CN116062676A - 微电子器件气密性封装结构 - Google Patents

微电子器件气密性封装结构 Download PDF

Info

Publication number
CN116062676A
CN116062676A CN202111282960.8A CN202111282960A CN116062676A CN 116062676 A CN116062676 A CN 116062676A CN 202111282960 A CN202111282960 A CN 202111282960A CN 116062676 A CN116062676 A CN 116062676A
Authority
CN
China
Prior art keywords
substrate
insulating layer
main surface
getter
microelectronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111282960.8A
Other languages
English (en)
Inventor
陈朔
冯刘昊东
彭鑫林
季宇成
郭松
王诗男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Industrial Utechnology Research Institute
Original Assignee
Shanghai Industrial Utechnology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Industrial Utechnology Research Institute filed Critical Shanghai Industrial Utechnology Research Institute
Priority to CN202111282960.8A priority Critical patent/CN116062676A/zh
Publication of CN116062676A publication Critical patent/CN116062676A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0035Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS
    • B81B7/0038Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)

Abstract

本发明提供一种微电子器件气密性封装结构,包括:第一基板,其第一主面上形成有微电子器件;第二基板,其第一主面上形成有吸气结构,吸气结构包括吸气剂薄膜及用于激活吸气剂薄膜的热子结构;第三基板,其形成有贯穿其第一主面和第二主面的通孔;第一基板的第一主面与第三基板的第一主面气密性接触,第二基板的第一主面与第三基板的第二主面气密性接触,通孔与第一基板和第二基板组成气密性空腔,微电子器件的主要部分位于气密性空腔中,吸气结构的主要部分与气密性空腔连通。本发明降低了对封装外壳气密性的要求,在对封装外壳进行拆装时不会影响器件内部的气密性,提高了封装效率且便于MEMS器件的后续使用和维护。

Description

微电子器件气密性封装结构
技术领域
本发明属于MEMS器件设计和制造领域,特别是涉及一种微电子器件气密性封装结构。
背景技术
有些半导体器件,特别是有些微机电系统(MEMS:Micro Electro MechanicalSystems)器件,需要封装在真空环境下工作。例如,具有高速震动部件的MEMS加速度传感器、陀螺仪、真空计,需要把震动部分封装在比较稳定的真空中。再例如,需要有真空腔的MEMS压力传感器,也需要真空腔内有较高的真空,且其真空度保持稳定。一些红外传感器,同样需要把器件封装在较高的真空腔体内。
在大部分的封装中,实现较高真空的封装本身就具有挑战性,因为,在封装过程中,经常会有一些残留气体滞留在真空腔内。为此,常常需要在真空腔内封入吸气剂,在封装的同时激活吸气剂,或者待封装完成后再激活吸气剂,把真空腔内的残留气体吸收掉,实现满足器件工作所需要的较高的真空。吸气剂(Getter),也叫消气剂,在真空科技领域中,是指能够有效吸附和固定某些或某种气体分子的材料。但是激活吸气剂往往需要对吸气剂进行数百度的高温加温。如果从外部对整个封装好的器件加热,就需要MEMS器件本身和封装方法和材料都必须能够承受这样的高温,因此有很大限制。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种微电子器件气密性封装结构,用于解决现有技术中在真空封装时,难以同时满足MEMS器件本身和封装方法和材料对耐高温性能的需求以及对封装外壳高气密性的要求的问题。
为实现上述目的及其他相关目的,本发明提供一种微电子器件气密性封装结构,包括:第一基板,所述第一基板的第一主面上形成有微电子器件;第二基板,所述第二基板的第一主面上形成有吸气结构,所述吸气结构包括吸气剂薄膜及用于激活所述吸气剂薄膜的热子结构;第三基板,所述第三基板中形成有贯穿其第一主面和第二主面的通孔;所述第一基板的第一主面与所述第三基板的第一主面气密性接触,所述第二基板的第一主面与所述第三基板的第二主面气密性接触,所述通孔与所述第一基板和第二基板组成气密性空腔,所述微电子器件的主要部分位于所述气密性空腔中,所述吸气结构的主要部分与所述气密性空腔连通。
可选地,所述微电子器件包括红外传感器件、MEMS陀螺仪、MEMS加速度计、MEMS真空计、MEMS微镜及MEMS压力传感器中的一种或两种以上。
可选地,所述吸气结构包括:形成在所述第二基板的第一主面上的热子结构及形成在所述热子结构表面的吸气剂薄膜,所述第二基板的第一主面上对应所述热子结构的部分形成有凹槽,以使所述热子结构悬浮于所述凹槽上。
可选地,所述吸气结构由多个悬臂梁与所述第二基板连接。
可选地,所述热子结构包括:形成在所述第二基板的第一主面的第一绝缘层,形成在所述第一绝缘层上的薄膜加热电阻以及覆盖于所述第一绝缘层和所述薄膜加热电阻上的第二绝缘层,所述第二基板和所述第一绝缘层中形成有贯穿所述第二基板和所述第一绝缘层的导电柱,所述薄膜加热电阻与所述导电柱连接,所述第二基板的第二主面形成有与所述导电柱连接的电极,以将所述薄膜加热电阻电性引出至所述气密性空腔的外部。
可选地,所述薄膜加热电阻为蜿蜒结构。
可选地,所述第二绝缘层的热导率大于所述第一绝缘层的热导率,所述第二绝缘层的厚度小于所述第一绝缘层的厚度。
可选地,所述第一绝缘层的厚度介于10~20微米,所述第二绝缘层的厚度介于0.2~2微米。
可选地,所述第一基板与所述第三基板的键合为Al-Ge合金键合,所述第二基板与所述第三基板的键合为Al-Ge合金键合。
可选地,所述吸气剂薄膜的材料包括Zr基非蒸散型吸气剂及Ti基非蒸散型吸气剂中的一种,所述Zr基非蒸散型吸气剂包括Zr-V-Fe、Zr-Al和Zr-Mn-Fe中的一种,所述Ti基非蒸散型吸气剂包括Ti-Fe-V-Mn、Ti-Mo和Ti-Zr-Ni中的一种。
如上所述,本发明的微电子器件气密性封装结构,具有以下有益效果:
本发明的气密性封装结构可有效降低对封装外壳气密性的要求,在对封装外壳进行拆装时不会影响器件内部的气密性,同时本发明可通过外部电极对内部吸气剂薄膜进行加热激活,使得内部吸气剂薄膜可方便地进行反复激活使用,大大提高了封装效率且便于MEMS器件的后续使用和维护。本发明对基板层面封装的气密性更高,且该结构适用于各类MEMS器件,具有普适性,有较为广阔的应用前景。
附图说明
图1~图24显示为本发明实施例的微电子器件气密性封装结构的制造方法各步骤所呈现的结构示意图,其中,图21显示为本发明实施例的微电子器件气密性封装结构的制造方法结构示意图,图22显示为本发明实施例的微电子器件气密性封装结构的制造方法第三基板的俯视结构示意图,图23显示为本发明实施例的微电子器件气密性封装结构的薄膜加热电阻的俯视结构示意图,图24显示为本发明实施例的微电子器件气密性封装结构的第二基板的俯视结构示意图。
元件标号说明
1                       第一基板
12                      第三绝缘层
13                      电极
2                       第二基板
11                      微电子器件
1a、2a、3a                第一主面
1b、2b、3b                第二主面
21                      在热子结构
22                      吸气剂薄膜
23                      第一绝缘层
24                      薄膜加热电阻
25                      电极
25a                     第一电极
25b                     第二电极
26                      导电柱
27                      第二绝缘层
3                       第三基板
4a、4b                   键合层
5                       凹槽
6                       气密性空腔
7                       悬臂梁
7a                      第一悬臂梁
7b                      第二悬臂梁
7c                      第三悬臂梁
7d                      第四悬臂梁
8                       沟槽
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以为所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
激活吸气剂往往需要对吸气剂进行数百度的高温加温。如果从外部对整个封装好的器件加热,就需要MEMS器件本身和封装方法和材料都必须能够承受这样的高温,因此有很大限制。为了解决这一问题,有一种技术把带有吸气剂的基板、支撑垫片基板和带有MEMS器件的基板三者键合在一起,在基板层面上就完成了对MEMS器件的封装,且键合的气密性良好,并在封装后通过给导线通电来加热吸气剂,从而激活吸气剂,完成真空封装。
然而,在真空封装时,难以同时满足MEMS器件本身和封装方法和材料对耐高温性能的需求以及对封装外壳高气密性的要求。
为了解决上述问题,本实施例提供一种微电子器件气密性封装结构,包括:第一基板,所述第一基板的第一主面上形成有微电子器件;第二基板,所述第二基板的第一主面上形成有吸气结构,所述吸气结构包括吸气剂薄膜及用于激活所述吸气剂薄膜的热子结构;第三基板,所述第三基板中形成有贯穿其第一主面和第二主面的通孔;所述第一基板的第一主面与所述第三基板的第一主面气密性接触,所述第二基板的第一主面与所述第三基板的第二主面气密性接触,所述通孔与所述第一基板和第二基板组成气密性空腔,所述微电子器件的主要部分位于所述气密性空腔中,所述吸气结构的主要部分与所述气密性空腔连通。
在一个实施例中,所述微电子器件包括红外传感器件、MEMS陀螺仪、MEMS加速度计、MEMS真空计、MEMS微镜及MEMS压力传感器中的一种或两种以上。
在一个实施例中,所述吸气结构包括:形成在所述第二基板的第一主面上的热子结构及形成在所述热子结构表面的吸气剂薄膜,所述第二基板的第一主面上对应所述热子结构的部分形成有凹槽,以使所述热子结构悬浮于所述凹槽上。
在一个实施例中,所述吸气结构由多个悬臂梁与所述第二基板连接。
在一个实施例中,所述热子结构包括:形成在所述第二基板的第一主面的第一绝缘层,形成在所述第一绝缘层上的薄膜加热电阻以及覆盖于所述第一绝缘层和所述薄膜加热电阻上的第二绝缘层,所述第二基板和所述第一绝缘层中形成有贯穿所述第二基板和所述第一绝缘层的导电柱,所述薄膜加热电阻与所述导电柱连接,所述第二基板的第二主面形成有与所述导电柱连接的电极,以将所述薄膜加热电阻电性引出至所述气密性空腔的外部。
在一个实施例中,所述薄膜加热电阻为蜿蜒结构。
在一个实施例中,所述第二绝缘层的热导率大于所述第一绝缘层的热导率,所述第二绝缘层的厚度小于所述第一绝缘层的厚度。
在一个实施例中,所述第一绝缘层的厚度介于10~20微米,所述第二绝缘层的厚度介于0.2~2微米。
在一个实施例中,所述第一基板与所述第三基板的键合为Al-Ge合金键合,所述第二基板与所述第三基板的键合为Al-Ge合金键合。
在一个实施例中,所述吸气剂薄膜的材料包括Zr基非蒸散型吸气剂及Ti基非蒸散型吸气剂中的一种,所述Zr基非蒸散型吸气剂包括Zr-V-Fe、Zr-Al和Zr-Mn-Fe中的一种,所述Ti基非蒸散型吸气剂包括Ti-Fe-V-Mn、Ti-Mo和Ti-Zr-Ni中的一种。
由于MEMS器件本身会有高速振动或工作时需要高真空度,因此需将MEMS器件置于真空环境下,一般真空度需要小于1毫巴。三个基板的气密性封装结构可以通过基板键合来实现,例如中间层键合中的共晶键合。应当注意,具体键合工艺方式应通过该键合方式的气密性决定。一个特例是Al-Ge合金键合。对于键合后的三基板的总厚度应小于1500微米,且三个基板的厚度均应大于200微米,以免由于应力作用发生翘曲或破损。第三基板的主要作用为支撑第二基板,且实现第一基板的MEMS器件与吸气剂的主要结构处于同一气密性空腔6。该封装方式是从基板层面进行的,因此,三个基板键合后会形成多个所述气密性封装结构,为简便起见,本示例只采用一个机构进行说明。
在一个具体的实施过程中,如图21~图24所示,本申请的实施例1提供一种微电子器件气密性封装结构。如图21所示,所述微电子器件气密性封装结构包括:第一基板1,在第一基板1的主面1a上形成的MEMS微电子器件11,在第一基板1的主面1a上形成第三绝缘层12,以及在第三绝缘层12下方的电极13;第二基板2,在第二基板2的主面2a上形成的热子结构21,以及在热子结构21上面形成的吸气剂薄膜22,在第二基板2的主面2b上形成的电极25,以及连接电极25与热子结构21的导电柱26;第三基板3,以及将三个基板键合起来的键合层4a和4b。
如图21及图22所示,热子结构21包括在第二基板2的主面2a上形成的第一绝缘层23,在第一绝缘层23上形成的导电性薄膜加热电阻24,在导电性薄膜加热电阻24上形成的第二绝缘层27。热子结构21下方的第二基板2具有凹槽5。即,热子结构21的主要部分(即,承载吸气剂薄膜22的部分)悬空在凹槽5的上方,并通过连接部支撑于凹槽5周围的第二基板2的主面。其中,该连接部例如为悬臂梁7(例如,包括第一悬臂梁7a,第二悬臂梁7b,第三悬臂梁7c,第四悬臂梁7d),悬臂梁7可以连接到第二基板2的主面2a。悬臂梁7可以有两个分枝,也可以有两个以上分枝。例如,本实施例中,悬臂梁7包括第一悬臂梁7a,第二悬臂梁7b,第三悬臂梁7c,第四悬臂梁7d四个分枝。
三个基板均有两个相对应的主面,分别是第一基板1的第一主面1a和第二主面1b;第二基板2的第一主面2a和第二主面2b;第三基板3的第一主面3a和第二主面3b。第一基板1、第二基板2和第三基板3可以是半导体制造领域中常用的晶圆,例如硅晶圆、绝缘体上的硅(SOI:Silicon On Insulator)晶圆、锗硅晶圆、锗晶圆或氮化镓晶圆、SiC晶圆等,也可以是石英、蓝宝石、玻璃等绝缘性晶圆。另外,第一基板1、第二基板2和第三基板3也可以是半导体制造领域中常用的晶圆,在晶圆的表面上进一步具有半导体器件、MEMS器件所需的各种薄膜以及各种构造。本实施例对此并不限制。一个特例是,第一基板1、第二基板2和第三基板3均是硅基板,厚度大于200微米且小于700微米,直径约为200mm。
第三基板3、键合层4a和键合层4b将电极13与气密性空腔6隔离开来,电极13位于气密性空腔6的外部。
如图21及图22所示,在第二基板2的主面2a上面形成的第二绝缘薄膜23,其材料和厚度可根据热子性能需要进行设计。其主要作用有两个。一是实现导电性薄膜加热电阻24与第二基板2之间的电绝缘。二是实现薄膜加热电阻24与第二基板2之间的热绝缘,使薄膜加热电阻24通电后产生的热量有效地向吸气剂薄膜22的方向流动。例如,如果第二基板2的热绝缘性不够充分的话,第一绝缘层23的热绝缘性充分高于第二基板2的热绝缘性即可。第一绝缘层23可以是单一材料构成的薄膜,也可以是多种材料构成的复合薄膜,也可以是多个单一材料的薄膜层叠形成的复合薄膜。一个特例是第一绝缘层23是由硅的氧化物构成的单一薄膜,且厚度为15微米。
电极25与导电柱26的作用是给薄膜加热电阻24进行通电。薄膜加热电阻24的作用是通电后产生足够高的温度来激活吸气剂薄膜22,薄膜加热电阻24的一种结构如图23所示。然而,薄膜加热电阻24的材料、形状等,可以根据激活吸气剂薄膜22的需求进行设计。薄膜加热电阻24的材料必须能够承受激活吸气剂薄膜22所需的温度,其电阻的大小必须适合在适当通电后产生足够高的温度来激活吸气剂薄膜22。薄膜加热电阻24、电极25和导电柱26的材料可以是金属。例如,薄膜加热电阻24、电极25和导电柱26的材料是含有Pt、W、Au、Al、Cu、Ni、Ta、Ti、Cr之一或两种以上的金属。薄膜加热电阻24、电极25和导电柱26的材料可以是半导体。例如,薄膜加热电阻24、电极25和导电柱26的材料是多晶硅。当薄膜加热电阻24、电极25和导电柱26的材料是多晶硅时,可以根据需要对多晶硅进行掺杂,从而调节其导电率。薄膜加热电阻24和电极25的材料也可以是金属化合物。例如,薄膜加热电阻24的材料是TiN、TaAlN。薄膜加热电阻24和电极25的厚度,例如,是0.11微米;导电柱26的直径例如可以为10~50微米。
在薄膜加热电阻24上面形成的第二绝缘层27,其材料和厚度根据热子性能需要进行设计。其主要作用有三个。一是实现导电性薄膜加热电阻24与吸气剂薄膜22之间的电绝缘。二是聚集薄膜加热电阻24产生的热量并把此热量传导给吸气剂薄膜22,使吸气剂薄膜22的温度达到其激活温度。三是把薄膜加热电阻24产生的热量均匀地传导给吸气剂薄膜22。第二绝缘层27的导热能力优于第一绝缘层23,有利于薄膜加热电阻24通电后产生的热量有效地传导给吸气剂薄膜22。第二绝缘层27可以是单一材料构成的薄膜,也可以是多种材料构成的复合薄膜,也可以是多个单一材料的薄膜层叠形成的复合薄膜。例如,第一绝缘层23是由硅的氧化物构成的单一薄膜,第二绝缘层27是由硅的氮化物构成的单一薄膜。这时,调节第一绝缘层23和第二绝缘层27的长膜条件,使第二绝缘层27的热传导高于第一绝缘层23。第二绝缘层27的厚度,例如,是0.12微米。
第一绝缘层23、和在第一绝缘层23上形成的薄膜加热电阻24、以及和在薄膜加热电阻24上面形成的第二绝缘层27构成了热子结构21。
在热子结构21上面形成的吸气剂薄膜22,由吸气剂材料构成。吸气剂薄膜22的材料、面积和厚度,由所需要吸附的气体种类和数量等因素进行设计。吸气剂薄膜22的面积小于第二绝缘层27的面积,以便吸气剂薄膜22能够通过第二绝缘层27有效地进行激活。例如,吸气剂薄膜22可以是Zr基非蒸散型吸气剂,包括Zr-V-Fe、Zr-Al和Zr-Mn-Fe、ZrC等材料。吸气剂薄膜22可以是Ti基非蒸散型吸气剂,包括Ti-Fe-V-Mn、Ti-Mo和Ti-Zr-Ni等材料。吸气剂薄膜22的孔隙的大小、占比等可以适当调节。例如,吸气剂薄膜22的孔隙的比例在40%以上。吸气剂薄膜22的厚度,例如在0.110微米左右。
如图24所示,在第三基板3的主面3a和主面3b上面分别形成键合层4a和4b。通过键合层4a使第一基板1的主面1a与第三基板3的主面3a形成气密性接触,键合层4b使第二基板2的主面2a与第三基板3的主面3b形成气密性接触,键合结束后形成气密性空腔6。
如上所述的气密性封装结构,可以使该气密性空腔6的真空度小于1毫巴,吸气剂薄膜22在激活过程中达到的最高温度在200℃-1000℃。可以根据实际需要对吸气剂进行反复激活。由于热子结构21和吸气剂薄膜22构成的薄膜结构,在设计上需要适当考虑薄膜整体的应力,保证在制造和使用过程中不会因为应力而破损。
此外,在本申请的一些实施方式中,第二基板2的表面可以具有下凹的凹槽5,该凹槽可以位于热子的下侧,由此,热子产生的热量能够更为集中地传递到吸气剂薄膜22中,提高对吸气剂薄膜的加热效率。
如上所述,本实施例提供了一种自带吸气剂的气密性封装结构。这样的结构可以最大程度地满足MEMS器件所要求的真空度,降低对封装壳气密性的要求,在基板层面上对器件进行真空封装,降低了封装外壳耐热性的要求。这样的结构因为可以用半导体工艺进行加工,也具有较好的量产性;此外,本实施例的气密性封装结构因为自带热子,可以在需要的时候随时对薄膜吸气剂进行激活,有效地吸附真空腔内随时间增加的气体,延长一起密封在真空腔内的MEMS器件的使用寿命。
如图1~图24所示,本实施例还提供一种微电子器件气密性封装结构的制造方法,所述制造方法包括步骤:提供第一基板,在所述第一基板的第一主面上形成所述微电子器件;提供第二基板,在所述第二基板的第一主面上形成吸气结构,所述吸气结构包括吸气剂薄膜及用于激活所述吸气剂薄膜的热子结构;提供第三基板,在所述第三基板中形成贯穿其第一主面和第二主面的通孔;将所述第一基板的第一主面与所述第三基板的第一主面进行气密性基板键合,将所述第二基板的第一主面与所述第三基板的第二主面进行气密性基板键合,所述通孔与所述第一基板和第二基板组成气密性空腔,所述微电子器件的主要部分位于所述气密性空腔中,所述吸气结构的主要部分与所述气密性空腔连通。
在一个实施例中,所述微电子器件包括红外传感器件、MEMS陀螺仪、MEMS加速度计、MEMS真空计、MEMS微镜及MEMS压力传感器中的一种或两种以上。
在一个实施例中,形成所述吸气结构包括:在所述第二基板的第一主面上形成热子结构;在所述热子结构的表面形成吸气剂薄膜;在所述第二基板的第一主面上对应所述热子结构的部分形成凹槽;在所述第二基板的第二主面形成与所述导电柱连接的电极,以将所述薄膜加热电阻电性引出至所述气密性空腔的外部。
在一个实施例中,形成所述热子结构包括:在所述第二基板的第一主面形成第一绝缘层;形成贯穿所述第二基板和所述第一绝缘层的导电柱;于所述第一绝缘层上形成薄膜加热电阻,所述薄膜加热电阻与所述导电柱连接;于所述第一绝缘层和所述薄膜加热电阻上覆盖第二绝缘层。
在一个实施例中,所述薄膜加热电阻为蜿蜒结构。
在一个实施例中,所述第二绝缘层的热导率大于所述第一绝缘层的热导率,所述第二绝缘层的厚度小于所述第一绝缘层的厚度。
在一个实施例中,形成所述凹槽包括:在所述第二绝缘层和所述第一绝缘层中形成沟槽以使所述吸气结构呈由多个悬臂梁连接的悬挂结构,并通过所述沟槽显露所述第二基板的第一主面;基于所述沟槽刻蚀所述第二基板,以在所述基板的第一主面形成凹槽,并释放出所述悬挂结构。
在一个实施例中,刻蚀所述第二基板的方法包括选择性干法刻蚀及选择性湿法刻蚀中的一种。
在一个实施例中,所述第一基板与所述第三基板的键合为Al-Ge合金键合,所述第二基板与所述第三基板的键合为Al-Ge合金键合。
在一个实施例中,所述吸气剂薄膜的材料包括Zr基非蒸散型吸气剂及Ti基非蒸散型吸气剂中的一种,所述Zr基非蒸散型吸气剂包括Zr-V-Fe、Zr-Al和Zr-Mn-Fe中的一种,所述Ti基非蒸散型吸气剂包括Ti-Fe-V-Mn、Ti-Mo和Ti-Zr-Ni中的一种。
如图1~图24所示,在一个具体的实施过程中,所述微电子器件气密性封装结构的制造方法。在本实施例中,为了突出本申请的主要思想,示意图只包括了最基本的要素。
本实施例提供的微电子器件气密性封装结构的制造方法包括:将已图形化的第一基板1减薄;将第二基板2减薄并做通孔,在第二基板2的第一主面2a上形成热子结构21,在热子结构21上面形成吸气剂薄膜22。其中,热子结构21的制造方法包括:在第二基板2的第一主面2a上形成第一绝缘层23,在第一绝缘层23上面形成导电性薄膜加热电阻24,在薄膜加热电阻24上面形成第二绝缘层27,此外,该制造方法还包括:在热子表面形成吸气剂薄膜22之前,刻蚀热子结构21以形成连接部和热子的用于承载吸气剂薄膜22的部分的图形,并腐蚀第二基板2的第一主面2a,使热子结构21的用于承载吸气剂薄膜22的部分悬空,例如:对热子结构21以及第二基板2进行加工,使热子结构21的下方形成凹槽,通过悬臂梁7(包括7a、7b、7c、7d)与第二基板2相连接;将第三基板3减薄,并分别在第三基板的第一主面3a和第二主面3b形成键合层4a和键合层4b;将第一基板1、第二基板2和第三基板3进行键合,形成气密性空腔6,从而完成气密性封装结构。下面对本制造方法逐步进行描述。
第一基板1、第二基板2和第三基板3可以为半导体制造领域中常用的晶圆,例如硅晶圆、绝缘体上的硅(SOI:Silicon On Insulator)晶圆、锗硅晶圆、锗晶圆或氮化镓晶圆、SiC晶圆等,也可以为石英、蓝宝石、玻璃等绝缘性晶圆。另外,第一基板1、第二基板2和第三基板3也可以为半导体制造领域中常用的晶圆,在晶圆的表面上进一步具有半导体器件、MEMS器件所需的各种薄膜以及各种构造。本实施例对此并不限制。一个特例是,第一基板1、第二基板2和第三基板3均可以为硅基板,厚度大于200微米且小于700微米,直径约为200毫米。
首先,如图1所示,进行第二基板2的准备。在本实施例中,第二基板2有两个相对应的主面,即第一主面2a和第二主面2b。为简洁方便,本实施例以第二基板2为半导体工艺中常规使用的Si基板为例进行描述。
然后,如图2所示,对第二基板2的主面2b进行减薄。例如,利用减薄设备和CMP(CMP:Chemical mechanical polishing,化学机械抛光)对第二基板2的主面2b减薄,例如,厚度为200~700微米,具体可以为300微米。
然后,如图3所示,在第二基板2的主面2a上形成第一绝缘层23。例如,所述第一绝缘层23可以为氧化硅薄膜,厚度可以为2微米,用常规的TEOS CVD(TEOS:Tetraethylorthosilicate,正硅酸乙酯。CVD:Chemical Vapor Deposition,化学气相沉积)和配套的工艺形成。第一绝缘层23的材料和厚度根据热子性能需要进行设计。其主要作用有两个。一是实现导电性薄膜加热电阻24与第二基板2之间的电绝缘。二是实现薄膜加热电阻24与第二基板2之间的热绝缘,使薄膜加热电阻24通电后产生的热量有效地向吸气剂薄膜22的方向流动。例如,如果第二基板2的热绝缘性不够充分的话,第一绝缘层23的热绝缘性充分高于第二基板2的热绝缘性即可。第一绝缘层23可以为单一材料构成的薄膜,也可以为多种材料构成的复合薄膜,也可以为复数个单一材料的薄膜层叠形成的复合薄膜。一个特例是第一绝缘层23是由硅的氧化物构成的单一薄膜,且厚度为15微米。
然后,如图4所示,在第二基板2上形成贯穿第一绝缘层23、第二基板主面2a和主面2b的通孔。例如,对第一绝缘层23进行刻蚀,对第二基板2做TSV(TSV:Though Silicon Via,硅通孔技术)工艺。
然后,如图5所示,对第二基板2上的通孔进行填充。将通孔构填充后形成导电柱26。例如,利用电镀技术填充第二基板2上通孔,形成导电柱26。
然后,如图6所示,在第一绝缘层23上面形成导电性薄膜加热电阻24。例如,导电性薄膜加热电阻24可以为金属Ti,厚度可以为0.2微米,用常规的磁控溅射和配套的工艺形成。
然后,如图7所示,对导电性薄膜加热电阻24进行加工,形成图23所示的蜿蜒结构的导电性薄膜加热电阻24。导电性薄膜加热电阻24的加工可以用常规的光刻和金属刻蚀以及配套工艺进行。例如,金属刻蚀工艺可以使用离子束刻蚀(IBE:Ion Beam Etching)方法。
然后,如图8所示,在薄膜加热电阻24上面形成第二绝缘层27。例如,第二绝缘层27可以为氮化硅薄膜,厚度可以为0.4微米,用常规的PECVD(PECVD:Plasma EnhancedChemical Vapor Deposition。中文:等离子体增强化学气相沉积)方式进行长膜。第二绝缘层27的材料和厚度根据热子性能需要进行设计。其主要作用有三个:一是实现导电性薄膜加热电阻24与吸气剂薄膜22之间的电绝缘。二是聚集薄膜加热电阻24产生的热量并把此热量传导给吸气剂薄膜22,使吸气剂薄膜22的温度达到其激活温度。三是把薄膜加热电阻24产生的热量均匀地传导给吸气剂薄膜22。第二绝缘层27的导热能力优于第一绝缘层23,有利于薄膜加热电阻24通电后产生的热量有效地传导给吸气剂薄膜22。第二绝缘层27可以为单一材料构成的薄膜,也可以为多种材料构成的复合薄膜,也可以为复数个单一材料的薄膜层叠形成的复合薄膜。例如,第一绝缘层23可以为由硅的氧化物构成的单一薄膜,第二绝缘层27可以为由硅的氮化物构成的单一薄膜。这时,调节第一绝缘层23和第二绝缘层27的长膜条件,使第二绝缘层27的热传导高于第一绝缘层23。
然后,如图9及图22所示,对第二绝缘层27进行加工,形成覆盖悬臂结构与薄膜加热电阻24的图形。第二绝缘层27的加工可以用常规的光刻和氮化硅刻蚀以及配套工艺进行。
通过上述加工,形成了由第一绝缘层23,在第一绝缘层23上面形成的导电性薄膜加热电阻24,以及覆盖在导电性薄膜加热电阻24主要部分上的第二绝缘层27构成的热子结构21,并且连接了导电柱26。热子结构21悬浮在空中,只通过悬臂梁7与第二基板2相连接。
然后,如图10及图22所示,对第二基板2进行加工,使热子结构21的下方形成凹槽5,同时形成悬臂梁7(包括第一悬臂梁7a、第二悬臂梁7b、第三悬臂梁7c、第四悬臂梁7d)。这样,使热子结构21悬浮在空中,只通过悬臂梁7与第二基板2相连接。对第二基板2的加工可以用常规的硅加工工艺进行。例如,用对硅有刻蚀作用的气体或者等离子体对硅进行刻蚀。这时,气体或者等离子体通过沟槽8达到第二基板2的表面进行刻蚀。气体例如可以为XeF2,或者SF6等。等离子体例如可以为SF6等的等离子体。再例如,用对硅有刻蚀作用的液体对硅进行刻蚀。这时,气体或者液体也是通过沟槽8达到第二基板2的表面进行刻蚀。液体例如可以为KOH、TMAH等。
然后,如图11所示,在热子结构21的上面形成吸气剂薄膜22。吸气剂薄膜22的面积小于第二绝缘层27的面积。例如,吸气剂薄膜22可以为包括ZrVFe在内的Zr基非蒸散型吸气剂材料,厚度约为2微米。吸气剂薄膜22可以用磁控溅射方法沉积在第二绝缘层27的上面。在吸气剂薄膜22沉积工程中,可以在完成了图10所示的加工后的基板表面覆盖上一个金属掩膜(未图示)。在这个金属掩膜的相对于图11所示的吸气剂薄膜22的部分打开窗口,使得磁控溅射时吸气剂薄膜22可以通过该窗口沉积到第二绝缘层27的上面。使用金属掩膜的好处是,不需要对吸气剂薄膜22进行刻蚀加工,避免刻蚀加工过程中对吸气剂薄膜22可能产生的污染。使用金属掩膜的另一个好处是,吸气剂薄膜22的形成工艺简单,金属掩膜还可以反复使用,降低制造成本。
然后,如图12所示,在第二基板的主面2b上形成电极25。例如,电极25加工可以用常规的光刻和金属刻蚀以及配套工艺进行。例如,金属刻蚀工艺可以使用离子束刻蚀方法。电极25的加工也可以采用Lift-off(剥离工艺)工艺和金属掩膜沉积工艺,电极25例如可以包含第一电极25a及第二电极25b。
在本实施例中,电极25与导电柱26的作用是给薄膜加热电阻24进行通电。薄膜加热电阻24的作用是通电后产生足够高的温度来激活吸气剂薄膜22。所以,薄膜加热电阻24的材料、形状等,可以根据激活吸气剂薄膜22的需求进行设计。薄膜加热电阻24的材料必须能够承受激活吸气剂薄膜22所需的温度,其电阻的大小必须适合在适当通电后产生足够高的温度来激活吸气剂薄膜22。薄膜加热电阻24、电极25和导电柱26的材料可以为金属。例如,薄膜加热电阻24、电极25和导电柱26的材料是含有Pt、W、Au、Al、Cu、Ni、Ta、Ti、Cr之一或两种以上的金属。薄膜加热电阻24、电极25和导电柱26的材料可以为半导体。例如,薄膜加热电阻24、电极25和导电柱26的材料是多晶硅。当薄膜加热电阻24、电极25和导电柱26的材料是多晶硅时,可以根据需要对多晶硅进行掺杂,从而调节其导电率。薄膜加热电阻24和电极25的材料也可以为金属化合物。例如,薄膜加热电阻24的材料是TiN、TaAlN。薄膜加热电阻24和电极25的厚度例如可以为0.11微米;导电柱26的直径例如可以为10~50微米。
然后,如图13所示,进行第三基板3的准备。在本实施例中,第三基板3有两个相对应的主面,即第一主面3a和第二主面3b。第三基板3可以为实施例1所述的第三基板3。为简洁方便,本实施例以第三基板3是半导体工艺中常规使用的Si基板为例进行描述。
然后,如图14所示,对第三基板3的主面3b进行减薄。例如,利用减薄设备和CMP对第三基板3的主面3b减薄。第三基板3的厚度例如可以为300微米。
然后,如图15所示,在第三基板3的主面3a上形成键合层4a,在第三基板3的主面3b上形成键合层4b。键合层4a和键合层4b是实施例1所述的键合层4a和键合层4b。键合层4a和键合层4b可以用磁控溅射方法分别沉积在第三基板3的主面3a和三基板3的主面3b上。
然后,如图16所示,对键合层4a和键合层4b进行加工,形成图24所示的“回”字图形,需要注意,可通过加工形成任意封闭性图形,此处“回”字图形为一个特例,加工可以用常规的光刻和金属刻蚀以及配套工艺进行。例如,金属刻蚀工艺可以使用离子束刻蚀方法。
然后,如图17所示,对第三基板3进行加工,使其形成贯通结构。例如,可以用TSV工艺。
然后,如图18所示,进行第一基板1的准备。在本实施例中,第一基板1有两个相对应的主面,即第一主面1a和第二主面1b。在第一基板1的主面1a上形成微电子器件11、第三绝缘层12和电极13。为简洁方便,本实施例以第一基板1是半导体工艺中常规使用的Si基板为例进行描述。
然后,如图19所示,对第一基板1的主面1b进行减薄。例如,利用减薄设备和CMP对第一基板1的主面1b减薄。第一基板1的厚度例如可以为300微米。
然后,如图20及图21所示,将第一基板1的主面1a与第三基板3的主面3a键合在一起,键合层为4a。例如,对第一基板1和第三基板3进行共晶键合。例如,键合材料为Al-Ge合金。
然后,如图21所示,将第二基板2的主面2a与第三基板3的主面3b键合在一起,键合层为4b,例如,对第二基板2和第三基板3进行共晶键合。例如,键合材料为Al-Ge合金。通过键合,最终形成气密性封装结构,键合顺序可互换。
如上所述,本实施例提供了一种气密性封装结构的制造方法,本实施例制造方法简单,制造成本低。在一个键合后的半导体基板上,可以同时制造多个气密性封装结构,具有量产性。以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。
如上所述,本发明的微电子器件气密性封装结构,具有以下有益效果:
本发明的气密性封装结构可有效降低对封装外壳气密性的要求,在对封装外壳进行拆装时不会影响器件内部的气密性,同时本发明可通过外部电极对内部吸气剂薄膜进行加热激活,使得内部吸气剂薄膜可方便地进行反复激活使用,大大提高了封装效率且便于MEMS器件的后续使用和维护。本发明对基板层面封装的气密性更高,且该结构适用于各类MEMS器件,具有普适性,有较为广阔的应用前景。
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种微电子器件气密性封装结构,其特征在于,包括:
第一基板,所述第一基板的第一主面上形成有微电子器件;
第二基板,所述第二基板的第一主面上形成有吸气结构,所述吸气结构包括吸气剂薄膜及用于激活所述吸气剂薄膜的热子结构;
第三基板,所述第三基板中形成有贯穿其第一主面和第二主面的通孔;
所述第一基板的第一主面与所述第三基板的第一主面气密性接触,所述第二基板的第一主面与所述第三基板的第二主面气密性接触,所述通孔与所述第一基板和第二基板组成气密性空腔,所述微电子器件的主要部分位于所述气密性空腔中,所述吸气结构的主要部分与所述气密性空腔连通。
2.权利要求1所述的微电子器件气密性封装结构,其特征在于:所述微电子器件包括红外传感器件、MEMS陀螺仪、MEMS加速度计、MEMS真空计、MEMS微镜及MEMS压力传感器中的一种或两种以上。
3.权利要求1所述的微电子器件气密性封装结构,其特征在于:所述吸气结构包括:形成在所述第二基板的第一主面上的热子结构及形成在所述热子结构表面的吸气剂薄膜,所述第二基板的第一主面上对应所述热子结构的部分形成有凹槽,以使所述热子结构悬浮于所述凹槽上。
4.权利要求3所述的微电子器件气密性封装结构,其特征在于:所述吸气结构由多个悬臂梁与所述第二基板连接。
5.权利要求1所述的微电子器件气密性封装结构,其特征在于:所述热子结构包括:形成在所述第二基板的第一主面的第一绝缘层,形成在所述第一绝缘层上的薄膜加热电阻以及覆盖于所述第一绝缘层和所述薄膜加热电阻上的第二绝缘层,所述第二基板和所述第一绝缘层中形成有贯穿所述第二基板和所述第一绝缘层的导电柱,所述薄膜加热电阻与所述导电柱连接,所述第二基板的第二主面形成有与所述导电柱连接的电极,以将所述薄膜加热电阻电性引出至所述气密性空腔的外部。
6.权利要求5所述的微电子器件气密性封装结构,其特征在于:所述薄膜加热电阻为蜿蜒结构。
7.权利要求5所述的微电子器件气密性封装结构,其特征在于:所述第二绝缘层的热导率大于所述第一绝缘层的热导率,所述第二绝缘层的厚度小于所述第一绝缘层的厚度。
8.权利要求7所述的微电子器件气密性封装结构,其特征在于:所述第一绝缘层的厚度介于10~20微米,所述第二绝缘层的厚度介于0.2~2微米。
9.权利要求1所述的微电子器件气密性封装结构,其特征在于:所述第一基板与所述第三基板的键合为Al-Ge合金键合,所述第二基板与所述第三基板的键合为Al-Ge合金键合。
10.根据权利要求1所述的微电子器件气密性封装结构,其特征在于:所述吸气剂薄膜的材料包括Zr基非蒸散型吸气剂及Ti基非蒸散型吸气剂中的一种,所述Zr基非蒸散型吸气剂包括Zr-V-Fe、Zr-Al和Zr-Mn-Fe中的一种,所述Ti基非蒸散型吸气剂包括Ti-Fe-V-Mn、Ti-Mo和Ti-Zr-Ni中的一种。
CN202111282960.8A 2021-11-01 2021-11-01 微电子器件气密性封装结构 Pending CN116062676A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111282960.8A CN116062676A (zh) 2021-11-01 2021-11-01 微电子器件气密性封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111282960.8A CN116062676A (zh) 2021-11-01 2021-11-01 微电子器件气密性封装结构

Publications (1)

Publication Number Publication Date
CN116062676A true CN116062676A (zh) 2023-05-05

Family

ID=86170319

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111282960.8A Pending CN116062676A (zh) 2021-11-01 2021-11-01 微电子器件气密性封装结构

Country Status (1)

Country Link
CN (1) CN116062676A (zh)

Similar Documents

Publication Publication Date Title
US6806557B2 (en) Hermetically sealed microdevices having a single crystalline silicon getter for maintaining vacuum
US6929974B2 (en) Feedthrough design and method for a hermetically sealed microdevice
US7204737B2 (en) Hermetically sealed microdevice with getter shield
EP1352877B1 (en) Wafer-level MEMS packaging
US7288464B2 (en) MEMS packaging structure and methods
JP2007516092A (ja) トレンチ分離を有するウェハレベルの封止マイクロデバイス及びその製造方法
JP2016521643A (ja) ゲッター層を有するmemsデバイス
JP2009018387A (ja) 微小電気機械システム素子の製造方法
US9567206B2 (en) Structures and formation methods of micro-electro mechanical system device
TWI634069B (zh) 混合整合構件及其製造方法
JP2011036994A (ja) 超小型電子デバイスのための微小空胴構造およびカプセル封じ構造
CN116062676A (zh) 微电子器件气密性封装结构
CN116062680A (zh) 微电子器件气密性封装结构的制造方法
CN111725078B (zh) 具有排出路径的半导体装置及其制造方法
JP2016171393A (ja) Memsデバイスとその製造方法
JP7274640B2 (ja) マイクロヒータを備える薄膜ゲッタ構造及びその製造方法
US8430255B2 (en) Method of accurately spacing Z-axis electrode
CN117446741A (zh) 一种具有微型加热器的薄膜吸气剂结构及其制造方法
CN215288005U (zh) 一种具有微型加热器的薄膜吸气剂结构及真空封装结构
CN215288004U (zh) 一种具有微型加热器的薄膜吸气剂结构及真空封装结构
JP2013254916A (ja) 電子部品およびその製造方法
EP2736071B1 (en) Wafer level package with getter
CN112041688B (zh) 半导体装置的制造方法
JP2018025530A (ja) 力学量センサおよびその製造方法
JP2017005459A (ja) Mems製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination