourth transistor Q4 and the seventh transistor Q7 are NPN bipolar transistors, and their base-emitter voltages have negative temperature coefficients. Since the two inputs of the op amp are virtual shorted, the voltages at the two inputs are equal. Therefore, the voltage across the second resistor R2 has a negative temperature coefficient. By setting the parameters of the third transistor Q3 and the fourth transistor Q4, the current I PATA flowing through the second resistor R2 can have a positive temperature coefficient. The current I PATA flowing through the second resistor R2 is equal to the current flowing through the third transistor Q3 and the fourth transistor Q4 respectively. Since the base-emitter voltage of the fourth transistor Q4 has a negative temperature coefficient, the current flowing through the third resistor R3 has a negative temperature coefficient. The temperature coefficient of the current I PATA flowing through the fourth transistor Q4 is opposite to that of the current flowing through the third resistor R3, so that the temperature coefficient of the current flowing through the first transistor M1 or the second transistor M2 is compared to that of the current I PATA The temperature coefficient is smaller, and therefore, the temperature coefficient of the current I CT flowing through the seventh transistor Q7 is smaller.
根据双极型晶体管的特性,流过双极型晶体管的电流的温度系数越小,则双极型晶体管的基极发射极电压的温度变化率越大。因此,第七晶体管Q7的基极发射极电压(第一节点N1的电压)的温度变化率大于第四晶体管Q4的基极发射极电压(第三节点N3的电压)的温度变化率。参考图5可见,随着温度T升高,第一节点N1的电压VN1下降得比第三节点N3的电压VN3更快。由于第一节点N1耦接第十晶体管M10和第十一晶体管M11的栅极,第三节点N3耦接第九晶体管M9的栅极,因此,流过第十晶体管M10和第十一晶体管M11的电流INT2的上升变化率大于流过第九晶体管M9的电流INT1的上升变化率。由于电流INT2和电流INT1之和是恒定电流,电流INT2和电流INT1的比例的改变导致电流INT2升高而电流INT1降低。这样使得电流INT2具有正温度系数。根据MOS晶体管的电压-电流关系(电流的温度系数是电压的温度系数的平方)可知电流INT2具有非线性的正温度系数。According to the characteristics of the bipolar transistor, the smaller the temperature coefficient of the current flowing through the bipolar transistor is, the larger the temperature change rate of the base-emitter voltage of the bipolar transistor is. Therefore, the temperature change rate of the base-emitter voltage (the voltage of the first node N1 ) of the seventh transistor Q7 is larger than the temperature change rate of the base-emitter voltage (the voltage of the third node N3 ) of the fourth transistor Q4 . Referring to FIG. 5 , it can be seen that as the temperature T increases, the voltage V N1 of the first node N1 drops faster than the voltage V N3 of the third node N3 . Since the first node N1 is coupled to the gates of the tenth transistor M10 and the eleventh transistor M11, and the third node N3 is coupled to the gates of the ninth transistor M9, therefore, the power flowing through the tenth transistor M10 and the eleventh transistor M11 The rising and changing rate of the current INT2 is greater than the rising and changing rate of the current INT1 flowing through the ninth transistor M9. Since the sum of current INT2 and current INT1 is a constant current, a change in the ratio of current INT2 to current INT1 causes current INT2 to increase and current INT1 to decrease. This makes the current INT2 have a positive temperature coefficient. According to the voltage-current relationship of the MOS transistor (the temperature coefficient of the current is the square of the temperature coefficient of the voltage), it can be seen that the current I NT2 has a non-linear positive temperature coefficient.
在通过电流INT2进行补偿之前,带隙基准电路的核心电流Icore等于流过第四晶体管Q4的电流IPATA与流过第三电阻器R3的电流之和。在补偿之后,带隙基准电路的核心电流Icore等于流过第四晶体管Q4的电流IPATA与流过第三电阻器R3的电流之和减去电流INT2。这相当于核心电流Icore被减小电流INT2。即,核心电流Icore的变化量为图5所示的INT2'。参考图5可见,补偿后的电流Icorr(Icorr=Icore+INT2')相比于补偿前的核心电流Icore更加稳定。Before being compensated by the current INT2 , the core current Icore of the bandgap reference circuit is equal to the sum of the current I PATA flowing through the fourth transistor Q4 and the current flowing through the third resistor R3. After compensation, the core current Icore of the bandgap reference circuit is equal to the sum of the current I PATA flowing through the fourth transistor Q4 and the current flowing through the third resistor R3 minus the current INT2 . This is equivalent to the core current Icore being reduced by the current I NT2 . That is, the change amount of the core current Icore is INT2 ' shown in FIG. 5 . Referring to FIG. 5 , it can be seen that the current Icorr after compensation (Icorr=Icore+ INT2 ′) is more stable than the core current Icore before compensation.
本公开的实施例还提供了一种芯片。该芯片包括根据本公开的实施例的带隙基准电路。该芯片例如是电源管理类芯片。The embodiment of the present disclosure also provides a chip. The chip includes a bandgap reference circuit according to an embodiment of the present disclosure. The chip is, for example, a power management chip.
本公开的实施例还提供了一种电子设备。该电子设备包括根据本公开的实施例的芯片。该电子设备例如是智能终端设备,诸如平板电脑、智能手机等。The embodiment of the present disclosure also provides an electronic device. The electronic device includes a chip according to an embodiment of the present disclosure. The electronic device is, for example, an intelligent terminal device, such as a tablet computer, a smart phone, and the like.
综上所述,根据本公开的实施例的带隙基准电路能够对具有正温度系数的基准电压进行高阶曲率的温度补偿,从而使得带隙基准电路输出的基准电压更加稳定。In summary, the bandgap reference circuit according to the embodiments of the present disclosure can perform high-order curvature temperature compensation on the reference voltage with a positive temperature coefficient, so that the reference voltage output by the bandgap reference circuit is more stable.
除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中明确禁止这样的解释。在本文中使用术语“示例”之处,特别是当其位于一组术语之后时,所述“示例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。Unless the context clearly dictates otherwise, as used herein and in the appended claims, the singular includes the plural and vice versa. Thus, when referring to the singular, the plural of the corresponding term will generally be included. Similarly, the words "comprise" and "include" are to be interpreted as being inclusive and not exclusive. Likewise, the terms "include" and "or" should be construed as inclusive, unless such an interpretation is expressly prohibited herein. Where the term "example" is used herein, particularly when it follows a group of terms, said "example" is exemplary and explanatory only, and should not be considered to be exclusive or inclusive .
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其它方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本申请的范围。Further aspects and ranges of adaptations will become apparent from the description provided herein. It should be understood that various aspects of the present application may be implemented alone or in combination with one or more other aspects. It should also be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the application.
以上对本公开的若干实施例进行了详细描述,但显然,本领域技术人员可以在不脱离本公开的精神和范围的情况下对本公开的实施例进行各种修改和变型。本公开的保护范围由所附的权利要求限定。Several embodiments of the present disclosure have been described in detail above, but obviously, those skilled in the art can make various modifications and variations to the embodiments of the present disclosure without departing from the spirit and scope of the present disclosure. The protection scope of the present disclosure is defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211702446.XA CN116069100A (en) | 2022-12-28 | 2022-12-28 | Band gap reference circuit, chip and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211702446.XA CN116069100A (en) | 2022-12-28 | 2022-12-28 | Band gap reference circuit, chip and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116069100A true CN116069100A (en) | 2023-05-05 |
Family
ID=86183094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211702446.XA Pending CN116069100A (en) | 2022-12-28 | 2022-12-28 | Band gap reference circuit, chip and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116069100A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040155700A1 (en) * | 2003-02-10 | 2004-08-12 | Exar Corporation | CMOS bandgap reference with low voltage operation |
CN104635836A (en) * | 2013-11-14 | 2015-05-20 | 展讯通信(上海)有限公司 | Band-gap reference circuit |
CN206479869U (en) * | 2017-02-28 | 2017-09-08 | 建荣集成电路科技(珠海)有限公司 | Low voltage bandgap reference, chip, portable power source and drive recorder |
CN108052150A (en) * | 2017-12-14 | 2018-05-18 | 上海艾为电子技术股份有限公司 | A kind of bandgap voltage reference with source compensated by using high-order curvature |
CN108351662A (en) * | 2015-11-20 | 2018-07-31 | 德州仪器公司 | Bandgap reference circuit with curvature compensation |
-
2022
- 2022-12-28 CN CN202211702446.XA patent/CN116069100A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040155700A1 (en) * | 2003-02-10 | 2004-08-12 | Exar Corporation | CMOS bandgap reference with low voltage operation |
CN104635836A (en) * | 2013-11-14 | 2015-05-20 | 展讯通信(上海)有限公司 | Band-gap reference circuit |
CN108351662A (en) * | 2015-11-20 | 2018-07-31 | 德州仪器公司 | Bandgap reference circuit with curvature compensation |
CN206479869U (en) * | 2017-02-28 | 2017-09-08 | 建荣集成电路科技(珠海)有限公司 | Low voltage bandgap reference, chip, portable power source and drive recorder |
CN108052150A (en) * | 2017-12-14 | 2018-05-18 | 上海艾为电子技术股份有限公司 | A kind of bandgap voltage reference with source compensated by using high-order curvature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101241378B1 (en) | Reference bias generating apparatus | |
CN108037791B (en) | A Bandgap Reference Circuit Without Operation Amplifier | |
KR101829416B1 (en) | Compensated bandgap | |
US12282351B2 (en) | Bandgap reference circuit | |
CN112987836B (en) | A High Performance Bandgap Reference Circuit | |
JP2008516328A (en) | Reference circuit | |
CN111045470B (en) | A Bandgap Reference Circuit with Low Offset Voltage and High Power Supply Rejection Ratio | |
CN110794913A (en) | A Bandgap Reference Circuit Using Negative Feedback Clamping Technology | |
EP3828662A1 (en) | A bandgap reference circuit, corresponding device and method | |
CN110471488A (en) | Reference voltage generation circuit | |
CN114489222A (en) | A Bandgap Reference Circuit for Power Chips | |
TWI716323B (en) | Voltage generator | |
WO2024093602A1 (en) | Voltage reference generation circuit, and chip and electronic device | |
CN116069100A (en) | Band gap reference circuit, chip and electronic equipment | |
CN116009639B (en) | Bandgap Reference Circuit | |
KR100318448B1 (en) | A reference voltage generating circuit in semiconductor device | |
CN108345336B (en) | Bandgap Reference Circuit | |
KR20150111581A (en) | High-precision CMOS bandgap reference circuit for providing low-supply-voltage | |
CN113885639A (en) | Reference circuit, integrated circuit, and electronic device | |
JPH03139873A (en) | Temperature detecting circuit | |
CN112306142A (en) | Negative voltage reference circuit | |
CN112181042A (en) | Negative voltage reference circuit suitable for wide voltage range | |
CN107728690B (en) | Bandgap Reference Circuit | |
CN117130422B (en) | Reference voltage circuit | |
CN114371758B (en) | Reference voltage circuit and chip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |