CN116042570A - Recombinant alkaline phosphatase mutant and preparation method thereof - Google Patents
Recombinant alkaline phosphatase mutant and preparation method thereof Download PDFInfo
- Publication number
- CN116042570A CN116042570A CN202310065230.5A CN202310065230A CN116042570A CN 116042570 A CN116042570 A CN 116042570A CN 202310065230 A CN202310065230 A CN 202310065230A CN 116042570 A CN116042570 A CN 116042570A
- Authority
- CN
- China
- Prior art keywords
- alkaline phosphatase
- mutant
- seq
- phosphatase mutant
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108020004774 Alkaline Phosphatase Proteins 0.000 title claims abstract description 107
- 102000002260 Alkaline Phosphatase Human genes 0.000 title claims abstract description 107
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 230000035772 mutation Effects 0.000 claims abstract description 19
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 18
- 210000004027 cell Anatomy 0.000 claims description 45
- 108091033319 polynucleotide Proteins 0.000 claims description 33
- 102000040430 polynucleotide Human genes 0.000 claims description 33
- 239000002157 polynucleotide Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 26
- 239000013598 vector Substances 0.000 claims description 25
- 150000007523 nucleic acids Chemical class 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 11
- 108020004707 nucleic acids Proteins 0.000 claims description 11
- 125000000539 amino acid group Chemical group 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 7
- 210000000349 chromosome Anatomy 0.000 claims description 2
- 102000004190 Enzymes Human genes 0.000 abstract description 20
- 108090000790 Enzymes Proteins 0.000 abstract description 20
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000009466 transformation Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000009465 prokaryotic expression Effects 0.000 abstract description 3
- 206010057040 Temperature intolerance Diseases 0.000 abstract description 2
- 230000008543 heat sensitivity Effects 0.000 abstract description 2
- 238000004949 mass spectrometry Methods 0.000 abstract description 2
- 108090000623 proteins and genes Proteins 0.000 description 48
- 102000004169 proteins and genes Human genes 0.000 description 29
- 108020004705 Codon Proteins 0.000 description 24
- 241000588724 Escherichia coli Species 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 17
- 229920001184 polypeptide Polymers 0.000 description 17
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 102000004196 processed proteins & peptides Human genes 0.000 description 17
- 150000001413 amino acids Chemical class 0.000 description 16
- 241000863430 Shewanella Species 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 239000002773 nucleotide Substances 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 13
- 239000002609 medium Substances 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 239000012634 fragment Substances 0.000 description 10
- 108700010070 Codon Usage Proteins 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 101900345593 Escherichia coli Alkaline phosphatase Proteins 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 238000003752 polymerase chain reaction Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000012224 working solution Substances 0.000 description 2
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 101000688206 Bos taurus Intestinal-type alkaline phosphatase Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000490596 Shewanella sp. Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012916 chromogenic reagent Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 230000008863 intramolecular interaction Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03001—Alkaline phosphatase (3.1.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/185—Escherichia
- C12R2001/19—Escherichia coli
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本申请公开了一种及重组碱性磷酸酶突变体及其制备方法。本申请中,以源于Shewanellasp.的碱性磷酸酶作为改造对象进行改造,对氨基酸序列进行定点突变,提高了碱性磷酸酶的热敏性,使其适用于飞行质谱的检测,反应完以后可以通过短时间加热使酶失活;本申请提供的碱性磷酸酶突变体,在原核表达系统中容易表达,降低成本适合大批量生产。
The application discloses a recombinant alkaline phosphatase mutant and a preparation method thereof. In this application, the alkaline phosphatase derived from Shewanellasp. is used as the transformation object for transformation, and the amino acid sequence is subjected to site-directed mutation, which improves the heat sensitivity of alkaline phosphatase and makes it suitable for the detection of flight mass spectrometry. After the reaction, it can pass Heating for a short time inactivates the enzyme; the alkaline phosphatase mutant provided by the application is easy to express in a prokaryotic expression system, and the cost is reduced and it is suitable for mass production.
Description
技术领域technical field
本发明涉及基因检测领域,特别涉及重组碱性磷酸酶突变体及其制备方法。The invention relates to the field of gene detection, in particular to a recombinant alkaline phosphatase mutant and a preparation method thereof.
背景技术Background technique
碱性磷酸酶(Alkaline phosphatase,AP,E 3.1.3.1)是一类非特异性磷酸单脂酶,属于同型二聚体金属蛋白酶;它可以催化磷酸单酯水解生成无机磷酸和相应的醇类、酚类或糖,在高浓度的磷酸基团受体存在的情况下,AP催化磷酸基团的转移反应;碱性磷酸酶广泛存在自然界各生物体内,不同来源的AP酶分子量大小和序列有较大差异,但不同的酶活性部位高度保守,AP酶的每个单体均具有一个活性中心,由天冬氨酸-丝氨酸-丙氨酸三连体、精氨酸、水分子、金属离子及其配体氨基酸组成AP酶的活性中心区域。其中大肠杆菌AP酶研究较为透彻,因其催化机理明晰,底物作用范围广泛,作为信号酶而广泛应用于医学、免疫学和分析生物技术领域。Alkaline phosphatase (Alkaline phosphatase, AP, E 3.1.3.1) is a kind of non-specific phosphate monoesterase, which belongs to homodimeric metalloprotease; it can catalyze the hydrolysis of phosphate monoester to generate inorganic phosphate and corresponding alcohols and phenols Classes or sugars, in the presence of high-concentration phosphate group acceptors, AP catalyzes the transfer reaction of phosphate groups; alkaline phosphatase exists widely in various organisms in nature, and AP enzymes from different sources have larger molecular weights and sequences Different, but different enzyme active sites are highly conserved. Each monomer of AP enzyme has an active center, which consists of aspartic acid-serine-alanine triplet, arginine, water molecule, metal ion and its Ligand amino acids constitute the active center region of the AP enzyme. Among them, Escherichia coli AP enzyme has been studied more thoroughly. Because of its clear catalytic mechanism and wide range of substrates, it is widely used as a signal enzyme in the fields of medicine, immunology and analytical biotechnology.
人体中,AP酶作为磷酸盐代谢途径中重要的水解酶,可催化蛋白质、核酸及小分子中多种磷酸酯的水解和脱磷酸化过程;因此在临床医学中,多用于检测血清中AP的活力作为诊断和检测疾病的重要手段,如检测血清骨性AP酶可为骨代谢疾病进行早期诊断,治疗效果检测和病情预后;在免疫学研究方面,酶联免疫检测反应(ELISA)应用AP酶标记抗体进行反应,即被检测物质主要通过碱性磷酸酶与显色剂发生反应后的显色或去磷酸化后能发光的底物相互作用,具有更好的稳定性与灵敏度;同时碱性磷酸酶可催化除去DNA分子的5’末端磷酸基团,从而防止载体发生自连,以及代替同位素标记核苷酸探针用于分子杂交等。In the human body, AP enzyme is an important hydrolase in the phosphate metabolic pathway, which can catalyze the hydrolysis and dephosphorylation of various phosphates in proteins, nucleic acids and small molecules; therefore, in clinical medicine, it is mostly used to detect the concentration of AP in serum Vitality is an important means of diagnosis and detection of diseases. For example, the detection of serum bone AP enzyme can be used for early diagnosis of bone metabolic diseases, detection of treatment effect and prognosis of the disease; in immunology research, enzyme-linked immunoassay (ELISA) uses AP enzyme The labeled antibody reacts, that is, the detected substance mainly interacts with the substrate that can develop color after alkaline phosphatase reacts with the chromogenic reagent or dephosphorylate, which has better stability and sensitivity; at the same time, alkaline Phosphatase can catalyze the removal of the 5' terminal phosphate group of DNA molecules, thereby preventing self-ligation of the carrier, and replacing isotope-labeled nucleotide probes for molecular hybridization, etc.
目前市场常见的碱性磷酸酶产品中,牛小肠碱性磷酸酶(MAP)活性最高,约为大肠杆菌碱性磷酸酶(EAP)的20-40倍左右,但是MAP热稳定性差,且需Mg2+激活,而大肠杆菌表达成本低,且热稳定性好,但是产物活性偏低。因此,如何获得高活性EAP酶同时保持较好的热稳定性是目前主流改造方向。现有技术中,虽已有部分研究者通过突变改造提高了酶活性,但是改造菌均不适于规模化生产,改造后的EAP酶工程菌经扩大体积培养后,目的蛋白表达量大幅度降低,制约了AP酶的生产应用。因此,如何开发一种高效表达高活性、高热稳定性的碱性磷酸酶是目前亟需解决的问题。Among the common alkaline phosphatase products in the market, bovine intestinal alkaline phosphatase (MAP) has the highest activity, about 20-40 times that of Escherichia coli alkaline phosphatase (EAP), but MAP has poor thermal stability and requires Mg2+ Activation, while the cost of expression in Escherichia coli is low and the thermostability is good, but the activity of the product is low. Therefore, how to obtain high-activity EAP enzymes while maintaining good thermal stability is the current mainstream transformation direction. In the prior art, although some researchers have improved the enzyme activity through mutation modification, the modified bacteria are not suitable for large-scale production. After the modified EAP enzyme engineering bacteria are cultured in enlarged volume, the expression of the target protein is greatly reduced. The production application of AP enzyme is restricted. Therefore, how to develop an alkaline phosphatase with efficient expression, high activity and high thermostability is an urgent problem to be solved at present.
发明内容Contents of the invention
本发明的目的在于提供一种热敏碱性磷酸酶突变体。The purpose of the present invention is to provide a thermosensitive alkaline phosphatase mutant.
本发明的另一目的在于提供一种核酸分子。Another object of the present invention is to provide a nucleic acid molecule.
本发明的另一目的在于提供与编码碱性磷酸酶及其突变体的多核苷酸序列适配的载体。Another object of the present invention is to provide a vector adapted to the polynucleotide sequence encoding alkaline phosphatase and its mutants.
本发明的另一目的在于提供制备碱性磷酸酶及其突变体的方法。Another object of the present invention is to provide a method for preparing alkaline phosphatase and its mutants.
本发明的另一目的在于提供含有编码碱性磷酸酶及其突变体的多核苷酸序列的试剂盒。Another object of the present invention is to provide a kit containing polynucleotide sequences encoding alkaline phosphatase and its mutants.
为解决上述技术问题,本发明第一方面提供了一种碱性磷酸酶突变体,所述碱性磷酸酶突变体在野生型碱性磷酸酶序列中选自下组的一个或多个位点发生突变:W 348、Q349、V365、S 369和R 372;其中,氨基酸残基编号采用SEQ ID NO.7所示的编号。In order to solve the above technical problems, the first aspect of the present invention provides an alkaline phosphatase mutant, said alkaline phosphatase mutant is selected from one or more positions of the following group in the wild-type alkaline phosphatase sequence Mutations: W 348, Q349, V365, S 369 and R 372; wherein, the numbering of amino acid residues adopts the numbering shown in SEQ ID NO.7.
在一些优选的方案中,所述野生型碱性磷酸酶的氨基酸序列如SEQ ID NO.:7所示。In some preferred schemes, the amino acid sequence of the wild-type alkaline phosphatase is shown in SEQ ID NO.:7.
在一些优选的方案中,突变位点的数量为1至5个,例如1个、2个、3个、4个或5个。In some preferred schemes, the number of mutation sites is 1 to 5, such as 1, 2, 3, 4 or 5.
在一些优选的方案中,所述碱性磷酸酶突变体的氨基酸序列与SEQ ID NO.7相比具有至少80%的同源性;更优选地,具有至少90%的同源性;最优选地,具有至少95%的同源性;如具有至少96%、97%、98%、99%的同源性。In some preferred schemes, the amino acid sequence of the alkaline phosphatase mutant has at least 80% homology compared with SEQ ID NO.7; more preferably, has at least 90% homology; most preferably Preferably, at least 95% homology; eg, at least 96%, 97%, 98%, 99% homology.
在一些优选的方案中,所述碱性磷酸酶突变体在SEQ ID NO.:7所示的野生型碱性磷酸酶基础上进行突变,并且所述碱性磷酸酶突变体包括选自下组的突变位点:W 348A、Q349A、V 365A、S 369A和R 372A。In some preferred schemes, the alkaline phosphatase mutant is mutated on the basis of the wild-type alkaline phosphatase shown in SEQ ID NO.: 7, and the alkaline phosphatase mutant comprises Mutation sites: W 348A, Q349A, V 365A, S 369A and R 372A.
在一些优选的方案中,所述碱性磷酸酶突变体选自下组:In some preferred schemes, the alkaline phosphatase mutant is selected from the group:
在一些优选的方案中,所述碱性磷酸酶的氨基酸序列选自下组:In some preferred schemes, the amino acid sequence of the alkaline phosphatase is selected from the following group:
(i)如SEQ ID NO.1-6所示的氨基酸序列;和(i) amino acid sequence as shown in SEQ ID NO.1-6; With
(ii)与如SEQ ID NO.1-6所示的氨基酸序列同源性大于95%的多核苷酸。(ii) a polynucleotide with an amino acid sequence homology greater than 95% as shown in SEQ ID NO.1-6.
本发明的第二方面,提供了一种多核苷酸分子,所述多核苷酸分子编码本发明第一方面所述的碱性磷酸酶突变体。The second aspect of the present invention provides a polynucleotide molecule encoding the alkaline phosphatase mutant described in the first aspect of the present invention.
本发明的第三方面,提供了一种载体,其特征在于,所述载体含有本发明第二方面所述的核酸分子。The third aspect of the present invention provides a vector, characterized in that the vector contains the nucleic acid molecule described in the second aspect of the present invention.
本发明的第四方面,提供了一种宿主细胞,其特征在于,所述宿主细胞含有本发明第三方面所述的载体或染色体整合有本发明第二方面所述的核酸分子。The fourth aspect of the present invention provides a host cell, characterized in that the host cell contains the vector of the third aspect of the present invention or the nucleic acid molecule of the second aspect of the present invention is chromosomally integrated.
在一些优选的方案中,所述宿主细胞为原核细胞、或真核细胞。In some preferred solutions, the host cells are prokaryotic cells or eukaryotic cells.
在一些优选的方案中,所述宿主细胞为大肠杆菌(Escherichia coli)。In some preferred embodiments, the host cell is Escherichia coli (Escherichia coli).
在一些优选的方案中,所述宿主细胞为大肠杆菌BL21(DE3)菌株。In some preferred schemes, the host cell is Escherichia coli BL21 (DE3) strain.
在一些优选的方案中,所述真核细胞为酵母细胞。In some preferred embodiments, the eukaryotic cells are yeast cells.
本发明的第五方面,提供了一种制备本发明第一方面所述的碱性磷酸酶突变体的方法,其特征在于,包括步骤:The fifth aspect of the present invention provides a method for preparing the alkaline phosphatase mutant described in the first aspect of the present invention, characterized in that it comprises the steps of:
(i)在适合的条件下,培养本发明第四方面所述的宿主细胞,从而表达出所述的碱性磷酸酶突变体;和(i) under suitable conditions, cultivate the host cell described in the fourth aspect of the present invention, thereby expressing the alkaline phosphatase mutant; and
(ii)分离所述碱性磷酸酶突变体。(ii) isolating the alkaline phosphatase mutant.
在一些优选的方案中,用SB、TB、LB、SOC培养基培养所述的宿主细胞,更优选为用TB、和LB培养基培养所述的宿主细胞,最优选为用TB培养基培养所述的宿主细胞。In some preferred schemes, the host cells are cultivated with SB, TB, LB, SOC medium, more preferably with TB and LB medium, most preferably with TB medium. the host cells described above.
在一些优选的方案中,在温度为16至19℃下或35至39℃下培养所述宿主细胞。In some preferred embodiments, the host cells are cultured at a temperature of 16 to 19°C or 35 to 39°C.
本发明的第六方面,提供了一种试剂盒,其特征在于,所述试剂盒包含本发明第一方面所述的碱性磷酸酶突变体。The sixth aspect of the present invention provides a kit, characterized in that the kit comprises the alkaline phosphatase mutant described in the first aspect of the present invention.
本发明相对于现有技术而言,至少具有下述优点:Compared with the prior art, the present invention has at least the following advantages:
(1)本发明以源于Shewanella sp.的碱性磷酸酶作为改造对象进行改造,对氨基酸序列进行定点突变,提高了碱性磷酸酶的热敏性,使其适用于飞行质谱的检测,反应完以后可以通过短时间加热使酶失活;(1) The present invention transforms the alkaline phosphatase derived from Shewanella sp. as the transformation object, carries out site-directed mutation to the amino acid sequence, improves the thermosensitivity of alkaline phosphatase, makes it applicable to the detection of flight mass spectrometry, after the reaction is completed The enzyme can be inactivated by heating for a short time;
(2)本发明提供的碱性磷酸酶突变体,在原核表达系统中容易表达,降低成本适合大批量生产。(2) The alkaline phosphatase mutant provided by the present invention is easy to express in a prokaryotic expression system, and is suitable for mass production with reduced cost.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described in the following (such as embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, we will not repeat them here.
附图说明Description of drawings
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。One or more embodiments are exemplified by pictures in the accompanying drawings, and these exemplifications are not intended to limit the embodiments.
图1是根据本发明实施例中Shewanella sp来源碱性磷酸酶的三维结构示意图;Fig. 1 is according to the three-dimensional structure schematic diagram of Shewanella sp source alkaline phosphatase in the embodiment of the present invention;
图2是根据本发明实施例中Shewanella sp与E.coli来源的碱性磷酸酶结构比对示意图;Fig. 2 is a schematic diagram of the structure comparison of alkaline phosphatase derived from Shewanella sp and E.coli according to the embodiment of the present invention;
图3是根据本发明实施例中Shewanella sp来源的碱性磷酸酶结构比对局部放大图;Fig. 3 is according to the alkaline phosphatase structural comparison partial enlarged view of Shewanella sp source in the embodiment of the present invention;
图4是根据本发明实施例中碱性磷酸酶大肠杆菌小量表达鉴定结果图;Fig. 4 is a graph showing the results of small-scale expression and identification of alkaline phosphatase in Escherichia coli according to an embodiment of the present invention;
图5是根据本发明实施例中碱性磷酸酶镍柱纯化电泳图;Fig. 5 is according to the electrophoresis diagram of nickel column purification of alkaline phosphatase in the embodiment of the present invention;
图6是根据本发明实施例中碱性磷酸酶镍柱QP柱纯化电泳图;Fig. 6 is according to the alkaline phosphatase nickel column QP column purification electrophoresis figure in the embodiment of the present invention;
图7是根据本发明实施例中碱性磷酸酶/突变体酶活测定标准曲线图;Fig. 7 is according to the alkaline phosphatase/mutant enzyme activity determination standard curve figure in the embodiment of the present invention;
图8是根据本发明实施例中碱性磷酸酶/突变体的热敏性图。Fig. 8 is a thermosensitivity graph of alkaline phosphatase/mutant in an example according to the present invention.
具体实施方式Detailed ways
现有技术中,耐热性好的碱性磷酸酶(65℃处理5min失活)主要是牛小肠源和虾源。牛小肠源的碱性磷酸酶多是从天然产物中提取纯化,虾源的碱性磷酸酶多是酵母表达,大肠杆菌源(E.coli)和海洋高效除磷菌源(Shewanella sp)的原核表达活性较高,但耐热性较差,65℃热失活不理想。本发明人通过广泛而深入的研究,意外发现如本发明中所述的碱性磷酸酶的突变体,热敏性好,同时保留良好的酶活。In the prior art, alkaline phosphatase with good heat resistance (inactivated by treatment at 65° C. for 5 minutes) is mainly derived from bovine small intestine and shrimp. The alkaline phosphatase derived from bovine small intestine is mostly extracted and purified from natural products, the alkaline phosphatase derived from shrimp is mostly expressed by yeast, and the prokaryotic source of Escherichia coli (E.coli) and marine efficient phosphorus removal bacteria (Shewanella sp) The expression activity is high, but the heat resistance is poor, and heat inactivation at 65°C is not ideal. Through extensive and in-depth research, the present inventor unexpectedly found that the mutant of alkaline phosphatase described in the present invention has good thermosensitivity while retaining good enzyme activity.
碱性磷酸酶突变体alkaline phosphatase mutant
本发明中,目的蛋白为源于Shewanella sp的碱性磷酸酶(氨基酸序列如SEQ IDNO.7所示),突变体由碱性磷酸酶经预设的突变方式突变获得,预设的突变方式包括选自以下的一个或几个位点发生突变:W 348、Q 349、V 365、S 369和R 372。优选地,将选自突变位点的氨基酸突变为丙氨酸,预设的突变方式包括任一种或几种的组合:W 348A、Q 349A、V365A、S 369A和R 372A。当这些突变位点中至少两个、更优选地至少三个、更优选地至少四个、更优选地全部的氨基酸均发生突变,并突变为丙氨酸(A).In the present invention, the target protein is alkaline phosphatase derived from Shewanella sp (the amino acid sequence is shown in SEQ ID NO.7), and the mutant is obtained by mutation of alkaline phosphatase through preset mutation methods, and the preset mutation methods include One or several sites selected from the following mutations: W 348, Q 349, V 365, S 369 and R 372. Preferably, the amino acid selected from the mutation site is mutated to alanine, and the preset mutation methods include any one or a combination of several: W 348A, Q 349A, V365A, S 369A and R 372A. When at least two, more preferably at least three, more preferably at least four, and more preferably all of the amino acids in these mutation sites are mutated, and are mutated into alanine (A).
在本发明的一些实施方式中,碱性磷酸酶突变体的氨基酸序列选自以下任一种,In some embodiments of the present invention, the amino acid sequence of the alkaline phosphatase mutant is selected from any of the following,
(i)如SEQ ID NO.1-6所示的氨基酸序列;和(i) amino acid sequence as shown in SEQ ID NO.1-6; With
(ii)与如SEQ ID NO.1-6所示的氨基酸序列同源性大于95%的多核苷酸。(ii) a polynucleotide with an amino acid sequence homology greater than 95% as shown in SEQ ID NO.1-6.
本发明中目的蛋白可通过本领域常规的方法制备获得,例如定点突变法。通过聚合酶链式反应(PCR)等方法将目的核酸片段或质粒中的某一个或几个碱基替换为其他碱基,并将含有突变后的核酸片段的质粒转化大肠杆菌得到转化子,培养转化子得到突变体。选用市售的定点突变试剂盒进行定点突变得到突变体。The target protein in the present invention can be prepared by conventional methods in the art, such as site-directed mutagenesis. Replace one or several bases in the target nucleic acid fragment or plasmid with other bases by methods such as polymerase chain reaction (PCR), and transform the plasmid containing the mutated nucleic acid fragment into Escherichia coli to obtain transformants, culture Transformants yield mutants. A commercially available site-directed mutagenesis kit was used for site-directed mutagenesis to obtain mutants.
编码目的蛋白突变体的核酸序列Nucleic acid sequence encoding target protein mutant
本发明中,目的蛋白突变体或其元件的核苷酸全长序列或其片段通常可以用PCR扩增法、重组法或人工合成的方法获得。对于PCR扩增法,可根据已公开的有关核苷酸序列,尤其是开放阅读框序列来设计引物,并用市售的cDNA库或按本领域技术人员已知的常规方法所制备的cDNA库作为模板,扩增而得有关序列。当序列较长时,常常需要进行两次或多次PCR扩增,然后再将各次扩增出的片段按正确次序拼接在一起。一旦获得了有关的序列,就可以用重组法来大批量地获得有关序列。这通常是将其克隆入载体,再转入细胞,然后通过常规方法从增殖后的宿主细胞中分离得到有关序列。In the present invention, the full-length nucleotide sequence or its fragments of the target protein mutant or its elements can usually be obtained by PCR amplification, recombination or artificial synthesis. For the PCR amplification method, primers can be designed according to the published relevant nucleotide sequences, especially the open reading frame sequence, and a commercially available cDNA library or a cDNA library prepared by a conventional method known to those skilled in the art can be used as Template, amplified to obtain related sequences. When the sequence is long, it is often necessary to carry out two or more PCR amplifications, and then splice together the amplified fragments in the correct order. Once the relevant sequences are obtained, recombinant methods can be used to obtain the relevant sequences in large quantities. Usually, it is cloned into a vector, then transformed into a cell, and then the relevant sequence is isolated from the proliferated host cell by conventional methods.
此外,还可用人工合成的方法来合成有关序列,尤其是片段长度较短时。通常,通过先合成多个小片段,然后再进行连接可获得序列很长的片段。In addition, related sequences can also be synthesized by artificial synthesis, especially when the fragment length is relatively short. Often, fragments with very long sequences are obtained by synthesizing multiple small fragments and then ligating them.
应用PCR技术扩增DNA/RNA的方法被优选用于获得本发明的基因。用于PCR的引物可根据本文所公开的本发明的序列信息适当地选择,并可用常规方法合成。可用常规方法如通过凝胶电泳分离和纯化扩增的DNA/RNA片段。The method of amplifying DNA/RNA using PCR technique is preferably used to obtain the gene of the present invention. Primers for PCR can be appropriately selected based on the sequence information of the present invention disclosed herein, and can be synthesized by conventional methods. Amplified DNA/RNA fragments can be separated and purified by conventional methods such as by gel electrophoresis.
同义密码子偏好性优化Synonymous codon preference optimization
为克服在宿主细胞中表达异源蛋白时产量降低的潜在问题,本发明涉及经同义密码子偏好性优化的多核苷酸序列。对获取的目的基因序列进行同义密码子偏好性优化,根据宿主的密码子偏好性调整基因的同义密码子,从而消除稀有密码子,提高异源基因的表达效率。经同义密码子偏好性优化的目的基因序列可表达与目的蛋白相同的氨基酸序列。本发明的实施方式中涉及对编码碱性磷酸酶突变体的基因序列进行密码子优化而得到的优化密码子序列,如SEQ ID NO:8-13所示,本发明还涉及与SEQ ID NO:8-13所示序列的同源性大于80%,优选大于85%,更优选大于90%,更优选大于91%,更优选大于95%的多核苷酸;和与SEQ ID NO:8-13所示序列互补的多核苷酸。To overcome the potential problem of reduced yield when expressing heterologous proteins in host cells, the present invention relates to synonymous codon bias optimized polynucleotide sequences. Optimize the synonymous codon preference of the obtained target gene sequence, adjust the synonymous codon of the gene according to the codon preference of the host, thereby eliminating rare codons and improving the expression efficiency of heterologous genes. The target gene sequence optimized by synonymous codon bias can express the same amino acid sequence as the target protein. The embodiment of the present invention relates to the optimized codon sequence obtained by codon optimization of the gene sequence encoding alkaline phosphatase mutant, as shown in SEQ ID NO: 8-13, and the present invention also relates to SEQ ID NO: The homology of the sequence shown in 8-13 is greater than 80%, preferably greater than 85%, more preferably greater than 90%, more preferably greater than 91%, more preferably greater than 95% polynucleotide; and SEQ ID NO:8-13 Polynucleotides complementary to the indicated sequences.
目的基因的载体Carrier of target gene
本发明中还涉及包含本发明的多核苷酸的载体。本发明中“载体”表示线性或环状DNA分子,其包含编码目的蛋白的片段,所述目的蛋白可操作地连接到提供其转录的其它片段。这样的附加片段可以包括启动子和终止子序列,并且可以任选地包括一个或多个复制起点,一个或多个可选择标记,增强子,多腺苷酸化信号,载体等。载体片段可以衍生自宿主生物体,另一生物体,质粒或病毒DNA,或可以是合成的。载体可以是合成的或方便地进行重组DNA操作的任何表达载体,载体的选择通常取决于载体要导入的宿主细胞。因此,载体可以是自主复制载体,即载体,其作为染色体外实体存在,染色体外实体的复制与染色体复制无关,例如质粒。或者,载体可以是当引入宿主细胞时整合到宿主细胞基因组中并与其整合的染色体一起复制的载体。在一个实施方案中,本发明的载体是表达载体。本发明的一个实施例中选择pET-28a(+)作为载体,以获取更高效的表达效率。The present invention also relates to vectors comprising the polynucleotides of the present invention. "Vector" in the present invention means a linear or circular DNA molecule comprising a segment encoding a protein of interest operably linked to other segments that provide for its transcription. Such additional segments may include promoter and terminator sequences, and may optionally include one or more origins of replication, one or more selectable markers, enhancers, polyadenylation signals, vectors, and the like. A vector segment may be derived from a host organism, another organism, plasmid or viral DNA, or may be synthetic. The vector can be any expression vector that is synthetic or convenient for recombinant DNA manipulation, and the choice of the vector usually depends on the host cell into which the vector is to be introduced. Thus, a vector may be an autonomously replicating vector, ie a vector, which exists as an extrachromosomal entity whose replication is independent of chromosomal replication, such as a plasmid. Alternatively, the vector may be one that, when introduced into a host cell, integrates into the genome of the host cell and replicates with the chromosome into which it has integrated. In one embodiment, the vector of the invention is an expression vector. In one embodiment of the present invention, pET-28a(+) is selected as the vector to obtain higher expression efficiency.
本领域的技术人员熟知的方法能用于构建含本发明蛋白的编码DNA序列和合适的转录/翻译控制信号的表达载体。这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等。所述的DNA序列可有效连接到表达载体中的适当启动子上,以指导mRNA合成。表达载体还包括翻译起始用的核糖体结合位点和转录终止子。示例性地,使用DNA内切酶将载体DNA分子切割成可与外源基因连接的线性分子,然后将经密码子优化的目的基因片段连接于载体,可选用单酶切位点的黏端连接、双酶切片段的定向克隆、不同限制酶切位点的黏端连接、平端连接、人工接头连接或同寡核苷酸末端连接实现外源DNA片段的插入。Methods well known to those skilled in the art can be used to construct expression vectors containing the coding DNA sequence of the protein of the present invention and appropriate transcription/translation control signals. These methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombination technology and the like. Said DNA sequence can be operably linked to an appropriate promoter in the expression vector to direct mRNA synthesis. The expression vector also includes a ribosome binding site for translation initiation and a transcription terminator. Exemplarily, the DNA endonuclease is used to cut the carrier DNA molecule into a linear molecule that can be connected with the foreign gene, and then the codon-optimized target gene fragment is connected to the carrier, and the sticky end connection with a single enzyme cutting site can be selected , Directional cloning of double-digested fragments, sticky-end ligation of different restriction enzyme sites, blunt-end ligation, artificial adapter ligation or ligation with oligonucleotide ends to achieve the insertion of exogenous DNA fragments.
含有目的基因的载体转化宿主细胞Transform host cells with the vector containing the gene of interest
本发明还涉及用本发明的载体或融合蛋白编码序列经基因工程产生的宿主细胞。含有经密码子优化的目的基因的载体可以通过已知的方法插入、转染或以其他方式转化到宿主细胞中,从而获得含有本发明经密码子优化的目的基因并能够表达目的蛋白的转化体。本发明中“宿主细胞”是引入了外源多核苷酸和/或载体的细胞。宿主细胞可以是真核宿主细胞或原核宿主细胞,宿主细胞优选是细菌,并且优选是大肠杆菌,更优选是大肠杆菌ROSETTA(DE3)菌种(Escherichia coli Rosetta(DE3)strain)。The present invention also relates to host cells produced by genetic engineering using the vector or fusion protein coding sequence of the present invention. The vector containing the codon-optimized gene of interest can be inserted, transfected, or otherwise transformed into host cells by known methods, so as to obtain a transformant containing the codon-optimized gene of interest of the present invention and capable of expressing the protein of interest . A "host cell" in the present invention is a cell into which exogenous polynucleotides and/or vectors have been introduced. The host cell can be a eukaryotic host cell or a prokaryotic host cell, and the host cell is preferably a bacterium, and preferably Escherichia coli, more preferably Escherichia coli Rosetta (DE3) strain.
制备目的蛋白的方法Method for preparing target protein
本发明还涉及制备目的蛋白的方法,可利用本发明的多核苷酸序列表达或生产重组蛋白。一般来说有以下步骤:The present invention also relates to a method for preparing the target protein, and the polynucleotide sequence of the present invention can be used to express or produce the recombinant protein. Generally speaking, there are the following steps:
(1)用本发明的编码本发明蛋白的多核苷酸(或变异体),或用含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞;(1) Transform or transduce a suitable host cell with the polynucleotide (or variant) encoding the protein of the present invention, or with a recombinant expression vector containing the polynucleotide;
(2)在合适的培养基中培养的宿主细胞;(2) host cells cultured in a suitable medium;
(3)从培养基或细胞中分离、纯化蛋白质。(3) Separation and purification of protein from culture medium or cells.
其中,步骤(1)含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞可通过本领域技术人员熟知的常规技术进行,当宿主是大肠杆菌时,可选用热击法和电转化法等。Wherein, step (1) transforming or transducing suitable host cells with the recombinant expression vector containing the polynucleotide can be carried out by conventional techniques well known to those skilled in the art. When the host is Escherichia coli, heat shock and electroporation can be selected. law etc.
获得的转化子可以用常规方法培养,表达本发明的基因所编码的多肽。根据所用的宿主细胞,培养中所用的培养基可选自各种常规培养基,优选为SB、TB、LB或SOC培养基。在适于宿主细胞生长的条件下进行培养。当宿主细胞生长到适当的细胞密度后,用合适的方法(如温度转换或化学诱导)诱导选择的启动子,将细胞再培养一段时间。为促进目的蛋白的表达并提升可溶蛋白的表达量,本发明的一个优选的实施方式,使用TB或LB培养基培养的宿主细胞,且所用培养基中含有卡那霉素抗性基因。The obtained transformant can be cultured by conventional methods to express the polypeptide encoded by the gene of the present invention. According to the host cells used, the medium used in the culture can be selected from various conventional mediums, preferably SB, TB, LB or SOC medium. The culture is carried out under conditions suitable for the growth of the host cells. After the host cells have grown to an appropriate cell density, the selected promoter is induced by an appropriate method (such as temperature shift or chemical induction), and the cells are cultured for an additional period of time. In order to promote the expression of the target protein and increase the expression level of the soluble protein, in a preferred embodiment of the present invention, host cells cultured in TB or LB medium are used, and the medium used contains a kanamycin resistance gene.
为进一步促进目的蛋白的可溶性表达,在本发明的一个优选的实施方式中,培养宿主细胞至OD600在0.6-0.8之间后,采用IPTG进行诱导,并在17至19℃下或35至39℃下继续培养约8至12小时。In order to further promote the soluble expression of the target protein, in a preferred embodiment of the present invention, after culturing the host cells until the OD 600 is between 0.6-0.8, IPTG is used to induce, and at 17 to 19 ° C or 35 to 39 Cultivation was continued for about 8 to 12 hours at °C.
在上面的方法中的蛋白质可在细胞内、或在细胞膜上表达、或分泌到细胞外。如果需要,可利用其物理的、化学的和其它特性通过各种分离方法分离和纯化蛋白。因此本发明中,在成功培养得到目的蛋白后,还涉及对其进行分离和纯化的步骤,例如步骤(3)中,从培养基中分离和纯化蛋白质以获得高纯度的目的蛋白。虽纯化目的蛋白的方法可是本领域技术人员熟知的常规手段,包括但并不限于:常规的复性处理、用蛋白沉淀剂处理(盐析方法)、离心、渗透破菌、超处理、超离心、分子筛层析(凝胶过滤)、吸附层析、离子交换层析、高效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。The protein in the above method may be expressed inside the cell, or on the cell membrane, or secreted outside the cell. Proteins can be isolated and purified by various separation methods by taking advantage of their physical, chemical and other properties, if desired. Therefore, in the present invention, after the target protein is successfully cultured, it also involves the steps of isolating and purifying it, for example, in step (3), separating and purifying the protein from the culture medium to obtain a high-purity target protein. Although the method of purifying the target protein can be a conventional means well known to those skilled in the art, including but not limited to: conventional refolding treatment, treatment with protein precipitation agent (salting out method), centrifugation, osmotic destruction, supertreatment, ultracentrifugation , Molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, high performance liquid chromatography (HPLC) and other various liquid chromatography techniques and combinations of these methods.
将洗脱纯化后的目的蛋白产品进行透析,并收集透析样品。透析样品可通过BCA法测量浓度,计算产量。The eluted and purified target protein product is dialyzed, and the dialyzed sample is collected. Dialyzed samples can be measured by BCA method concentration, to calculate the yield.
在本发明中,使用针对本文中的某些实施例提供的任何示例性或示例性措辞(例如,“”)只是为了更好地呈现本发明,而不限制以其它方式要求权利的本发明的范围。本文中的任何措辞都不应被解释为表示本发明实施中不可缺少的权利要求中未描述的要素。In this disclosure, use of any exemplary or exemplary language (eg, "") provided with respect to certain embodiments herein is for the purpose of better presenting the invention only and does not limit the scope of the invention otherwise claimed. scope. Nothing in the text should be construed as indicating any non-recited element in the claims indispensable to the practice of the invention.
如果引用文献中的术语的定义或使用与本文中描述的术语的定义不一致或不一致,则使用本文中描述的术语的定义,而不使用引用文献中的术语的定义。If the definition or use of a term in a cited document is inconsistent or inconsistent with the definition of the term described herein, the definition of the term described herein applies instead of the definition of the term in the cited document.
本文中使用的各种术语如下所示。如果权利要求中使用的术语未在下文中定义,则应给出本领域技术人员给出的该术语的最广泛定义,以反映在申请时印刷的出版物或所发布的专利中。Various terms used in this article are as follows. To the extent a term used in a claim is not defined below, it should be given the broadest definition persons in the art have given that term as reflected in printed publications or issued patents at the time of filing.
如本文中所用的,术语“分离的”是指与核酸或多肽在其天然来源中存在的至少一种其它组分(例如核酸或多肽)分离的核酸或多肽。在一个实施方案中,发现核酸或多肽仅存在(如果有的话)通常存在于其溶液中的溶剂,缓冲液,离子或其它组分。术语“分离的”和“纯化的”不包括存在于其天然来源中的核酸或多肽。As used herein, the term "isolated" refers to a nucleic acid or polypeptide that is separated from at least one other component (eg, nucleic acid or polypeptide) of the nucleic acid or polypeptide in its natural source. In one embodiment, a nucleic acid or polypeptide is found only in the presence, if any, of solvents, buffers, ions or other components normally present in solution thereof. The terms "isolated" and "purified" do not include nucleic acids or polypeptides as they exist in their natural source.
如本文中所用的,术语“多核苷酸”和“多核苷酸序列”可以是DNA形式或RNA形式。DNA形式包括cDNA、基因组DNA或人工合成的DNA。DNA可以是单链的或是双链的。DNA可以是编码链或非编码链。As used herein, the terms "polynucleotide" and "polynucleotide sequence" may be in the form of DNA or RNA. Forms of DNA include cDNA, genomic DNA or synthetic DNA. DNA can be single-stranded or double-stranded. DNA can be either the coding strand or the non-coding strand.
本发明还涉及上述多核苷酸的变异体,其编码与本发明有相同的氨基酸序列的蛋白质片段、类似物和衍生物。此多核苷酸的变异体可以是天然发生的等位变异体或非天然发生的变异体。这些核苷酸变异体包括取代变异体、缺失变异体和插入变异体。如本领域所知的,等位变异体是一个多核苷酸的替换形式,它可能是一个或多个核苷酸的取代、缺失或插入,但不会从实质上改变其编码多肽的功能。The present invention also relates to variants of the above polynucleotides, which encode protein fragments, analogs and derivatives having the same amino acid sequence as the present invention. Variants of this polynucleotide may be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants and insertion variants. As known in the art, an allelic variant is an alternative form of a polynucleotide, which may be a substitution, deletion or insertion of one or more nucleotides, but does not substantially change the function of the encoded polypeptide.
如本文中所用的,术语“密码子优化”是指根据实际做蛋白表达或生产的生物(包括大肠杆菌、酵母、哺乳动物血细胞、植物细胞、昆虫细胞等)表现出的密码子利用差异,避免使用低利用率或稀有的密码子,来提高基因合成效率的方式。As used herein, the term "codon optimization" refers to avoiding codon usage differences based on the actual expression or production of proteins (including Escherichia coli, yeast, mammalian blood cells, plant cells, insect cells, etc.) A way to improve the efficiency of gene synthesis by using low-utilization or rare codons.
如本文中所用的,术语“同源性”和“同一性”可互换使用,是指两个或更多个多核苷酸或多肽之间相同(即相同)核苷酸或氨基酸的百分比。可以通过以下方法测量两个或多个多核苷酸或多肽之间的序列同一性。排列多核苷酸或多肽的核苷酸或氨基酸序列,对排列的多核苷酸或多肽中含有相同核苷酸或氨基酸残基的位置的数量进行评分,并将其与排列的多核苷酸或多肽中含有不同核苷酸或氨基酸残基的位置的数量进行比较。多核苷酸可以在一个位置上不同,例如,根据包含不同的核苷酸(即,替换或变异)或核苷酸的缺失(即,在多核苷酸中插入或缺失一个或两个核苷酸)。多肽可以例如通过含有氨基酸(即,取代或变异)或氨基酸的缺失(即,插入一个或两个多肽中的氨基酸或氨基酸的缺失)在一个位置上不同。可以通过将含有相同核苷酸或氨基酸残基的位置的数量除以多核苷酸或多肽中氨基酸残基的总数来计算序列同一性。例如,百分比同一性可通过将含有相同核苷酸或氨基酸残基的位置的数量除以多核苷酸或多肽中核苷酸或氨基酸残基的总数,然后乘以100来计算。As used herein, the terms "homology" and "identity" are used interchangeably to refer to the percentage of identical (ie identical) nucleotides or amino acids between two or more polynucleotides or polypeptides. Sequence identity between two or more polynucleotides or polypeptides can be measured by the following methods. Align the nucleotide or amino acid sequences of polynucleotides or polypeptides, score the number of positions in the aligned polynucleotides or polypeptides that contain the same nucleotide or amino acid residue, and compare this with the aligned polynucleotides or polypeptides Compare the number of positions containing different nucleotide or amino acid residues in . Polynucleotides may differ at a position, for example, by the inclusion of different nucleotides (i.e., substitutions or variations) or deletions of nucleotides (i.e., insertion or deletion of one or two nucleotides in a polynucleotide ). Polypeptides may differ at one position, for example, by the inclusion of amino acids (ie, substitutions or variations) or deletions of amino acids (ie, insertions or deletions of amino acids in one or both polypeptides). Sequence identity can be calculated by dividing the number of positions containing the same nucleotide or amino acid residue by the total number of amino acid residues in the polynucleotide or polypeptide. For example, percent identity can be calculated by dividing the number of positions containing identical nucleotides or amino acid residues by the total number of nucleotides or amino acid residues in the polynucleotide or polypeptide and multiplying by 100.
如本文中所用的,术语“序列互补”和“反向序列互补”可互换使用,指的是与原多核苷酸序列的方向相反,且与原多核苷酸序列互补的序列。例如,如果原始多核苷酸序列是ACTGAAC,则其反向互补序列是GTTCAT。As used herein, the terms "sequence complementarity" and "reverse sequence complementarity" are used interchangeably to refer to a sequence that is oriented in the opposite direction to an original polynucleotide sequence and that is complementary to the original polynucleotide sequence. For example, if the original polynucleotide sequence is ACTGAAC, its reverse complement is GTTCAT.
如本文中所用的,术语“表达”包括涉及宿主细胞中多肽产生的任何步骤,包括但不限于转录,翻译,翻译后修饰和分泌。表达后可收获,即回收宿主细胞或表达产物。As used herein, the term "expression" includes any step involved in the production of a polypeptide in a host cell, including but not limited to transcription, translation, post-translational modification, and secretion. Following expression, it can be harvested, ie, the host cells or the expression product are recovered.
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。以下实施例中所用的实验材料和试剂如无特别说明均可从市售渠道获得。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. For the experimental methods without specific conditions indicated in the following examples, the conventional conditions or the conditions suggested by the manufacturer are usually followed. Percentages and parts are by weight unless otherwise indicated. The experimental materials and reagents used in the following examples can be obtained from commercially available channels unless otherwise specified.
除非另有指明,本文所用的技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义,需要注意的是,本文所用的术语仅为了描述具体实施方式,而非意图限制本申请的示例性实施方式。Unless otherwise specified, the technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the application belongs. Exemplary implementation of the application.
实施例1Example 1
本实施例中,通过三维结构对比确定碱性磷酸酶的改造区域和改造策略,获得了若干改造后的碱性磷酸酶突变体。具体步骤参考如下:In this example, the modification region and modification strategy of alkaline phosphatase were determined through three-dimensional structure comparison, and several modified alkaline phosphatase mutants were obtained. The specific steps are as follows:
(1)三维结构对比制定改造策略(1) Three-dimensional structural comparison to formulate renovation strategies
选取Shewanella sp来源的碱性磷酸酶为改造对象,进行三维结构建模,采用Alphafold2建立Shewanella sp的三维结构(如图1)。将Shewanella sp来源及E.coli来源的碱性磷酸酶进行结构比对,对比结果如图2所示。Alkaline phosphatase derived from Shewanella sp was selected as the object of transformation for three-dimensional structure modeling, and Alphafold2 was used to establish the three-dimensional structure of Shewanella sp (Figure 1). The structures of alkaline phosphatases derived from Shewanella sp and E.coli were compared, and the comparison results are shown in Figure 2.
根据图2可得如下结论:According to Figure 2, the following conclusions can be drawn:
第一,R166及D153是活性位点氨基酸。如图2,橙色为Shewanella sp来源SAP,淡青色为E.coli来源的SAP,绿色为底物,包括Zn,Mg以及PO4分子。结构比对发现Shewanella sp来源及E.coli来源的碱性磷酸酶的活性位点高度保守,其中红色两个氨基酸分别是R166及D153,该两个氨基酸与底物结合,初步认定该两个氨基酸是重要的活性位点氨基酸。First, R166 and D153 are active site amino acids. As shown in Figure 2, the orange is the SAP derived from Shewanella sp, the light cyan is the SAP derived from E.coli, and the green is the substrate, including Zn, Mg and PO4 molecules. Structural comparison found that the active sites of alkaline phosphatase derived from Shewanella sp and E.coli are highly conserved, and the two amino acids in red are R166 and D153, which bind to the substrate, and these two amino acids were preliminarily identified is an important active site amino acid.
第二,330-390氨基酸的四个螺旋处是重点改造区域。如图3所示,Shewanella sp来源SAP与E.coli来源SAP不同的地方主要在330-390氨基酸的四个螺旋处(图3)。其中两个螺旋的多个氨基酸参与形成分子内互作,这些位点远离活性中心,其突变体可能减弱或者破坏分子内螺旋的形成,从而达到降低热稳定性的目的。分别对330-390位的氨基酸残基进行突变,构建突变体,发现其中绝大部分突变体表达活性很低,需要进一步测试确定突变位点。Second, the four helices of amino acids 330-390 are key areas for transformation. As shown in Figure 3, the difference between SAP derived from Shewanella sp and SAP derived from E.coli is mainly at the four helices of amino acids 330-390 (Figure 3). Multiple amino acids in the two helices participate in the formation of intramolecular interactions, and these sites are far away from the active center. The mutants may weaken or destroy the formation of intramolecular helices, thereby achieving the purpose of reducing thermal stability. Amino acid residues at positions 330-390 were mutated to construct mutants, and it was found that most of the mutants had very low expression activity, and further testing was needed to determine the mutation site.
(2)测试确定突变位点(2) Test to determine the mutation site
测试后获得的部分突变体如下表1所示:Some of the mutants obtained after the test are shown in Table 1 below:
表1Table 1
测试结果表明,表1中列出的突变位点中,Trp348及Arg372两个位点极为重要,因此,可以作为优先改造位点。The test results show that among the mutation sites listed in Table 1, Trp348 and Arg372 are extremely important, and therefore, can be used as priority modification sites.
(3)确定碱性磷酸酶突变体序列(3) Determine the sequence of the alkaline phosphatase mutant
如表2所示,序列1-5依次为Trp 348、Gln 349、Val 365、Ser 369、Arg 372位点单点突变体,序列6为多点突变体(Trp348/Gln 349/Val365/Ser 369/Arg372)。As shown in Table 2, sequences 1-5 are sequentially Trp 348, Gln 349, Val 365, Ser 369, Arg 372 single-point mutants, and sequence 6 is a multi-point mutant (Trp348/Gln 349/Val365/Ser 369 /Arg372).
表2Table 2
SEQ ID NO.1:SEQ ID NO.1:
MSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSPELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTMGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQAQADLARGLGFELNADEVTQLSTARMQGLETMTEAIRKIIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTEMSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSP ELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQAQAQADLARGLGFELNADEVTQLSTARMQGLETMTEAIRK IIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTE
SEQ ID NO.2:SEQ ID NO.2:
MSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSPELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTMGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWAADLARGLGFELNADEVTQLSTARMQGLETMTEAIRKIIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTEMSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSP ELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWAADLARGLGFELNADEVTQLSTARMQGLETMTEAIRKII DKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTE
SEQ ID NO.3:SEQ ID NO.3:
MSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSPELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTMGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEATQLSTARMQGLETMTEAIRKIIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTEMSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSP ELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEATQLSTARMQGLETMTEAIRKII DKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTE
SEQ ID NO.4:SEQ ID NO.4:
MSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSPELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTMGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEVTQLATARMQGLETMTEAIRKIIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTEMSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSP ELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEVTQLATARMQGLETMTEAIRK IIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTE
SEQ ID NO.5:SEQ ID NO.5:
MSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSPELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTMGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEVTQLSTAAMQGLETMTEAIRKIIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTEMSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSP ELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEVTQLSTAAMQGLETMTEAIRK IIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTE
SEQ ID NO.6:SEQ ID NO.6:
MSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSPELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTMGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQAAADLARGLGFELNADEATQLATAAMQGLETMTEAIRKIIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTEMSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSP ELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQAAADLARGLGFELNADEATQLATAAMQGLETMTEAIRKIID KRTGTGWTTSGHTGTDVQVFAAGPAAAELFNGHQDNTDIANKIFTLLPKPKKAKTE
SEQ ID NO.7:SEQ ID NO.7:
MSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSPELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTMGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEVTQLSTARMQGLETMTEAIRKIIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTEMSVTKTSLLLLTIGLVFSASSKAAPELENGPMKPPSKPKNIVIMVGDGMGPSYTSAYRYFKDNPDTEEVEQTVFDRLLVGMASTYPASVSGYVTDSAAAATALATGVKSYNGAISVDTQKQHLPTMLEKAKALGLSTGVAVTSQINHATPAAFLAHNESRKNYDALALSYLDTNADVLLGGGQKYFSP ELLEKFTAKGYQHISRFEDLATITQPKVIGLFAQVQLPWALDEKNANRLSTMTQKALDLLSQNEQGFVLLVEGSLIDWAGHSNDIANTGEMDEFANALEVVEQFVRQHPDTLMVATADHNTGGLSIGAGGDYRWNPEILRNMSASTDTLALAALGGDQWQADLARGLGFELNADEVTQLSTARMQGLETMTEAIRK IIDKRTGTGWTTSGHTGTDVQVFAAGPAAELFNGHQDNTDIANKIFTLLPKPKKAKTE
实施例2Example 2
本实施例中,根据实施例1中得到的碱性磷酸酶突变体序列和未突变的Shewanella sp碱性磷酸酶序列,开发了适应的原核表达方法,获得了若干大肠杆菌表达的碱性磷酸酶突变体和碱性磷酸酶。具体步骤参考如下:In this example, according to the alkaline phosphatase mutant sequence obtained in Example 1 and the unmutated Shewanella sp alkaline phosphatase sequence, an adapted prokaryotic expression method was developed, and several alkaline phosphatases expressed by Escherichia coli were obtained mutants and alkaline phosphatase. The specific steps are as follows:
(1)构建碱性磷酸酶突变体质粒(1) Construction of alkaline phosphatase mutant plasmid
根据Shewanella sp碱性磷酸酶氨基酸序列,去掉N端的信号肽aa1-23得到如SEQID NO.7所示的序列,通过分析SEQ ID NO.7获得对应的基因序列,并对其进行大肠杆菌同义密码子偏好性优化,得到优化密码子Ⅰ,将优化密码子Ⅰ连接载体pET-28a(+),委托苏州金维智生物科技有限公司合成重组质粒C。According to the amino acid sequence of Shewanella sp alkaline phosphatase, the signal peptide aa1-23 at the N-terminal was removed to obtain the sequence shown in SEQ ID NO.7, and the corresponding gene sequence was obtained by analyzing SEQ ID NO.7, and it was synonymous with Escherichia coli The codon preference was optimized, and the optimized codon I was obtained. The optimized codon I was connected to the vector pET-28a(+), and the recombinant plasmid C was entrusted to Suzhou Jinweizhi Biotechnology Co., Ltd. to synthesize.
根据实施例1中获得的若干Shewanella sp碱性磷酸酶突变体序列,分析获得对应的基因序列,并对这些基因序列进行大肠杆菌同义密码子偏好性优化,分别得到如表3所示的优化密码子。将这些优化密码子连接载体pET-28a(+),委托苏州金维智生物科技有限公司合成若干重组质粒。According to the sequence of several Shewanella sp alkaline phosphatase mutants obtained in Example 1, the corresponding gene sequences were analyzed and obtained, and these gene sequences were optimized for Escherichia coli synonymous codon preference, respectively obtaining the optimization shown in Table 3 a. Connect these optimized codons to the vector pET-28a(+), and entrust Suzhou Jinweizhi Biotechnology Co., Ltd. to synthesize several recombinant plasmids.
表3table 3
优化密码子Ⅰ(SEQ ID NO.8):Optimized codon Ⅰ (SEQ ID NO.8):
GCTCCAGAACTGGAAAACGGTCCAATGAAGCCTCCGTCTAAACCGAAGAACATTGTCATTATGGTCGGTGACGGTATGGGTCCGAGCTACACTTCCGCATATCGTTACTTCAAAGACAACCCAGACACCGAGGAGGTTGAACAGACTGTTTTCGACCGCCTGCTGGTGGGTATGGCAAGCACCTACCCTGCAAGCGTTTCCGGCTACGTAACTGATAGCGCAGCGGCAGCTACCGCTCTGGCTACTGGTGTTAAATCTTACAATGGTGCGATTTCTGTTGACACCCAAAAGCAGCATCTGCCAACTATGCTGGAAAAAGCTAAAGCTCTGGGCCTGTCTACCGGCGTAGCGGTTACCTCTCAGATCAACCACGCGACTCCGGCGGCATTTCTGGCTCACAACGAAAGCCGCAAAAACTACGACGCTCTGGCTCTGAGCTATCTGGACACTAACGCGGATGTACTGCTGGGTGGCGGTCAGAAATACTTCTCTCCGGAGCTGCTGGAAAAGTTCACTGCGAAAGGCTACCAGCACATCAGCCGTTTCGAAGATCTGGCAACCATTACGCAGCCAAAAGTCATCGGTCTGTTCGCCCAAGTGCAGCTGCCGTGGGCACTGGATGAAAAAAACGCCAATCGTCTGTCCACCATGACTCAGAAAGCACTGGACCTGCTGTCTCAGAACGAACAGGGTTTCGTTCTGCTGGTCGAAGGCAGCCTGATTGACTGGGCAGGTCATTCCAACGACATCGCAAACACCATGGGTGAAATGGATGAATTCGCCAACGCCCTGGAGGTAGTTGAACAGTTCGTACGTCAGCACCCGGACACTCTGATGGTTGCAACCGCGGACCACAATACCGGCGGTCTGTCTATTGGTGCAGGTGGTGACTACCGTTGGAATCCGGAAATCCTGCGTAACATGAGCGCCTCTACTGATACTCTGGCACTGGCTGCGCTGGGTGGTGATCAATGGCAGGCTGATCTGGCACGTGGCCTGGGTTTCGAACTGAACGCGGATGAAGTCACTCAGCTGTCTACCGCTCGTATGCAGGGTCTGGAAACCATGACCGAAGCAATCCGTAAGATCATCGATAAACGCACCGGTACGGGTTGGACTACTAGCGGTCACACCGGTACCGATGTTCAGGTATTCGCCGCTGGTCCGGCAGCTGAACTGTTCAACGGTCACCAGGACAACACCGACATCGCGAACAAAATCTTCACTCTGCTGCCAAAACCGAAAAAAGCGAAAACCGAGGCTCCAGAACTGGAAAACGGTCCAATGAAGCCTCCGTCTAAACCGAAGAACATTGTCATTATGGTCGGTGACGGTATGGGTCCGAGCTACACTTCCGCATATCGTTACTTCAAAGACAACCCAGACACCGAGGAGGTTGAACAGACTGTTTTCGACCGCCTGCTGGTGGGTATGGCAAGCACCTACCCTGCAAGCGTTTCCGCTACGTAACTGATA GCGCAGCGGCAGCTACCGCTCTGGCTACTGGTGTTAAATCTACAATGGTGCGATTTCTGTTGACACCCAAAAGCAGCATCTGCCAACTATGCTGGAAAAAGCTAAAGCTCTGGGCCTGTCTACCGGCGTAGCGGTTACCTCTCAGATCAACCACGCGACTCCGGCGGCATTTCTGGCTCACAACGAAAGCCGCAAAAACTACGACGCTCTGGCT CTGAGCTATCTGGACACTAACGCGGATGTACTGCTGGGTGGCGGTCAGAAATACTTCTCTCCGGAGCTGCTGGAAAAGTTCACTGCGAAAGGCTACCAGCACATCAGCCGTTTCGAAGATCTGGCAACCATTACGCAGCCAAAAGTCATGGTCTGTTCGCCCAAGTGCAGCTGCCGTGGGCACTGGATGAAAAAAAACGCCAATCGTCTGTCCACC ATGACTCAGAAAGCACTGGACCTGCTGTCTCAGAACGAACAGGGTTTCGTTCTGCTGGTCGAAGGCAGCCTGATTGACTGGGCAGGTCATTCCAACGACATCGCAAACACCATGGGTGAAATGGATGAATTCGCCAACGCCCTGGAGGTAGTTGAACAGTTCGTACGTCAGCACCCGGACACTCTGATGGTTGCAACCGCGGACCACAATACCGGC GGTCTGTCTATTGGTGCAGGTGGTGACTACCGTTGGTGACTACCGTTGGAATCCGGAAATCCTGCGTAACATGAGCGCCTCTACTGATACTCTGGCACTGGCTGCGCTGGGTGGTGATCAATGGCAGGCTGATCTGGCACGTGGCCTGGGTTTCGAACTGAACGCGGATGAAGTCACTCAGCTGTCTACCGCTCGTATGCAGGGTCTGGAAACCATGACCGAAGCA ATCCGTAAGATCATCGATAAACGCACCGGTACGGGTTGGACTACTAGCGGTCACACCGGTACCGATGTTCAGGTATTCGCCGCTGGTCCGGCAGCTGAACTGTTCAACGGTCACCAGGACAACCACCGACATCGCGAACAAAATCTTCACTCTGCTGCCAAAACCGAAAAAAGCGAAAACCGAG
优化密码子Ⅱ-1(SEQ ID NO.9):Optimized codon Ⅱ-1 (SEQ ID NO.9):
GCTCCAGAACTGGAAAACGGCCCGATGAAACCACCATCTAAACCTAAAAACATCGTGATTATGGTAGGTGATGGTATGGGTCCATCTTACACTTCTGCGTACCGTTACTTCAAAGACAACCCGGACACTGAAGAAGTTGAACAGACTGTTTTTGACCGTCTGCTGGTTGGTATGGCGTCCACTTATCCGGCTTCCGTTTCTGGTTACGTAACCGATTCTGCGGCTGCTGCTACTGCTCTGGCGACTGGTGTTAAATCTTATAACGGTGCAATCTCCGTCGACACCCAAAAACAGCACCTGCCGACCATGCTGGAAAAGGCTAAAGCTCTGGGTCTGTCCACCGGCGTCGCTGTTACCAGCCAGATCAACCATGCTACCCCAGCGGCCTTCCTGGCGCATAATGAAAGCCGCAAAAACTACGATGCGCTGGCACTGTCTTACCTGGACACTAACGCGGACGTACTGCTGGGTGGTGGTCAGAAATACTTCTCTCCGGAACTGCTGGAAAAGTTCACCGCTAAGGGTTACCAGCACATCAGCCGTTTTGAAGATCTGGCAACCATTACCCAGCCGAAAGTGATCGGCCTGTTTGCCCAGGTTCAGCTGCCTTGGGCGCTGGATGAGAAAAACGCGAATCGTCTGTCCACTATGACTCAGAAAGCGCTGGATCTGCTGTCTCAGAACGAACAGGGCTTTGTCCTGCTGGTGGAAGGCAGCCTGATCGATTGGGCGGGTCACTCCAACGATATCGCTAACACCATGGGCGAAATGGATGAATTTGCTAATGCGCTGGAAGTGGTTGAACAGTTTGTCCGTCAGCACCCGGACACGCTGATGGTTGCGACTGCTGATCACAACACCGGTGGTCTGTCTATCGGTGCAGGTGGTGATTACCGCTGGAACCCTGAAATTCTGCGTAACATGAGCGCTTCTACGGATACTCTGGCGCTGGCTGCTCTGGGTGGCGATCAAGCACAGGCAGATCTGGCACGTGGTCTGGGTTTTGAGCTGAACGCAGATGAGGTGACTCAGCTGTCCACGGCGCGTATGCAGGGTCTGGAAACCATGACCGAAGCGATCCGTAAAATCATTGACAAACGCACCGGCACTGGTTGGACTACCTCCGGTCACACTGGCACCGATGTTCAGGTTTTCGCTGCAGGTCCGGCAGCAGAACTGTTTAACGGTCATCAGGATAACACCGACATTGCAAACAAAATCTTCACTCTGCTGCCAAAACCAAAAAAAGCGAAAACCGAAGCTCCAGAACTGGAAAACGGCCCGATGAAACCACCATCTAAACCTAAAAACATCGTGATTATGGTAGGTGATGGTATGGGTCCATCTTACACTTCTGCGTACCGTTACTTCAAAAGACAACCCGGACACTGAAGAAGTTGAACAGACTGTTTTTGACCGTCTGCTGGTTGGTATGGCGTCCACTTATCCGGCTTCCGTTTCTGGTTACGTAACCGATTCTGC GGCTGCTGCTACTGCTCTGGCGACTGGTGTTAAATCTTATAACGGTGCAATCTCCGTCGACACCCAAAAACAGCACCTGCCGACCATGCTGGAAAAGGCTAAAGCTCTGGGTCTGTCCACCGGCGTCGCTGTTACCAGCCAGATCAACCATGCTACCCCAGCGGCCTTCCTGGCGCATAATGAAAGCCGCAAAAACTACGATGCGCTGGCACTGT CTTACCTGGACACTAACGCGGACGTACTGCTGGGTGGTGGTCAGAATACTTCTCTCCGGAACTGCTGGAAAAGTTCACCGCTAAGGGTTACCAGCACATCAGCCGTTTTGAAGATCTGGCAACCATTACCCAGCCGAAAGTGATCGGCCTGTTTGCCCAGGTTCAGCTGCCTTGGGCGCTGGATGAGAAAAACGCGAATCGTCTGTCCACTATGA CTCAGAAAGCGCTGGATCTGCTGTCTCCAGAACGAACAGGGCTTTGTCCTGCTGGTGGAAGGCAGCCTGATCGATTGGGCGGGTCACTCCAACGATATCGCTAACACCATGGGCGAAATGGATGAATTTGCTAATGCGCTGGAAGTGTTGAACAGTTTGTCCGTCAGCACCCGGACACGCTGATGGTTGCGACTGCTGATCACACACCG GTGGTCTGTCTATCGGTGCAGGTGGTGATTACCGCTGGAACCCTGAAATTCTGCGTAACATGAGCGCTTCTACGGATACTCTGGCGCTGGCTGCTCTGGGTGGCGATCAAGCACAGGCAGATCTGGCACGTGGTCTGGGTTTTGAGCTGAACGCAGATGAGGTGACTCAGCTGTCCACGGCGCGTATGCAGGGTCTGGAAACCATGACCGAAGCG ATCCGTAAAATCATTGACAAACGCACCGGCACTGGTTGGACTACCTCCGGTCACACTGGCACCGATGTTCAGGTTTTCGCTGCAGGTCCGGCAGCAGAACTGTTTAACGGTCATCAGGATAACACCGACATTGCAAACAAAATCTTCACTCTGCTGCCAAAACCAAAAAAGCGAAAACCGAA
优化密码子Ⅱ-2(SEQ ID NO.10):Optimized codon Ⅱ-2 (SEQ ID NO.10):
GCTCCGGAACTGGAAAATGGCCCTATGAAACCGCCGTCTAAACCTAAAAACATCGTAATCATGGTTGGCGATGGCATGGGTCCGTCCTATACTTCTGCCTACCGCTATTTCAAAGACAACCCAGACACCGAGGAAGTTGAACAGACTGTATTCGACCGTCTGCTGGTTGGTATGGCTTCCACCTATCCGGCATCTGTTTCTGGCTATGTAACCGATTCTGCAGCTGCAGCCACTGCACTGGCAACCGGTGTGAAATCTTATAACGGTGCTATTTCTGTTGATACGCAGAAACAGCACCTGCCGACCATGCTGGAAAAAGCGAAAGCACTGGGCCTGTCCACCGGTGTTGCTGTTACCTCTCAGATCAACCATGCGACCCCGGCTGCTTTTCTGGCACATAACGAATCCCGTAAGAACTACGACGCGCTGGCCCTGTCTTATCTGGATACCAACGCGGATGTACTGCTGGGTGGCGGTCAGAAATATTTCTCCCCTGAACTGCTGGAAAAGTTTACCGCCAAAGGTTATCAGCATATCTCTCGCTTCGAAGATCTGGCGACTATCACCCAGCCGAAAGTTATTGGCCTGTTCGCACAGGTTCAACTGCCGTGGGCACTGGATGAAAAAAACGCCAACCGTCTGAGCACCATGACTCAGAAAGCGCTGGACCTGCTGAGCCAGAACGAGCAGGGTTTCGTACTGCTGGTCGAAGGCAGCCTGATTGACTGGGCAGGTCATAGCAACGATATCGCAAACACGATGGGCGAGATGGACGAATTTGCGAACGCGCTGGAAGTGGTAGAACAGTTCGTCCGCCAGCATCCTGACACCCTGATGGTTGCGACCGCTGACCACAATACCGGTGGCCTGTCTATTGGTGCTGGTGGCGACTATCGTTGGAACCCGGAAATCCTGCGTAACATGAGCGCTTCCACCGATACCCTGGCACTGGCTGCTCTGGGTGGCGATCAATGGGCAGCTGATCTGGCCCGTGGTCTGGGTTTCGAACTGAACGCTGATGAAGTTACCCAGCTGTCTACGGCGCGTATGCAGGGCCTGGAGACTATGACTGAAGCCATCCGCAAAATCATCGACAAGCGTACCGGCACTGGCTGGACTACCTCTGGCCACACTGGTACCGACGTACAGGTTTTCGCAGCAGGTCCAGCCGCTGAACTGTTCAACGGTCACCAGGACAACACTGACATCGCCAACAAAATCTTCACCCTGCTGCCGAAACCGAAAAAAGCAAAAACCGAAGCTCCGGAACTGGAAAATGGCCCTATGAAACCGCCGTCTAAACCTAAAAACATCGTAATCATGGTTGGCGATGGCATGGGTCCGTCCTATACTTCTGCCTACCGCTATTTCAAAGACAACCCAGACACCGAGGAAGTTGAACAGACTGTATTCGACCGTCTGCTGGTTGGTATGGCTTCCACCTATCCGGCATCTGTTTCTGGCTATGTAACCGATT CTGCAGCTGCAGCCACTGCACTGGCAACCGGTGTGAAATCTTATAACGGTGCTATTTCTGTTGATACGCAGAAACAGCACCTGCCGACCATGCTGGAAAAAGCGAAAGCACTGGGCCTGTCCACCGGTGTTGCTGTTACCTCTCAGATCAACCATGCGACCCCGGCTGCTTTTCTGGCACATAACGAATCCCGTAAGAACTACGACGCGCTGGCC CTGTCTTATCTGGATACCAACGCGGATGTACTGCTGGGTGGCGGTCAGAAATATTTCTCCCCTGAACTGCTGGAAAAGTTTACCGCCAAAGGTTATCAGCATATCTCTCGCTTCGAAGATCTGGCGACTATCACCCAGCCGAAAGTTATTGGCCTGTTCGCACAGGTTCAACTGCCGTGGGCACTGGATGAAAAAAACGCCAACCGTCTGAGCACCAT GACTCAGAAAGCGCTGGACCTGCTGAGCCAGAACGAGCAGGGTTTCGTACTGCTGGTCGAAGGCAGCCTGATTGACTGGGCAGGTCATAGCAACGATATCGCAAACACGATGGGCGAGATGGACGAATTTGCGAACGCGCTGGAAGTGGTAGAACAGTTCGTCCGCAGCATCCTGACACCCTGATGGTTGCGACCGCTGACCACAATACCGGTG GCCTGTCTATTGGTGCTGGTGGCGACTATCGTTGGAACCCGGAAATCCTGCGTAACATGAGCGCTTCCACCGATACCCTGGCACTGGCTGCTCTGGGTGGCGATCAATGGGCAGCTGATCTGGCCCGTGGTCTGGGTTTCGAACTGAACGCTGATGAAGTTACCCAGCTGTCTACGGCGCGTATGCAGGGCCTGGAGACTATGACTGAAGCC ATCCGCAAAAATCATCGACAAGCGTACCGGCACTGGCTGGACTACCTCTGGCCACACTGGTACCGACGTACAGGTTTTCGCAGCAGGTCCAGCCGCTGAACTGTTCAACGGTCACCAGGACAACACTGACATCGCCAACAAAATCTTCACCCTGCTGCCGAAACCGAAAAAAGCAAAAACCGAA
优化密码子Ⅱ-3(SEQ ID NO.11):Optimized codon Ⅱ-3 (SEQ ID NO.11):
GCACCTGAACTGGAGAACGGTCCAATGAAACCGCCGTCTAAACCTAAAAACATTGTTATTATGGTCGGTGATGGTATGGGTCCGTCTTATACGTCCGCTTACCGTTATTTTAAAGACAACCCGGACACCGAGGAAGTGGAGCAGACCGTTTTCGATCGTCTGCTGGTTGGCATGGCGTCTACTTATCCTGCGTCCGTGTCTGGCTATGTGACTGATTCTGCTGCTGCTGCAACCGCACTGGCAACTGGTGTGAAAAGCTATAACGGCGCTATCTCTGTCGACACTCAGAAACAGCACCTGCCGACGATGCTGGAAAAAGCGAAAGCTCTGGGCCTGTCTACCGGTGTCGCGGTAACCAGCCAAATCAACCACGCTACGCCGGCAGCCTTTCTGGCACATAACGAAAGCCGTAAAAACTACGATGCGCTGGCGCTGAGCTACCTGGACACCAACGCAGACGTTCTGCTGGGCGGTGGTCAGAAATACTTCTCTCCGGAACTGCTGGAAAAATTTACCGCAAAGGGCTATCAGCACATTAGCCGCTTCGAAGACCTGGCCACCATCACCCAGCCGAAAGTTATCGGTCTGTTCGCTCAGGTGCAACTGCCGTGGGCGCTGGATGAGAAAAATGCTAACCGTCTGTCTACGATGACCCAGAAAGCCCTGGATCTGCTGTCCCAGAACGAACAGGGCTTCGTTCTGCTGGTAGAAGGCTCTCTGATTGACTGGGCTGGCCACAGCAACGATATCGCAAACACCATGGGTGAGATGGACGAGTTCGCTAATGCGCTGGAAGTAGTGGAACAGTTTGTACGTCAGCACCCGGATACTCTGATGGTGGCCACGGCGGACCACAACACTGGTGGTCTGAGCATCGGTGCAGGTGGCGACTACCGTTGGAACCCGGAAATCCTGCGTAACATGAGCGCTTCTACCGATACCCTGGCACTGGCTGCACTGGGCGGTGATCAGTGGCAGGCTGATCTGGCGCGTGGTCTGGGTTTCGAGCTGAACGCTGACGAAGCGACTCAGCTGAGCACTGCCCGTATGCAGGGCCTGGAAACGATGACCGAAGCGATCCGTAAAATCATCGATAAACGTACCGGTACCGGTTGGACTACCTCCGGTCACACTGGCACCGACGTTCAGGTTTTTGCGGCAGGTCCGGCAGCGGAGCTGTTTAATGGTCACCAGGACAATACCGATATCGCGAACAAAATTTTCACCCTGCTGCCGAAGCCGAAGAAAGCAAAAACTGAGGCACCTGAACTGGAGAACGGTCCAATGAAACCGCCGTCTAAACCTAAAAACATTGTTATTATGGTCGGTGATGGTATGGGTCCGTCTTATACGTCCGCTTACCGTTATTTTAAAGACAACCCGGACACCGAGGAAGTGGAGCAGACCGTTTTCGATCGTCTGCTGGTTGGCATGGCGTCTACTTATCCTGCGTCCGTGTCTGGCTATGTGACT GATTCTGCTGCTGCTGCAACCGCACTGGCAACTGGTGTGAAAAGCTATAACGGCGCTATCTCTGTCGACACTCAGAAACAGCACCTGCCGACGATGCTGGAAAAAGCGAAAGCTCTGGGCCTGTCTACCGGTGTCGCGGTAACCAGCCAAATCAACCACGCTACGCCGGCAGCCTTTCTGGCACATAACGAAAGCCGTAAAAACTACGATGCG CTGGCGCTGAGCTACCTGGACACCAACGCAGACGTTCTGCTGGGCGGTGGTCAGAATACTTCTCTCCGGAACTGCTGGAAAAATTTACCGCAAAGGGCTATCAGCACATTAGCCGCTTCGAAGACCTGGCCACCATCACCCAGCCGAAAGTTATCGGTCTGTTCGCTCAGGTGCAACTGCCGTGGGCGCTGGATGAGAAAAAATGCTAACCGTCTGT CTACGATGACCCAGAAAGCCCTGGATCTGCTGTCCCAGAACGAACAGGGCTTCGTTCTGCTGGTAGAAGGCTCTCTGATTGACTGGGCTGGCCACAGCAACGATATCGCAAACACCATGGGTGAGATGGACGAGTGAGATGGACGAGTTCGCTAATGCGCTGGAAGTAGTGGAACAGTTTGTACGTCAGCACCCGGATACTCTGATGGTGGCCACGGCGGACCAC AACACTGGTGGTCTGAGCATCGGTGCAGGTGGCGACTACCGTTGGAACCCGGAAATCCTGCGTAACATGAGCGCTTCTACCGATACCCTGGCACTGGCTGCACTGGGCGGTGATCAGTGGCAGGCTGATCTGGCGCGTGGTCTGGGTTTCGAGCTGAACGCTGACGAAGCGACTCAGCTGAGCACTGCCCGTATGCAGGGCCTGGAAAC GATGACCGAAGCGATCCGTAAAATCATCGATAAACGTACCGGTACCGGTTGGACTACCTCCGGTCACACTGGCACCGACGTTCAGGTTTTTTGCGGCAGGTCCGGCAGCGGAGCTGTTTAATGGTCACCAGGACAATACCGATATCGCGAACAAAATTTTCACCCTGCTGCCGAAGCCGAAGAAAGCAAAACTGAG
优化密码子Ⅱ-4(SEQ ID NO.12):Optimized codon Ⅱ-4 (SEQ ID NO.12):
GCTCCTGAACTGGAAAACGGTCCTATGAAACCGCCGTCTAAACCGAAAAATATCGTTATTATGGTTGGTGACGGTATGGGTCCTTCCTATACCTCTGCGTACCGTTACTTCAAAGACAACCCGGATACTGAAGAAGTTGAACAAACCGTCTTCGATCGTCTGCTGGTCGGCATGGCTTCCACCTACCCGGCAAGCGTAAGCGGTTACGTAACTGATTCTGCAGCTGCGGCTACTGCTCTGGCAACGGGTGTAAAAAGCTACAACGGCGCGATTTCCGTGGACACCCAGAAGCAGCACCTGCCAACTATGCTGGAAAAAGCAAAAGCTCTGGGCCTGTCTACCGGTGTGGCAGTCACTTCTCAGATCAACCACGCTACTCCAGCGGCTTTCCTGGCGCATAACGAAAGCCGTAAAAACTATGATGCGCTGGCTCTGTCTTACCTGGACACCAACGCAGACGTACTGCTGGGTGGCGGTCAAAAGTACTTCTCCCCGGAGCTGCTGGAAAAGTTCACCGCGAAAGGCTACCAGCATATCTCCCGCTTCGAAGATCTGGCTACCATCACGCAGCCGAAAGTTATCGGTCTGTTTGCCCAAGTACAGCTGCCGTGGGCTCTGGATGAAAAAAACGCAAACCGTCTGTCCACCATGACCCAGAAAGCTCTGGATCTGCTGTCCCAGAACGAACAGGGTTTCGTTCTGCTGGTGGAAGGCTCTCTGATTGACTGGGCGGGCCATTCCAACGACATTGCTAACACGATGGGTGAAATGGACGAGTTTGCGAACGCACTGGAAGTTGTTGAACAGTTCGTGCGCCAGCATCCGGATACCCTGATGGTTGCGACCGCTGACCACAACACTGGTGGTCTGTCTATTGGTGCAGGCGGTGATTACCGTTGGAACCCGGAAATCCTGCGCAACATGTCTGCGTCTACTGACACCCTGGCACTGGCTGCTCTGGGTGGTGATCAGTGGCAAGCTGACCTGGCACGTGGTCTGGGCTTTGAACTGAATGCGGATGAAGTAACCCAGCTGGCGACTGCGCGTATGCAGGGTCTGGAAACGATGACCGAGGCGATTCGTAAAATCATCGACAAACGTACCGGCACTGGTTGGACTACTTCCGGCCACACTGGTACCGATGTTCAGGTCTTCGCGGCTGGTCCAGCAGCAGAACTGTTCAACGGTCATCAGGATAACACGGACATCGCGAATAAAATTTTCACCCTGCTGCCGAAGCCGAAAAAAGCGAAAACTGAGGCTCCTGAACTGGAAAACGGTCCTATGAAACCGCCGTCTAAACCGAAAAATATCGTTATTATGGTTGGTGACGGTATGGGTCCTTCCTATACCTCTGCGTACCGTTACTTCAAAAGACAACCCGGATACTGAAGAAGTTGAACAAACGTCTTCGATCGTCTGCTGGTCGGCATGGCTTCCACCTACCCGGCAAGCGTAAGCGGTTACGTAACTGA TTCTGCAGCTGCGGCTACTGCTCTGGCAACGGGTGTAAAAAGCTACAACGGCGCGATTTCCGTGGACACCCAGAAGCAGCACCTGCCAACTATGCTGGAAAAAGCAAAAGCTCTGGGCCTGTCTACCGGTGTGGCAGTCACTTCTCAGATCAACCACGCTACTCCAGCGGCTTTCCTGGCGCATAACGAAAGCCGTAAAAACTATGATGCGCTGGCT CTGTCTTACCTGGACACCAACGCAGACGTACTGCTGGGTGGCGGTCAAAAAGTACTTCTCCCCGGAGCTGCTGGAAAAGTTCACCGCGAAAGGCTACCAGCATATCTCCCGCTTCGAAGATCTGGCTACCATCACGCAGCCGAAAGTTATCGGTCTGTTTGCCCAAGTACAGCTGCCGTGGGCTCTGGATGAAAAAACGCAAACCGTCTGTCCACCAT GACCCAGAAAGCTCTGGATCTGCTGTCCCAGAACGAACAGGGTTTCGTTCTGCTGGTGGAAGGCTCTCTGATTGACTGGGCGGGCCATTCCAACGACATTGCTAACACGATGGGTGAAATGGACGAGTTTGCGAACGCACTGGAAGTTGTTGAACAGTTCGTGCGCCAGCATCCGGATACCCTGATGGTTGCGACCGCTGACCACAACACTGGT GGTCTGTCTATTGGTGCAGGCGGTGATTACCGTTGGAACCCGGAAATCCTGCGCAACATGTCTGCGTCTACTGACACCCTGGCACTGGCTGCTCTGGGTGGTGATCAGTGGCAAGCTGACCTGGCACGTGGTCTGGGCTTTGAACTGAATGCGGATGAAGTAACCCAGCTGGCGACTGCGCGTATGCAGGGTCTGGAAACGATGACCGAG GCGATTCGTAAAATCATCGACAAACGTACCGGCACTGGTTGGACTACTTCCGGCCACACTGGTACCGATGTTCAGGTCTTCGCGGCTGGTCCAGCAGCAGAACTGTTCAACGGTCATCAGGATAACACGGACATCGCGAATAAAATTTTCACCTGCTGCCGAAGCCGAAAAAAGCGAAAACTGAG
优化密码子Ⅱ-5(SEQ ID NO.13):Optimized codon Ⅱ-5 (SEQ ID NO.13):
GCGCCAGAACTGGAAAATGGTCCAATGAAACCGCCGTCTAAACCGAAGAACATCGTAATCATGGTTGGCGACGGCATGGGTCCGTCTTACACCTCTGCGTACCGTTATTTCAAAGACAACCCGGATACCGAGGAAGTTGAACAAACCGTTTTCGATCGTCTGCTGGTGGGCATGGCATCTACTTATCCGGCTTCTGTATCCGGTTACGTTACCGATTCTGCAGCAGCTGCTACCGCACTGGCGACTGGTGTTAAAAGCTACAACGGTGCGATCTCCGTCGATACTCAGAAACAGCATCTGCCGACTATGCTGGAAAAAGCGAAAGCGCTGGGTCTGTCTACTGGTGTAGCGGTCACGAGCCAAATCAACCACGCTACTCCGGCAGCTTTTCTGGCTCACAACGAATCTCGTAAAAACTACGACGCCCTGGCGCTGTCCTACCTGGATACCAACGCTGACGTACTGCTGGGTGGCGGCCAGAAATATTTCAGCCCGGAACTGCTGGAAAAATTCACCGCTAAAGGCTATCAGCACATCTCCCGTTTTGAAGACCTGGCAACTATCACCCAGCCGAAAGTCATTGGCCTGTTTGCACAGGTTCAACTGCCGTGGGCACTGGACGAGAAAAACGCTAATCGTCTGTCTACTATGACCCAAAAGGCGCTGGACCTGCTGTCTCAAAACGAACAGGGTTTCGTCCTGCTGGTTGAAGGTAGCCTGATTGACTGGGCAGGCCACTCCAACGATATTGCGAACACGATGGGCGAAATGGACGAATTCGCTAACGCACTGGAGGTGGTGGAACAGTTCGTTCGCCAGCATCCTGACACCCTGATGGTTGCTACCGCGGACCACAACACCGGTGGTCTGAGCATTGGTGCAGGTGGCGATTACCGTTGGAATCCGGAAATCCTGCGCAACATGTCTGCGTCTACTGATACCCTGGCTCTGGCTGCTCTGGGTGGTGACCAATGGCAAGCAGACCTGGCTCGTGGTCTGGGTTTCGAACTGAACGCGGATGAAGTTACGCAGCTGTCTACTGCCGCTATGCAAGGCCTGGAGACCATGACTGAAGCTATCCGCAAGATCATTGATAAGCGTACCGGCACGGGTTGGACTACTAGCGGCCACACCGGTACCGACGTACAGGTTTTTGCCGCTGGTCCGGCAGCAGAACTGTTCAACGGTCACCAGGACAACACCGATATTGCTAACAAGATCTTCACGCTGCTGCCAAAACCGAAAAAAGCCAAGACTGAAGCGCCAGAACTGGAAAATGGTCCAATGAAACCGCCGTCTAAACCGAAGAACATCGTAATCATGGTTGGCGACGGCATGGGTCTCGTCTTACACCTCTGCGTACCGTTATTTCAAAGACAACCCGGATACCGAGGAAGTTGAACAAACGTTTTCGATCGTCTGCTGGTGGGCATGGCATCTACTTATCCGGCTTCTGTATCCGGTTACGTTACCGA TTCTGCAGCAGCTGCTACCGCACTGGCGACTGGTGTTAAAAGCTACAACGGTGCGATCTCCGTCGATACTCAGAAACAGCATCTGCCGACTATGCTGGAAAAAGCGAAAGCGCTGGGTCTGTCTACTGGTGTAGCGGTCACGAGCCAAATCAACCACGCTACTCCGGCAGCTTTTCTGGCTCACAACGAATCTCGTAAAAACTACGACGCCCTGGCG CTGTCCTACCTGGATACCAACGCTGACGTACTGCTGGGTGGCGGCCAGAAATATTCAGCCCGGAACTGCTGGAAAAATTCACCGCTAAAGGCTATCAGCACATCTCCCGTTTTGAAGACCTGGCAACTATCACCCAGCCGAAAGTCATTGGCCTGTTTGCACAGGTTCAACTGCCGTGGGCACTGGACGAGAAAAAACGCTAATCGTCTGTCTACT ATGACCCAAAAGGCGCTGGACCTGCTGTCTCCAAAACGAACAGGGTTTCGTCCTGCTGGTTGAAGGTAGCCTGATTGACTGGGCAGGCCACTCCAACGATATTGCGAACACGATGGGCGAAATGGACGAATTCGCTAACGCACTGGAGGTGGTGGAACAGTTCGTTCGCCAGCATCCTGACACCCTGATGGTTGCTACCGCGGACCACAACACCG GTGGTCTGAGCATTGGTGCAGGTGGCGATTACCGTTGGAATCCGGAAATCCTGCGCAACATGTCTGCGTCTACTGATACCCTGGCTCTGGCTGCTCTGGGTGGTGACCAATGGCAAGCAGACCTGGCTCGTGGTCTGGGTTTCGAACTGAACGCGGATGAAGTTACGCAGCTGTCTACTGCCGCTATGCAAGGCCTGGAGACCATGACTGAAG CTATCCGCAAGATCATTGATAAGCGTACCGGCACGGGTTGGACTACTAGCGGCCACACCGGTACCGACGTACAGGTTTTGCCGCTGGTCCGGCAGCAGAACTGTTCAACGGTCACCAGGACAACACCGATATTGCTAACAAAGATCTTCACGCTGCTGCCAAAACCGAAAAAAGCCAAGACTGAA
优化密码子Ⅲ-1(SEQ ID NO.14):Optimized codon Ⅲ-1 (SEQ ID NO.14):
GCGCCTGAACTGGAAAACGGCCCAATGAAACCACCGTCTAAACCAAAAAATATCGTGATTATGGTTGGCGACGGTATGGGTCCGTCTTACACTAGCGCTTACCGCTACTTCAAAGACAACCCGGATACTGAAGAAGTAGAACAAACCGTGTTTGATCGTCTGCTGGTGGGCATGGCTTCTACCTACCCGGCATCCGTGAGCGGTTACGTTACGGATTCTGCTGCGGCAGCTACCGCTCTGGCAACTGGTGTGAAATCTTACAACGGCGCAATCTCTGTCGACACTCAGAAACAGCACCTGCCGACTATGCTGGAAAAAGCGAAAGCTCTGGGTCTGTCCACTGGTGTGGCTGTTACCTCCCAGATCAACCATGCTACCCCTGCTGCTTTTCTGGCTCATAATGAATCTCGTAAAAACTATGATGCCCTGGCGCTGAGCTACCTGGATACGAATGCTGACGTTCTGCTGGGTGGCGGTCAGAAATACTTTAGCCCAGAGCTGCTGGAAAAATTCACGGCGAAAGGTTACCAGCACATCTCCCGTTTCGAAGACCTGGCGACTATTACTCAGCCGAAAGTTATCGGTCTGTTCGCACAGGTGCAACTGCCGTGGGCTCTGGATGAAAAGAACGCTAACCGTCTGTCCACCATGACCCAGAAAGCGCTGGACCTGCTGTCTCAGAACGAGCAAGGTTTCGTGCTGCTGGTCGAAGGTTCCCTGATCGACTGGGCTGGTCACTCTAATGACATCGCAAACACCATGGGTGAGATGGACGAATTTGCCAACGCGCTGGAAGTTGTTGAACAGTTTGTACGTCAGCATCCGGACACTCTGATGGTGGCAACCGCAGATCACAACACCGGTGGTCTGTCTATCGGTGCTGGTGGTGACTACCGCTGGAACCCGGAAATCCTGCGTAACATGTCTGCGAGCACTGATACTCTGGCGCTGGCAGCTCTGGGTGGTGACCAAGCAGCCGCAGATCTGGCTCGTGGTCTGGGTTTTGAACTGAACGCGGATGAAGCGACCCAGCTGGCAACTGCAGCGATGCAGGGCCTGGAAACCATGACCGAGGCAATCCGTAAAATCATTGATAAACGCACCGGCACTGGCTGGACTACTAGCGGTCACACCGGCACTGATGTCCAGGTTTTCGCGGCAGGTCCGGCTGCTGAACTGTTCAACGGCCACCAGGACAACACCGATATTGCGAACAAGATCTTCACCCTGCTGCCGAAGCCGAAAAAAGCAAAGACCGAAGCGCCTGAACTGGAAAACGGCCCAATGAAACCACCGTCTAAACCAAAAAATATCGTGATTATGGTTGGCGACGGTATGGGTCTCGTCTTACACTAGCGCTTACCGCTACTTCAAAAGACAACCCGGATACTGAAGAAGTAGAACAACCGTGTTTGATCGTCTGCTGGTGGGCATGGCTTCTACCTACCCGGCATCCGTGAGCGGTTACGTTACGGA TTCTGCTGCGGCAGCTACCGCTCTGGCAACTGGTGTGAAATCTACAACGGCGCAATCTCTGTCGACACTCAGAAACAGCACCTGCCGACTATGCTGGAAAAAGCGAAAGCTCTGGGTCTGTCCACTGGTGTGGCTGTTACCCTCCCAGATCAACCATGCTACCCCTGCTGCTTTTCTGGCTCATAATGAATCTCGTAAAAACTATGATGCCCTGGC GCTGAGCTACCTGGATACGAATGCTGACGTTCTGCTGGGTGGCGGTCAGAATACTTTTAGCCCAGAGCTGCTGGAAAAATTCACGGCGAAAGGTTACCAGCACATCTCCCGTTTCGAAGACCTGGCGACTATTACTCAGCCGAAAGTTATCGGTCTGTTCGCACAGGTGCAACTGCCGTGGGCTCTGGATGAAAAGAACGCTAACCGTCTGTCCA CCATGACCCAGAAAGCGCTGGACCTGCTGTCTCAGAACGAGCAAGGTTTCGTGCTGCTGGTCGAAGGTTCCCTGATCGACTGGGCTGGTCACTCTAATGACATCGCAAACACCATGGGTGAGATGGACGAATTTGCCAACGCGCTGGAAGTTGTTGAACAGTTTGTACGTCAGCATCCGGACACTCTGATGGTGGCAACCGCAGATCAACACC GGTGGTCTGTCTATCGGTGCTGGTGGTGACTACCGCTGGAACCCGGAAATCCTGCGTAACATGTCTGCGAGCACTGATACTCTGGCGCTGGCAGCTCTGGGTGGTGACCAAGCAGCCGCAGATCTGGCTCGTGGTCTGGGTTTTGAACTGAACGCGGATGAAGCGACCCAGCTGGCAACTGCAGCGATGCAGGGCCTGGAAACCATGACCGA GGCAATCCGTAAAATCATTGATAAACGCACCGGCACTGGCTGGACTACTAGCGGTCACACCGGCACTGATGTCCAGGTTTTCGCGGCAGGTCCGGCTGCTGAACTGTTCAACGGCCACCAGGACAACACCGATATTGCGAACAAGATCTTCACCCTGCTGCCGAAGCCGAAAAAAGCAAAGACCGAA
(2)重组质粒导入宿主大肠杆菌(2) Recombinant plasmid introduced into host Escherichia coli
取1μL步骤(1)中获得的表达质粒,在冰浴条件下,加入到30μL大肠杆菌感受态BL21(DE3)中,冰浴放置30min,42℃水浴45s,立刻冰上放置2min,加入400μL不含抗生素的SOC培养基,37℃、230rpm振荡培养45min。取100μL菌液均匀涂布到含100μg/mL卡那抗性的LB平板上,37℃培养箱培养过夜。Take 1 μL of the expression plasmid obtained in step (1), add it to 30 μL of Escherichia coli competent BL21(DE3) under ice bath conditions, place in ice bath for 30 minutes, place in 42°C water bath for 45 seconds, immediately place on ice for 2 minutes, add 400 μL of In the SOC medium containing antibiotics, shake culture at 37°C and 230rpm for 45min. Take 100 μL of the bacterial solution and evenly spread it on the LB plate containing 100 μg/mL kana-resistant, and cultivate overnight in a 37°C incubator.
(3)目的基因表达(3) Target gene expression
挑取步骤(2)中的制备的单克隆,无菌操作分别接种于含100μg/mL卡那抗性的TB和LB培养基中,37℃220rpm振荡培养至OD600在0.6-0.8之间,IPTG进行诱导,分别放置于37℃和18℃振荡培养过夜。取样超声破碎进行SDS-PAGE鉴定,示例性地,部分样品鉴定结果见图4。图4为未突变的碱性磷酸酶的鉴定结果图。经鉴定,TB、LB培养基18℃在上清有表达(目的条带46kDa)。产物鉴定结果统计在表4中。Pick the single clones prepared in step (2), and inoculate them in TB and LB medium containing 100 μg/mL kana-resistance respectively by aseptic operation, culture at 37°C with shaking at 220 rpm until OD600 is between 0.6-0.8, IPTG For induction, they were cultured overnight at 37°C and 18°C with shaking respectively. The samples were ultrasonically crushed for SDS-PAGE identification. Exemplarily, the identification results of some samples are shown in FIG. 4 . Figure 4 is a graph showing the identification results of unmutated alkaline phosphatase. It was identified that TB and LB medium were expressed in the supernatant at 18°C (target band 46kDa). The product identification results are listed in Table 4.
表4Table 4
(4)表达产物的纯化(镍柱+QP柱)(4) Purification of expression products (nickel column + QP column)
称取约10g重组菌体,加入50ml Lysis buffer含600mM的盐酸胍使用涡旋震荡仪重悬。超声破碎细胞:Ф10探头,功率10%,工作5.5s,停止9.9s,超声破碎30min。20000rpm,4℃离心30min,取上清,0.22μm膜过滤。取过滤后的上清液,上5ml Ni柱,依次按照以下步骤进行洗杂和洗脱目的蛋白:Elution step1:0% B,5CV,Step2:0-60%B,15CV,Step3:100%B,6CV,流速:上样:2.5ml/min(sample pump),洗脱:5ml/ml,收集:8ml/tube(15ml)。收集的样品使用50mM Tris-HCl,5%甘油,pH7.0溶液直接稀释6倍,用于Q-HP柱纯化,使用5ml QP柱纯化,流动相流速为3ml/min,上完样使用20ml 50mM Tris-HCl Buffer冲洗UV和电导至基线,洗脱程序包括:Step 1:0%B,8CV,3ml/min;Step 2:0—60%B,20CV,3ml/min;Step3:100%B,15CV,3ml/min。收集洗脱样品进行电泳分离,示例性地,部分样品的电泳图见图5和图6。图5中,LaneS:0.22μm,LaneF1-3:穿过,Lane2A1-2B3梯度洗脱,Lane2C3:100%洗脱,10%SDS-PAGE,run:2.0μl。图6中,LaneS:Ni洗脱稀释样品,Lane1A1-2A1穿过,Lane2A2-2B3梯度洗脱,2B3:2.36U/μl,10%SDS-PAGE,run:2.0μl。Weigh about 10 g of recombinant bacteria, add 50 ml Lysis buffer containing 600 mM guanidine hydrochloride, and resuspend using a vortex shaker. Ultrasonic disruption of cells: Ф10 probe, power 10%, working for 5.5s, stopping for 9.9s, ultrasonic disruption for 30min. Centrifuge at 20000rpm at 4°C for 30min, take the supernatant, and filter it with a 0.22μm membrane. Take the filtered supernatant, put it on a 5ml Ni column, and follow the steps below to wash and elute the target protein: Elution step1: 0% B, 5CV, Step2: 0-60% B, 15CV, Step3: 100% B , 6CV, flow rate: sample loading: 2.5ml/min (sample pump), elution: 5ml/ml, collection: 8ml/tube (15ml). The collected samples were directly diluted 6 times with 50mM Tris-HCl, 5% glycerol, pH7.0 solution, used for Q-HP column purification, using 5ml QP column for purification, the mobile phase flow rate was 3ml/min, and 20ml 50mM Tris-HCl Buffer washes UV and conductance to baseline, elution procedures include: Step 1: 0% B, 8CV, 3ml/min; Step 2: 0—60% B, 20CV, 3ml/min; Step3: 100% B, 15CV, 3ml/min. The eluted samples are collected for electrophoretic separation. For example, the electropherograms of some samples are shown in FIG. 5 and FIG. 6 . In Figure 5, LaneS: 0.22 μm, LaneF1-3: passing through, Lane2A1-2B3 gradient elution, Lane2C3: 100% elution, 10% SDS-PAGE, run: 2.0 μl. In Figure 6, LaneS: Ni eluted diluted samples, Lane1A1-2A1 passed through, Lane2A2-2B3 gradient eluted, 2B3: 2.36U/μl, 10% SDS-PAGE, run: 2.0μl.
目的蛋白主要在250mM NaCl洗脱下洗脱。取F于透析液中过夜透析,收集透析后样品体积分别为20ml。采用BCA测浓度,结果为:R2=0.995,其浓度为18.2mg/ml,产量为433.2mg,得率为43.32mg/g菌。纯化后的产物产量和产率统计在表5。The target protein was mainly eluted at 250mM NaCl. F was dialyzed overnight in the dialysate, and the volumes of collected dialyzed samples were 20ml. BCA was used to measure the concentration, and the result was: R 2 =0.995, the concentration was 18.2 mg/ml, the yield was 433.2 mg, and the yield was 43.32 mg/g bacteria. The purified product yield and yield statistics are shown in Table 5.
表5table 5
实施例3Example 3
本实施例中,对实施例2中制备的碱性磷酸酶突变体进行活性测定。具体步骤如下:In this example, the activity of the alkaline phosphatase mutant prepared in Example 2 was determined. Specific steps are as follows:
(1)溶液配制(1) Solution preparation
按照下表6配制工作液2mL。Prepare 2 mL of working solution according to Table 6 below.
表6Table 6
(2)活性测试(2) Activity test
阳性碱性磷酸酶(市售活性碱性磷酸酶)的配制:将1U/μL阳性碱性磷酸酶(用PBSpH 7.4缓冲液(含50%甘油)稀释,按照梯度再逐步稀释,稀释液为PBS pH 7.4缓冲液。Preparation of positive alkaline phosphatase (commercially available active alkaline phosphatase): 1U/μL positive alkaline phosphatase (diluted with PBS pH 7.4 buffer solution (containing 50% glycerol), then gradually diluted according to the gradient, the diluent is PBS pH 7.4 buffer.
仪器测定:酶标仪预热30min,温度设置成37℃。酶标仪程序设定:工作液加入50μL,在405nm处检测吸光值A1,之后加入各浓度的阳性酶液1μL,反应5min,在405nm处检测吸光值A2。计算实施例2中制备的碱性磷酸酶突变体与空白的OD差值A2-A1,并计算获得酶活值,统计在下表7。Instrument determination: preheat the microplate reader for 30 minutes, and set the temperature to 37°C. Microplate reader program setting: add 50 μL of working solution, detect the absorbance value A1 at 405 nm, then add 1 μL of positive enzyme solution of each concentration, react for 5 minutes, and measure the absorbance value A2 at 405 nm. Calculate the OD difference A2-A1 between the alkaline phosphatase mutant prepared in Example 2 and the blank, and calculate and obtain the enzyme activity value, and the statistics are shown in Table 7 below.
表7Table 7
实施例4Example 4
本实施例中,对实施例2中制备的碱性磷酸酶突变体进行热敏感性测定。具体步骤如下:In this example, the thermosensitivity assay was performed on the alkaline phosphatase mutant prepared in Example 2. Specific steps are as follows:
取实施例2制备所得的碱性磷酸酶突变体,平均分成5组,4个实验组分别于65、75、85、95℃处理15min;一个对照组不做加热处理,然后分别测试每组样品反应的OD值,OD值越高酶活越高,对照组的OD值随反应时间延长而升高,实验组的OD随反应时间延长几乎无变化,表明65、75、85、95℃处理15min,均能使突变体酶灭活。Take the alkaline phosphatase mutants prepared in Example 2 and divide them into 5 groups on average. The 4 experimental groups were treated at 65, 75, 85, and 95°C for 15 minutes respectively; a control group was not subjected to heat treatment, and then each group of samples was tested The OD value of the reaction, the higher the OD value, the higher the enzyme activity, the OD value of the control group increases with the prolongation of the reaction time, and the OD of the experimental group has almost no change with the prolongation of the reaction time, indicating that the 65, 75, 85, 95 ℃ treatment for 15 minutes , can inactivate the mutant enzyme.
从图8可以看出碱性磷酸酶突变体短时间高温处理可以完全灭活,改造以后的碱性磷酸酶具有良好的热敏性。It can be seen from Figure 8 that the alkaline phosphatase mutant can be completely inactivated by high temperature treatment for a short time, and the modified alkaline phosphatase has good heat sensitivity.
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。Those of ordinary skill in the art can understand that the above-mentioned embodiments are specific examples for realizing the present invention, and in practical applications, various changes can be made to it in form and details without departing from the spirit and spirit of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310065230.5A CN116042570A (en) | 2023-01-31 | 2023-01-31 | Recombinant alkaline phosphatase mutant and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310065230.5A CN116042570A (en) | 2023-01-31 | 2023-01-31 | Recombinant alkaline phosphatase mutant and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116042570A true CN116042570A (en) | 2023-05-02 |
Family
ID=86121693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310065230.5A Pending CN116042570A (en) | 2023-01-31 | 2023-01-31 | Recombinant alkaline phosphatase mutant and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116042570A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101255437A (en) * | 2007-05-09 | 2008-09-03 | 国家海洋局第三海洋研究所 | Heat-proof alkaline phosphatase (Tthxm-AP) gene and use of encoding protein thereof |
CN103380213B (en) * | 2011-02-23 | 2016-01-20 | 东洋纺株式会社 | Alkaline phosphatase |
-
2023
- 2023-01-31 CN CN202310065230.5A patent/CN116042570A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101255437A (en) * | 2007-05-09 | 2008-09-03 | 国家海洋局第三海洋研究所 | Heat-proof alkaline phosphatase (Tthxm-AP) gene and use of encoding protein thereof |
CN103380213B (en) * | 2011-02-23 | 2016-01-20 | 东洋纺株式会社 | Alkaline phosphatase |
Non-Patent Citations (1)
Title |
---|
AIBA, H ET AL.: "alkaline phosphatase [Shewanella sp. T3-3]", Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/protein/BAZ96434.1?report=genbank&log$=prottop&blast_rank=1&RID=KV7D88HR016> * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112175980A (en) | Method for improving activity of polymerase large fragment by site-directed mutagenesis and application | |
CN116042570A (en) | Recombinant alkaline phosphatase mutant and preparation method thereof | |
CN112680431B (en) | DNA library preparation method based on fragmenting enzyme | |
CN116426546A (en) | Recombinant cholesterol oxidase, and preparation method and application thereof | |
CN112662642B (en) | Reverse transcriptase of skin sarcoma virus of mutant type large-eyed zander and application thereof | |
CN109402096B (en) | AID enzyme mutant and application thereof | |
CN115725536A (en) | Bifunctional enzyme, bifunctional enzyme mutant and application thereof | |
CN117187210B (en) | Mutant Bst DNA polymerase large fragment and preparation method thereof | |
CN116200408A (en) | Preparation method and application of 3α-steroid dehydrogenase | |
RU2744592C1 (en) | Recombinant plasmid pet21-tf7, providing synthesis of modified tissue factor, and escherichia coli bl21 (de3) pet21-tf7 strain - producer of recombinant human tissue factor | |
CN115820618A (en) | SC1-70 antigen truncation body, preparation method and application thereof | |
CN116926091A (en) | Aspartic acid aminotransferase as well as preparation method and application thereof | |
CN117586994A (en) | Preparation method and application of recombinant type II collagenase and mutant thereof | |
CN115232804B (en) | A recombinant carboxypeptidase G2 mutant and its gene, preparation method and application | |
CN115851748A (en) | Preparation method and application of β2-MG truncated body | |
CN115960924A (en) | Preparation method and application of recombinant JO-1 antigen | |
CN116042664A (en) | Preparation method and application of acyl-CoA oxidase | |
CN116606874A (en) | Preparation method and application of cystathionine-beta-synthetase | |
CN116121280A (en) | Preparation method and application of recombinant cystathionine-beta-lyase | |
CN116042588A (en) | Preparation method and application of recombinant creatine enzyme | |
CN115838437A (en) | Human NT-proBNP fusion protein and preparation method and application thereof | |
WO2024244010A1 (en) | Dna polymerase mutant for sequencing | |
CN116042662A (en) | Preparation method and application of acyl-coa synthetase | |
CN116063571A (en) | Preparation method and application of recombinant SSB antigen | |
CN117587046A (en) | Recombinant hexokinase and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |