CN116007093A - A solar energy storage multi-source heat pump air conditioning system and heating method - Google Patents
A solar energy storage multi-source heat pump air conditioning system and heating method Download PDFInfo
- Publication number
- CN116007093A CN116007093A CN202310211157.8A CN202310211157A CN116007093A CN 116007093 A CN116007093 A CN 116007093A CN 202310211157 A CN202310211157 A CN 202310211157A CN 116007093 A CN116007093 A CN 116007093A
- Authority
- CN
- China
- Prior art keywords
- heat
- air
- source
- compressor
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 57
- 238000004146 energy storage Methods 0.000 title claims abstract description 51
- 238000004378 air conditioning Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005338 heat storage Methods 0.000 claims abstract description 206
- 230000008859 change Effects 0.000 claims abstract description 82
- 238000012545 processing Methods 0.000 claims abstract description 5
- 238000012546 transfer Methods 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 110
- 239000003507 refrigerant Substances 0.000 claims description 109
- 230000006835 compression Effects 0.000 claims description 79
- 238000007906 compression Methods 0.000 claims description 79
- 238000011084 recovery Methods 0.000 claims description 71
- 238000001704 evaporation Methods 0.000 claims description 42
- 230000008020 evaporation Effects 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 33
- 239000012782 phase change material Substances 0.000 claims description 29
- 238000005265 energy consumption Methods 0.000 claims description 26
- 239000002918 waste heat Substances 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 20
- 230000009977 dual effect Effects 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 239000010687 lubricating oil Substances 0.000 claims description 8
- 239000003921 oil Substances 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000003570 air Substances 0.000 description 353
- 239000012071 phase Substances 0.000 description 60
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
本发明公开一种太阳能储能多源热泵空调系统及制热方法,包括空气处理单元、太阳能预热蓄热单元、相变储能单元和多源热泵单元;所述空气处理单元包括新风管道和排风管道,所述新风管道设置有空气加热器;通过空气加热器对新风管道内的气流进行二次加热;所述太阳能预热蓄热单元,用于吸收太阳能并转化为热能,并将热能提供给空气处理单元和/或相变储能单元;所述多源热泵单元,通过空气加热器将其转化后热能提供给空气处理单元;所述相变储能单元,包括相变蓄热槽、第一蓄热换热器和第二蓄热换热器,用于实现太阳能预热蓄热单元和多源热泵单元之间的能量传递和蓄能;本装置系统稳定性高,节能环保效果显著,是一种清洁高效的暖通空调系统。
The invention discloses a solar energy storage multi-source heat pump air conditioning system and a heating method, including an air processing unit, a solar preheating heat storage unit, a phase change energy storage unit and a multi-source heat pump unit; the air processing unit includes a fresh air duct and The air exhaust duct, the fresh air duct is provided with an air heater; the air flow in the fresh air duct is heated twice through the air heater; the solar preheating heat storage unit is used to absorb solar energy and convert it into heat energy, and convert the heat energy Provided to the air handling unit and/or the phase change energy storage unit; the multi-source heat pump unit provides the converted heat energy to the air handling unit through the air heater; the phase change energy storage unit includes a phase change heat storage tank , The first heat storage heat exchanger and the second heat storage heat exchanger are used to realize the energy transfer and energy storage between the solar preheating heat storage unit and the multi-source heat pump unit; the device has high system stability, energy saving and environmental protection effect Remarkably, a clean and efficient HVAC system.
Description
技术领域technical field
本发明属于热泵技术领域,具体涉及一种太阳能储能多源热泵空调系统及制热方法。The invention belongs to the technical field of heat pumps, and in particular relates to a solar energy storage multi-source heat pump air conditioning system and a heating method.
背景技术Background technique
目前,能源市场面临着巨大的机遇与挑战,节能减碳已成为社会关注的热点。传统的化石能源因其不可再生性、利用效率低、环境污染严重等问题,已不能满足当前社会可持续发展的需要,在此背景下,加快能源转型,发展清洁能源,推动能源系统梯级利用和提高能源利用效率势在必行。At present, the energy market is facing huge opportunities and challenges, and energy conservation and carbon reduction have become a hot spot of social concern. Due to its non-renewability, low utilization efficiency, and serious environmental pollution, traditional fossil energy can no longer meet the needs of sustainable social development. In this context, it is necessary to accelerate energy transformation, develop clean energy, and promote cascaded utilization and Improving energy efficiency is imperative.
压缩式热泵技术因其具有效率较高、设备安装灵活、连续稳定运行等优点而被广泛应用,但是传统空气源压缩式热泵是以消耗高品位电能来驱动的,存在低温性能差的问题,还存在无法利用峰谷电价差而导致运行费用偏高等问题,不具有节能减碳的明显优势。Compression heat pump technology is widely used because of its advantages of high efficiency, flexible equipment installation, and continuous and stable operation. There are problems such as the inability to take advantage of the difference in peak and valley electricity prices, which leads to high operating costs, and does not have the obvious advantage of energy saving and carbon reduction.
太阳能作为世界上储量最大的可再生清洁能源,具有良好的经济性和环境友好性,但光照资源受气象条件影响,具有间歇性与不稳定性等缺点。相变蓄热材料因其具有温度恒定、储热密度大、体积变化小、稳定性较好等优点,在能源领域应用越来越广泛,相变材料在其发生相变的过程中,吸收周围环境热量,并在需要时向周围环境放出热量从而达到能量储存和控制周围环境温度的目的,可解决能量供求在时间和空间上不匹配的矛盾。而现有技术中的太阳能-空气源热泵系统主要还是依靠电能驱动热泵制热,导致压缩机能耗较大,且太阳能的利用仍十分有限,不能实现空调系统中能量的梯级利用,造成能源浪费导致能量利用率低等问题。As the renewable clean energy with the largest reserves in the world, solar energy is economical and environmentally friendly. However, solar energy is affected by meteorological conditions and has shortcomings such as intermittency and instability. Phase change heat storage materials are more and more widely used in the energy field because of their advantages such as constant temperature, high heat storage density, small volume change, and good stability. During the phase change process, phase change materials absorb the surrounding Environmental heat, and release heat to the surrounding environment when needed so as to achieve the purpose of energy storage and control the temperature of the surrounding environment, which can solve the contradiction between energy supply and demand in time and space. However, the solar-air source heat pump system in the prior art mainly relies on electric energy to drive the heat pump for heating, resulting in high energy consumption of the compressor, and the use of solar energy is still very limited, and cascade utilization of energy in the air conditioning system cannot be realized, resulting in energy waste. Low energy efficiency and other issues.
发明内容Contents of the invention
本发明的目的是为了解决上述现有技术上存在的问题,提供一种太阳能储能多源热泵空调系统及制热方法,本装置系统稳定性高,节能环保效果显著,是一种清洁高效的暖通空调系统,具有广阔的应用前景。The purpose of the present invention is to solve the above-mentioned problems in the prior art and provide a solar energy storage multi-source heat pump air conditioning system and heating method. The device has high system stability, remarkable energy saving and environmental protection effect, and is a clean and efficient HVAC systems have broad application prospects.
为实现上述目的,本发明采用如下技术方案:一种太阳能储能多源热泵空调系统,包括空气处理单元、太阳能预热蓄热单元、相变储能单元和多源热泵单元;To achieve the above object, the present invention adopts the following technical solutions: a solar energy storage multi-source heat pump air conditioning system, including an air handling unit, a solar preheating heat storage unit, a phase change energy storage unit and a multi-source heat pump unit;
所述空气处理单元包括新风管道和排风管道,所述新风管道设置有空气加热器;通过空气加热器对新风管道内的气流进行加热;The air processing unit includes a fresh air duct and an exhaust duct, and the fresh air duct is provided with an air heater; the air flow in the fresh air duct is heated by the air heater;
所述太阳能预热蓄热单元,用于吸收太阳能并转化为热能,并将热能提供给空气处理单元和/或相变储能单元;The solar preheating thermal storage unit is used to absorb solar energy and convert it into heat energy, and provide the heat energy to the air handling unit and/or the phase change energy storage unit;
所述多源热泵单元,通过空气加热器将其转化后的热能提供给空气处理单元;The multi-source heat pump unit provides the converted heat energy to the air handling unit through the air heater;
所述相变储能单元,包括相变蓄热槽、第一蓄热换热器和第二蓄热换热器,用于实现太阳能预热蓄热单元和多源热泵单元之间的能量传递和蓄能;所述第一蓄热换热器和第二蓄热换热器设置在相变蓄热槽内,其中第二蓄热换热器的进出口端与所述太阳能预热蓄热单元相连,第一蓄热换热器的进出口端与所述多源热泵单元相连。The phase change energy storage unit includes a phase change heat storage tank, a first heat storage heat exchanger and a second heat storage heat exchanger, which are used to realize energy transfer between the solar preheating heat storage unit and the multi-source heat pump unit and energy storage; the first heat storage heat exchanger and the second heat storage heat exchanger are arranged in the phase change heat storage tank, wherein the inlet and outlet ends of the second heat storage heat exchanger are connected with the solar energy preheating heat storage The units are connected, and the inlet and outlet ends of the first heat storage heat exchanger are connected with the multi-source heat pump unit.
作为优选方案,还包括太阳能蓄热单元;所述太阳能预热蓄热单元包括太阳能集热器和第一循环水泵,所述太阳能集热器的水进口通过第一循环水泵与第二蓄热换热器的管路出口相连;所述新风管道上还设置有新风预热器,所述新风预热器位于空气加热器的进风侧,新风预热器用于预热进入新风管道的新风空气;新风预热器包括水通道和空气通道,太阳能集热器的水出口与新风预热器的水通道进口相连,新风预热器的水通道出口与第二蓄热换热器的进口相连,新风预热器的空气管道两端与新风管道相连。As a preferred solution, it also includes a solar heat storage unit; the solar preheating heat storage unit includes a solar heat collector and a first circulating water pump, and the water inlet of the solar heat collector is exchanged with the second heat storage through the first circulating water pump The pipeline outlet of the heater is connected; the fresh air pipe is also provided with a fresh air preheater, the fresh air preheater is located on the air inlet side of the air heater, and the fresh air preheater is used to preheat the fresh air entering the fresh air pipe; The fresh air preheater includes a water channel and an air channel, the water outlet of the solar collector is connected with the water channel inlet of the fresh air preheater, the water channel outlet of the fresh air preheater is connected with the inlet of the second heat storage heat exchanger, and the fresh air Both ends of the air pipe of the preheater are connected with the fresh air pipe.
作为优选方案,所述多元热泵单元包括第一压缩机和冷凝器,所述第一压缩机包括低压进气口、中压进气口和高压排气口,所述冷凝器包括水通道和制冷剂通道,所述冷凝器的制冷剂通道进口与第一压缩机的高压排气口相连,冷凝器的制冷剂通道出口与第一蓄热换热器的进口相连,所述空气加热器包括水通道和空气通道,空气加热器的水通道进出口与所述冷凝器的水通道进出口相连,空气加热器的空气通道两端与新风管道相接,用于和空气加热器内的空气通道内的介质进行换热,以加热新风管道内的空气介质。As a preferred solution, the multi-element heat pump unit includes a first compressor and a condenser, the first compressor includes a low-pressure air inlet, a medium-pressure air inlet, and a high-pressure exhaust port, and the condenser includes a water channel and a refrigerating The refrigerant channel, the refrigerant channel inlet of the condenser is connected with the high-pressure exhaust port of the first compressor, the refrigerant channel outlet of the condenser is connected with the inlet of the first heat storage heat exchanger, and the air heater includes water channels and air channels, the inlet and outlet of the water channel of the air heater are connected with the inlet and outlet of the water channel of the condenser, the two ends of the air channel of the air heater are connected with the fresh air pipe, and are used to connect with the air channel in the air heater Heat exchange with the medium to heat the air medium in the fresh air duct.
作为优选方案,所述第一蓄热换热器的出口与闪蒸分离器的进口相连,所述闪蒸分离器还包括一个回气口和排液口,所述闪蒸分离器的回气口与第一压缩机的中压进气口相连,所述蒸分离器的排液口经过第三节流部件节流降压后与空气源蒸发器的制冷剂进口相连,空气源蒸发器的制冷剂出口与第一压缩机的低压进气口相连。As a preferred solution, the outlet of the first heat storage heat exchanger is connected to the inlet of the flash separator, and the flash separator also includes a gas return port and a liquid discharge port, and the gas return port of the flash separator is connected to the The medium-pressure air inlet of the first compressor is connected, and the liquid discharge port of the steam separator is throttled and depressurized by the third throttling part, and then connected with the refrigerant inlet of the air source evaporator, and the refrigerant of the air source evaporator The outlet is connected to the low pressure inlet of the first compressor.
作为优选方案,所述第一压缩机的中压进气口的管路进气端为U形管,且所述U形管位于所述闪蒸分离器的液面以下,所述U形管端部设置有所述回气口,且在U形管的管体表面上形成有若干回油孔,所述回油孔用于将闪蒸分离器的液体介质内的润滑油随回气进入第一压缩机内。As a preferred solution, the pipeline inlet end of the medium-pressure air inlet of the first compressor is a U-shaped pipe, and the U-shaped pipe is located below the liquid level of the flash separator, and the U-shaped pipe The end is provided with the air return port, and a number of oil return holes are formed on the surface of the U-shaped pipe, and the oil return holes are used to transfer the lubricating oil in the liquid medium of the flash separator into the first inside a compressor.
作为优选方案,所述排风管道上设置有排风热回收器,所述排风热回收器用于回收排风管道的余热,所述排风热回收器包括空气通道和制冷剂通道,所述排风热回收器的空气通道与排风管道相连,排风热回收器的制冷剂通道与多源热泵单元相连。As a preferred solution, an exhaust air heat recovery device is provided on the exhaust air duct, and the exhaust air heat recovery device is used to recover the waste heat of the exhaust air duct. The exhaust air heat recovery device includes an air channel and a refrigerant channel. The air channel of the exhaust air heat recovery device is connected with the exhaust air pipe, and the refrigerant channel of the exhaust air heat recovery device is connected with the multi-source heat pump unit.
作为优选方案,所述多源热泵单元还包括第二压缩机,所述第二压缩机具有低压进气口和高压排气口,所述第二压缩机的高压排气口与所述冷凝器的制冷剂通道的进口相连,所述第二压缩机的低压进气口与所述排风热回收器的制冷剂通道出口相连。As a preferred solution, the multi-source heat pump unit further includes a second compressor, the second compressor has a low-pressure inlet and a high-pressure outlet, and the high-pressure outlet of the second compressor is connected to the condenser The inlet of the refrigerant passage of the second compressor is connected, and the low-pressure air inlet of the second compressor is connected with the outlet of the refrigerant passage of the exhaust air heat recovery device.
作为优选方案,还包括经济器,所述经济器具有能够进行热交换的低压通道和高压通道,经济器的高压通道进口与冷凝器的制冷剂通道出口相连,经济器的高压通道的出口通过第二节流部件与所述排风热回收器的制冷剂通道进口相连;经济器的低压通道的进口通过第一节流部件与所述冷凝器的制冷剂通道出口相连,经济器的低压通道的出口与所述第一蓄热换热器的制冷剂通道进口相连。As a preferred solution, it also includes an economizer, the economizer has a low-pressure passage and a high-pressure passage capable of heat exchange, the inlet of the high-pressure passage of the economizer is connected with the outlet of the refrigerant passage of the condenser, and the outlet of the high-pressure passage of the economizer passes through the first The two throttling parts are connected with the inlet of the refrigerant channel of the exhaust heat recovery device; the inlet of the low pressure channel of the economizer is connected with the outlet of the refrigerant channel of the condenser through the first throttling part, and the low pressure channel of the economizer is connected with the outlet of the refrigerant channel of the condenser through the first throttling part. The outlet is connected with the inlet of the refrigerant channel of the first heat storage heat exchanger.
本发明的目的之二是提供一种太阳能储能多源热泵空调系统的制热方法,所述制热方法具体运行步骤如下:按照蓄热模式、蓄热与释热耦合模式、释热模式以及既不蓄热也不释热模式共四种模式运行;The second object of the present invention is to provide a heating method for a solar energy storage multi-source heat pump air conditioning system. The specific operation steps of the heating method are as follows: according to the heat storage mode, heat storage and heat release coupling mode, heat release mode Neither heat storage nor heat release mode, a total of four modes of operation;
相变蓄热槽以蓄热模式工作:The phase change heat storage tank works in heat storage mode:
太阳能集热器输出的热水温度高于环境温度,太阳能预热蓄热单元向新风预热器提供预热新风所需热量和相变蓄热槽储能所需热量,太阳能集热器所输出热水的热能经新风预热器先用于预热新风,再经第二蓄热换热器用于加热相变蓄热槽的相变材料并储能热能,实现低温热水热能的梯级利用;第一节流部件全开,制冷剂流通第一节流部件但不节流降压,制冷剂流过第一蓄热换热器不进行热交换,多源热泵单元通过空气源蒸发器从室外环境吸收热量;同时,多源热泵单元通过排风热回收器从空调排风吸收废热,由两个并联热泵循环所制取的热水向空气加热器提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗;The temperature of the hot water output by the solar collector is higher than the ambient temperature, and the solar preheating thermal storage unit provides the fresh air preheater with the heat required for preheating the fresh air and the heat required for the phase change heat storage tank to store energy. The output of the solar collector The thermal energy of hot water is firstly used to preheat the fresh air through the fresh air preheater, and then used to heat the phase change material of the phase change heat storage tank through the second heat storage heat exchanger and store heat energy to realize cascaded utilization of low temperature hot water heat energy; The first throttling part is fully opened, the refrigerant flows through the first throttling part but does not throttle and reduce pressure, the refrigerant flows through the first heat storage heat exchanger without heat exchange, and the multi-source heat pump unit passes through the air source evaporator from the outdoor The environment absorbs heat; at the same time, the multi-source heat pump unit absorbs waste heat from the exhaust air of the air conditioner through the exhaust air heat recovery device, and the hot water produced by the two parallel heat pump cycles provides heat to the air heater to process the air supply of the air conditioner to achieve double evaporation The cascade compression heat pump cycle heating process of the compressor at low temperature, thereby reducing the energy consumption of the compressor;
相变蓄热槽以蓄热与释热耦合模式工作:The phase change heat storage tank works in the coupled mode of heat storage and heat release:
太阳能集热器输出的热水温度高于环境温度,太阳能集热器所输出热水的热能先经新风预热器用于预热新风,再经第二蓄热换热器用于加热相变蓄热槽的相变材料并储能热能,实现低温热水热能的梯级利用;当相变蓄热槽和排风热回收器作为低温热源的多源热泵单元无法满足空气处理单元的加热量需求时,相变蓄热槽、排风热回收器和空气源蒸发器组成三温位热源,第一蓄热换热器吸收相变材料的储能、排风热回收器吸收排风废热以及空气源蒸发器吸收室外环境热量,制冷剂通过第一节流部件、第二节流部件和第三节流部件节流降压获得三级蒸发压力;由高、中、低压缩比的三源热泵循环所制取的一定温度的热水向空气加热器提供加热量处理空调送风,实现三个蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗;The temperature of the hot water output by the solar collector is higher than the ambient temperature. The heat energy of the hot water output by the solar collector is first used to preheat the fresh air through the fresh air preheater, and then used to heat the phase change heat storage through the second heat storage heat exchanger. The phase change material of the tank can store heat energy to realize cascaded utilization of low-temperature hot water heat energy; when the multi-source heat pump unit as a low-temperature heat source cannot meet the heating demand of the air handling unit, The phase change heat storage tank, the exhaust air heat recovery device and the air source evaporator form a three-temperature heat source. The first heat storage heat exchanger absorbs the energy storage of the phase change material, and the exhaust air heat recovery device absorbs exhaust air waste heat and air source evaporation. The refrigerant absorbs the heat of the outdoor environment, and the refrigerant is throttled and depressurized by the first throttling part, the second throttling part and the third throttling part to obtain three-stage evaporation pressure; The hot water produced at a certain temperature provides heat to the air heater to process the air supply of the air conditioner, and realizes the cascade compression heat pump cycle heating process of the compressor at three evaporation temperatures, thereby reducing the energy consumption of the compressor;
或者,当相变蓄热槽和排风作为低温双源的热泵单元制取一定温度的热水完全满足空气处理单元的加热量的需求时,相变蓄热槽和排风组成双温位热源,第一蓄热换热器吸收相变材料的储能以及排风热回收器吸收排风废热,第三节流部件完全关闭,制冷剂通过第一节流部件和第二节流部件节流降压获得两级蒸发压力,由中、低压缩比的双源热泵循环所制取的热水向空气加热器提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗;Or, when the phase-change heat storage tank and exhaust air are used as low-temperature dual-source heat pump units to produce hot water at a certain temperature to fully meet the heating demand of the air handling unit, the phase-change heat storage tank and exhaust air form a dual-temperature heat source , the first heat storage heat exchanger absorbs the energy storage of the phase change material and the exhaust air heat recovery device absorbs the exhaust air waste heat, the third throttling part is completely closed, and the refrigerant is throttled through the first throttling part and the second throttling part The pressure is reduced to obtain two-stage evaporation pressure, and the hot water produced by the dual-source heat pump cycle with medium and low compression ratios provides heat to the air heater to handle the air supply of the air conditioner, and realizes the cascade compression heat pump cycle system of the compressor under dual evaporation temperatures. heat process, thereby reducing compressor energy consumption;
相变蓄热槽以释热模式工作:当无太阳能时,相变蓄热槽向新风预热器提供预热新风所需热量和向空气加热器提供所需部分供热量,第二蓄热换热器吸收相变蓄热槽内的相变材料所释放的热量,经新风预热器用于预热新风;当相变蓄热槽和排风热回收器双源作为无法满足空气处理单元的加热量需求时,相变蓄热槽、排风热回收器和空气源蒸发器组成三温位热源,第一蓄热换热器吸收相变材料所释放的热量、排风热回收器吸收排风废热以及空气源蒸发器吸收室外环境热量,制冷剂通过第一节流部件、第二节流部件和第三节流部件节流降压获得三级蒸发压力;从而由高、中、低压缩比的三源热泵循环所制取的一定温度的热水向空气加热器提供加热量处理空调送风,实现三个蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗;The phase change heat storage tank works in the heat release mode: when there is no solar energy, the phase change heat storage tank provides the fresh air preheater with the heat required to preheat the fresh air and provides the air heater with the required part of the heat supply, and the second heat storage The heat exchanger absorbs the heat released by the phase change material in the phase change heat storage tank, and is used to preheat the fresh air through the fresh air preheater; When the heating capacity is required, the phase change heat storage tank, the exhaust air heat recovery device and the air source evaporator form a three-temperature heat source. The first heat storage heat exchanger absorbs the heat released by the phase change material, and the exhaust air heat recovery device absorbs the exhaust heat. The wind waste heat and the air source evaporator absorb the heat of the outdoor environment, and the refrigerant is throttled and depressurized by the first throttling part, the second throttling part and the third throttling part to obtain three-stage evaporation pressure; thus the high, medium and low compression The hot water at a certain temperature produced by the specific three-source heat pump cycle provides heat to the air heater to treat the air-conditioning air supply, and realizes the cascade compression heat pump cycle heating process of the compressor at three evaporation temperatures, thereby reducing the energy consumption of the compressor;
或者,当相变蓄热槽和排风作为低温双源的热泵单元制取一定温度的热水完全满足空气处理单元的加热量的需求时,相变蓄热槽和排风组成双温位热源,第一蓄热换热器吸收相变材料的释热以及排风热回收器吸收排风废热,第三节流部件完全关闭,制冷剂通过第一节流部件和第二节流部件节流降压获得两级蒸发压力,由中、低压缩比的双源热泵循环所制取的一定温度的热水向空气加热器提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Or, when the phase-change heat storage tank and exhaust air are used as low-temperature dual-source heat pump units to produce hot water at a certain temperature to fully meet the heating demand of the air handling unit, the phase-change heat storage tank and exhaust air form a dual-temperature heat source , the first heat storage heat exchanger absorbs the heat released by the phase change material and the exhaust air heat recovery device absorbs the exhaust air waste heat, the third throttling part is completely closed, and the refrigerant is throttled through the first throttling part and the second throttling part The pressure is reduced to obtain two-stage evaporation pressure, and the hot water at a certain temperature produced by the dual-source heat pump cycle with medium and low compression ratios provides heat to the air heater to handle the air supply of the air conditioner, and realizes the cascade compression of the compressor at double evaporation temperatures The heat pump circulates the heating process, thereby reducing the energy consumption of the compressor.
相变蓄热槽以既不蓄热也不释热模式工作:太阳能蓄热储能单元停止工作,此时无法向新风预热器提供预热新风所需热量,新风预热器不工作,多源热泵单元仅通过排风热回收器和空气源蒸发器组成双温位热源,来满足空气处理单元所需的加热量;第一节流部件全开,制冷剂流通第一节流部件但不节流降压,制冷剂流过第一蓄热换热器无热交换,多源热泵单元通过空气源蒸发器从室外环境吸收热量,从而由高、低压缩比的并联热泵循环所制取的一定温度的热水向空气加热器提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。The phase change heat storage tank works in the mode of neither heat storage nor heat release: the solar heat storage energy storage unit stops working. At this time, it cannot provide the heat required for preheating the fresh air to the fresh air preheater. The source heat pump unit only forms a dual-temperature heat source through the exhaust air heat recovery device and the air source evaporator to meet the heating capacity required by the air handling unit; the first throttling part is fully opened, and the refrigerant flows through the first throttling part but not Throttling and pressure reduction, the refrigerant flows through the first heat storage heat exchanger without heat exchange, and the multi-source heat pump unit absorbs heat from the outdoor environment through the air source evaporator, so that it is produced by parallel heat pump cycles with high and low compression ratios The hot water at a certain temperature provides heat to the air heater to handle the air supply of the air conditioner, and realizes the cascade compression heat pump cycle heating process of the compressor under the double evaporation temperature, thereby reducing the energy consumption of the compressor.
本发明至少具有如下有益效果:The present invention has at least the following beneficial effects:
其一、本发明通过改进,多源热泵空调系统由太阳能热水循环单元、相变储能单元、多源热泵单元和空气处理单元等四大部分组成,其中太阳能热水循环单元一方面可向新风预热器提供热量,承担新风预热负荷,另一方面还可向相变蓄热槽提供热量,将热量进行储存,实现低温热水热能的梯级利用;相变储能单元实现了太阳能热水循环单元之间和多源热泵单元之间的能量传递和蓄能,相变储能单元蓄存热量,一方面可承担新风预热负荷,另一方面还可提供低压缩比的压缩热泵循环制热过程所需的较高温度下热量;排风热回收器用于回收空气处理单元中排风的废热,通过多源热泵单元可以提升温度品位,本发明的空调系统稳定性高,节能环保效果显著。One, through improvement of the present invention, the multi-source heat pump air-conditioning system is composed of four major parts such as a solar hot water circulation unit, a phase-change energy storage unit, a multi-source heat pump unit and an air handling unit, wherein the solar hot water circulation unit can be supplied to The fresh air preheater provides heat and undertakes the load of fresh air preheating. On the other hand, it can also provide heat to the phase change heat storage tank, store the heat, and realize the cascade utilization of low-temperature hot water heat energy; the phase change energy storage unit realizes solar thermal Energy transfer and energy storage between water circulation units and multi-source heat pump units, phase change energy storage units store heat, on the one hand, it can undertake the fresh air preheating load, on the other hand, it can also provide a low compression ratio compression heat pump cycle The heat required by the heating process at a higher temperature; the exhaust air heat recovery device is used to recover the waste heat of the exhaust air in the air handling unit, and the temperature grade can be improved through the multi-source heat pump unit. The air conditioning system of the present invention has high stability, energy saving and environmental protection effect significantly.
其二,本方案,优化了多源热泵空调系统的制热工艺,根据相变蓄热槽的四种运行模式,即蓄热模式、蓄热与释热耦合模式、释热模式及既不蓄热也不释热模式,可实现太阳能热水循环单元、储能单元和多源热泵单元的有机耦合运行工作,实现热量的储存与梯级制备。与上述的特定结构的多源热泵空调系统相结合,使得多源热泵单元根据不同的运行模式,可从双温位热源或者三温位热源等多个不同品位的低温热源获取热量,以承担建筑热负荷与部分(或全部)新风热负荷,实现双蒸发温度或者三蒸发温度等多个蒸发温度下压缩机的梯级压缩热泵循环制热过程,可显著降低压缩机的能耗,提高压缩热泵循环的制热效率和太阳能利用率,克服传统太阳能供热的间歇性与能量利用率低的问题。Second, this scheme optimizes the heating process of the multi-source heat pump air-conditioning system. According to the four operating modes of the phase change heat storage tank, namely heat storage mode, heat storage and heat release coupling mode, heat release mode and neither storage The heat does not release heat mode, which can realize the organic coupling operation of the solar hot water circulation unit, the energy storage unit and the multi-source heat pump unit, and realize the storage and cascade preparation of heat. Combined with the above-mentioned multi-source heat pump air-conditioning system with a specific structure, the multi-source heat pump unit can obtain heat from multiple low-temperature heat sources of different grades, such as dual-temperature heat sources or three-temperature heat sources, according to different operating modes, so as to bear the burden of building Heat load and part (or all) fresh air heat load, realize the cascade compression heat pump cycle heating process of the compressor at multiple evaporation temperatures such as double evaporation temperature or triple evaporation temperature, which can significantly reduce the energy consumption of the compressor and improve the compression heat pump cycle High heating efficiency and solar energy utilization rate, overcome the problems of intermittent and low energy utilization rate of traditional solar heating.
附图说明Description of drawings
为了更清楚地说明发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only For some embodiments of the invention, those skilled in the art can also obtain other drawings based on these drawings without creative effort.
图1为本发明的多源热泵空调系统结构图;Fig. 1 is the structural diagram of the multi-source heat pump air-conditioning system of the present invention;
图中标记:1、第一压缩机,2、冷凝器,3、经济器,4、闪蒸分离器,5、空气源蒸发器,6、第二压缩机,7、排风热回收器,8、相变蓄热槽,9、第一蓄热换热器,10、第二蓄热换热器,11、第一循环水泵,12、太阳能集热器,13、新风预热器,14、空气加热器,15、第二循环水泵,16、空调系统,101、第一节流部件,102、第二节流部件,103、第三节流部件,201、第一单向阀,202、第二单向阀,301、新风管道,302、排风管道,303、循环管道。Marks in the figure: 1. First compressor, 2. Condenser, 3. Economizer, 4. Flash separator, 5. Air source evaporator, 6. Second compressor, 7. Exhaust air heat recovery device, 8. Phase change heat storage tank, 9. First heat storage heat exchanger, 10. Second heat storage heat exchanger, 11. First circulating water pump, 12. Solar heat collector, 13. Fresh air preheater, 14 , air heater, 15, second circulating water pump, 16, air conditioning system, 101, first throttling part, 102, second throttling part, 103, third throttling part, 201, first one-way valve, 202 , the second one-way valve, 301, fresh air pipeline, 302, exhaust air pipeline, 303, circulation pipeline.
具体实施方式Detailed ways
以下通过示例性的实施方式对本发明进行具体描述。然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益的结合到其它实施方式中。The present invention will be specifically described through exemplary embodiments below. It should be understood, however, that elements, structures and characteristics of one embodiment may be beneficially incorporated in other embodiments without further recitation.
需要说明的是:除非另做定义,本文所使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中所使用的“一个”、“一”或者“该”等类似词语不表述数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,但并不排除其他具有相同功能的元件或者物件。It should be noted that unless otherwise defined, the technical terms or scientific terms used herein shall have the usual meanings understood by those with ordinary skill in the field of the present invention. Words such as "a", "an" or "the" used in the specification and claims of the patent application of the present invention do not express a limitation on quantity, but mean that there is at least one. Words such as "comprises" or "comprises" and similar terms indicate that the elements or items preceded by "comprises" or "comprises" include the elements or items listed after "comprises" or "comprises" and their equivalents, but do not exclude other Components or objects with the same function.
如图所示,本实施例提供一种太阳能储能多源热泵空调系统,由太阳能热水循环单元、储能单元、多源热泵单元和空气处理单元四个部分组成。其中,太阳能热水循环单元,包括太阳能集热器12,用于吸收太阳能并转化为热能,通过新风预热器13将热量提供给空气处理单元,且可通过位于相变储能单元的第二蓄热换热器10将热量提供给相变储能单元;多源热泵单元,通过空气加热器14将其转化后热能提供给空气处理单元,且可通过第一蓄热换热器9将热量提供给相变储能单元。As shown in the figure, this embodiment provides a solar energy storage multi-source heat pump air conditioning system, which consists of four parts: a solar hot water circulation unit, an energy storage unit, a multi-source heat pump unit and an air handling unit. Among them, the solar hot water circulation unit includes a
本方案中,空气处理单元包括新风管道301和排风管道302,所述新风管道301设置有新风预热器13和空气加热器14;空气加热器14设置在空气预热器13的排风侧,新风管道301预加热后的空气与排风管道302的排风混合后,进入新风管道301内通过空气加热器14进行二次加热。新风预热器13用于预热新风,新风预热器13包括水通道和新风通道,其中新风通道的两端与新风管道301相通,空气加热器14用于承担建筑热负荷与部分(或全部)新风热负荷,空气加热器14包括制冷剂通道和空气通道,空气加热器14的空气通道两端与新风管道301相通,空气加热器14的制冷剂通道的两端与多源热泵单元相连,排风管道302上设置有排风热回收器7,排风热回收器7用于回收空调系统排风的废热,经多源热泵单元提升温度品位,作为空气加热器14的部分加热量用于加热空调送风。排风热回收器7包括排风通道和制冷剂通道,排风热回收器7的排风通道的两端与排风管道302相通,排风热回收器7的制冷剂通道与多源热泵单元相连。In this solution, the air handling unit includes a
本方案中,空气处理单元还包括循环管道303,所述循环管道303的两端分别与新风管道301和排风管道302对接,用于将部分排风管道302的排风循环引入新风管道中,从而与新风形成混合气流。其中循环管道303的其中一端与新风预热器13和空气加热器14之间的新风管道301相连。循环管道303的另一端与排风热回收器7进风侧的排风管道302相连。In this solution, the air processing unit also includes a
本方案中,排风热回收器7位于排风管道302上,排风热回收器7用于吸收回收排风管道302的余热,排风热回收器7包括空气通道和制冷剂通道,排风热回收器7的空气通道与排风管道302相连,排风热回收器7的制冷剂通道与多源热泵单元相连。In this scheme, the exhaust air heat recovery device 7 is located on the
本方案中,空气加热器14的热水通道进口和出口两端分别与第二循环水泵15的出口和冷凝器2热水通道的进口相连,冷凝器2热水通道的出口与第二循环水泵15的进口相连,从而使得冷凝器2、第二循环水泵15和空气加热器14形成一个循环回路。In this scheme, the inlet and outlet ends of the hot water channel of the air heater 14 are respectively connected with the outlet of the second circulating
本方案中,相变储能单元的具体结构如下:相变储能单元包括相变蓄热槽8、第一蓄热换热器9和第二蓄热换热器10,相变蓄热槽8内用于填充相变蓄热填料,相变蓄热填料为脂肪酸、多元醇、石蜡、石墨或膨胀石墨等性能较为稳定的材料。其中,第一蓄热换热器9和第二蓄热换热器10设置在相变蓄热槽8内,并淹没在相变蓄热填料中,第一蓄热换热器9和第二蓄热换热器10为盘管式换热器或翅片管式换热器,第一蓄热换热器9的进口和出口两端分别与多源热泵单元相连,第二蓄热换热器10的进口和出口两端分别与空气处理单元和太阳能热水循环单元相连,储能单元用于热量的储存和(或)释热。In this scheme, the specific structure of the phase change energy storage unit is as follows: the phase change energy storage unit includes a phase change
本方案中,太阳能预热蓄热单元,用于吸收太阳能并转化为热能,太阳能预热蓄热单元能够通过新风预热器13将热能提供给空气处理单元;也能通过第二蓄热换热器10将转化的热能储存在箱变储能单元,太阳能预热蓄热单元包括太阳能集热器12和第一循环水泵11,所述太阳能集热器12的水进口通过第一循环水泵11与第二蓄热换热器10的出口相连,太阳能集热器12的水出口与新风预热器13的水通道进口相连,新风预热器13的水通道出口与第二蓄热换热器10的进口相连。In this solution, the solar preheating thermal storage unit is used to absorb solar energy and convert it into heat energy. The solar preheating thermal storage unit can provide thermal energy to the air handling unit through the
本方案中,多源热泵单元的具体结构如下:多源热泵单元包括第一压缩机1、第二压缩机6、冷凝器2、经济器3、闪蒸分离器4、空气源蒸发器5、第一蓄热换热器9、排风热回收器7,其中,第一压缩机1具有低压吸气口、中压吸气口和高压排气口, 第二压缩机6具有低压吸气口和高压排气口;第一压缩机1的高压排气口与第二压缩机6的高压排气口并接到冷凝器2的制冷剂通道入口,冷凝器2制冷剂通道出口分为两个支路,其中的一支路通过第一节流部件101与经济器3的低压侧通道入口相连,经济器3的低压侧通道出口与第一蓄热换热器9的进口相连,第一蓄热换热器9的出口与闪蒸分离器4进口相连,冷凝器2制冷剂通道出口的另一支路与经济器3的高压侧通道入口相连,经济器3的高压侧通道出口经第二节流部件102与排风热回收器7的制冷剂通道入口相连,排风热回收器7的制冷剂通道出口连接于第二压缩机6的低压吸气口;闪蒸分离器4的回气口与第一压缩机1的中压吸气口相连,闪蒸分离器4的底部液体出口经第三节流部件103与空气源蒸发器5的进口相连,空气源蒸发器5的制冷剂出口与第一压缩机1的低压吸气口相连;第一压缩机1的高压排气口设置第一单向阀201,第二压缩机6的高压排气口设置第二单向阀202,第一单向阀201和第二单向阀202的出口并接在冷凝器2的制冷剂通道进口。In this scheme, the specific structure of the multi-source heat pump unit is as follows: the multi-source heat pump unit includes a first compressor 1, a second compressor 6, a condenser 2, an economizer 3, a flash separator 4, an air source evaporator 5, The first heat storage heat exchanger 9, the exhaust air heat recovery device 7, wherein, the first compressor 1 has a low-pressure suction port, a medium-pressure suction port and a high-pressure discharge port, and the second compressor 6 has a low-pressure suction port and the high-pressure exhaust port; the high-pressure exhaust port of the first compressor 1 and the high-pressure exhaust port of the second compressor 6 are connected to the refrigerant passage inlet of the condenser 2, and the refrigerant passage outlet of the condenser 2 is divided into two Branches, one of which is connected to the inlet of the low-pressure side passage of the economizer 3 through the first throttling component 101, and the outlet of the low-pressure side passage of the economizer 3 is connected to the inlet of the first heat storage heat exchanger 9, and the first storage The outlet of the heat exchanger 9 is connected to the inlet of the flash separator 4, and the other branch of the outlet of the refrigerant channel of the condenser 2 is connected to the inlet of the high-pressure side channel of the economizer 3, and the outlet of the high-pressure side channel of the economizer 3 passes through the second The throttling part 102 is connected to the inlet of the refrigerant channel of the exhaust air heat recovery device 7, and the outlet of the refrigerant channel of the exhaust air heat recovery device 7 is connected to the low-pressure suction port of the second compressor 6; the return air port of the flash separator 4 It is connected with the medium-pressure suction port of the first compressor 1, the bottom liquid outlet of the flash separator 4 is connected with the inlet of the air source evaporator 5 through the third throttling part 103, and the refrigerant outlet of the air source evaporator 5 is connected with the The low-pressure suction port of the first compressor 1 is connected; the high-pressure discharge port of the first compressor 1 is provided with a first check valve 201, and the high-pressure discharge port of the second compressor 6 is provided with a second check valve 202. The outlets of the one-
本方案中,第一压缩机1的中压吸气口的管路进气端为U形管,且所述U形管位于所述闪蒸分离器4内部的液面以下,U形管具有进气口,且在U形管的管体上形成有若干回油孔。如此设计的目的在于:考虑到在闪蒸分离器4底部可能积存有润滑油,润滑油是随制冷剂一起流动的,通过在U形管的管体上设置有回油孔,U形管不仅用于闪蒸分离器4内的上方的气体回到第二压缩机1的中压吸气口,而且积存在闪蒸分离器4的内下方的液相部分的所含的润滑油能够通过U形管的回油孔返回到第一压缩机1,从而避免润滑油的损失,如果没有这个U型管的吸气口和回油孔的双重结构,这部分润滑油就回不去压缩机,本方案如此设计值从而能避免导致运行过程中润滑油的损失而导致压缩机的润滑不足的问题。In this solution, the pipeline inlet end of the medium-pressure suction port of the first compressor 1 is a U-shaped pipe, and the U-shaped pipe is located below the liquid level inside the flash separator 4, and the U-shaped pipe has air inlet, and a number of oil return holes are formed on the body of the U-shaped pipe. The purpose of such design is: considering that there may be lubricating oil accumulated at the bottom of the flash separator 4, and the lubricating oil flows together with the refrigerant. The upper gas used in the flash separator 4 returns to the medium-pressure suction port of the second compressor 1, and the lubricating oil contained in the liquid phase part accumulated in the lower part of the flash separator 4 can pass through the U The oil return hole of the U-shaped pipe returns to the first compressor 1, thereby avoiding the loss of lubricating oil. If there is no dual structure of the suction port and the oil return hole of the U-shaped pipe, this part of the lubricating oil cannot return to the compressor. This solution is designed in such a way that the problem of insufficient lubrication of the compressor due to loss of lubricating oil during operation can be avoided.
本实施例还提供一种太阳能储能多源热泵空调系统的制热方法,相变蓄热槽8按照蓄热模式、蓄热与释热耦合模式、释热模式以及既不蓄热也不释热模式共四种模式运行,具体运行模式如下:This embodiment also provides a heating method for a solar energy storage multi-source heat pump air-conditioning system. The phase change
其一、相变蓄热槽8以蓄热模式工作:太阳能集热器12所输出的热水温度高于环境温度,太阳能热水循环单元向新风预热器13提供预热新风所需热量和相变蓄热槽8储能所需热量,太阳能集热器12所输出热水的热能经新风预热器13先用于预热新风,再经第二蓄热换热器10用于加热相变蓄热槽8的相变材料并储能热能,实现低温热水热能的梯级利用;第一节流部件101全开,制冷剂流通第一节流部件101但不节流降压,制冷剂流过第一蓄热换热器9不进行热交换,多源热泵单元通过空气源蒸发器5从室外环境吸收热量,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成中间压缩比的热泵循环制取50℃以上热水,同时,多源热泵单元通过排风热回收器7从空调排风吸收废热,由第二压缩机6、第二单向阀202、冷凝器2、第二节流部件102、排风热回收器7组成低压缩比的热泵循环制取50℃以上热水,由两个并联热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。First, the phase change
其二、相变蓄热槽8以蓄热与释热耦合模式工作:太阳能集热器12输出的热水温度高于环境温度,太阳能集热器12所输出热水的热能先经新风预热器13用于预热新风,再经第二蓄热换热器10用于加热相变蓄热槽8的相变材料并储能热能,实现低温热水热能的梯级利用;当相变蓄热槽8和排风双源作为低温热源的热泵单元制取50℃以上热水无法满足空气处理单元的加热量需求时,相变蓄热槽8、排风和室外环境组成三温位热源,第一蓄热换热器9吸收相变材料的储能、排风热回收器7吸收排风废热以及空气源蒸发器5吸收室外环境热量,制冷剂通过第一节流部件101、第二节流部件102和第三节流部件103节流降压获得三级蒸发压力,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环制取50℃以上热水,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成的高压缩比和低压缩比的双源两级热泵循环制取50℃以上热水,从而由高、中、低压缩比的三源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现三个蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗;或者,当相变蓄热槽8和排风作为低温双源的热泵单元制取50℃以上热水完全满足空气处理单元的加热量的需求时,相变蓄热槽8和排风组成双温位热源,第一蓄热换热器9吸收相变材料的储能以及排风热回收器7吸收排风废热,第三节流部件103完全关闭,制冷剂通过第一节流部件101和第二节流部件102节流降压获得两级蒸发压力,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环制取50℃以上热水,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9和闪蒸分离器4组成的低压缩比的单级热泵循环制取50℃以上热水,从而由中、低压缩比的双源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Second, the phase-change
其三、相变蓄热槽8以释热模式工作:当无太阳能,如夜间时,太阳能热水循环单元的相变蓄热槽8向新风预热器13提供预热新风所需热量和向空气加热器14提供所需部分供热量,第二蓄热换热器10吸收相变蓄热槽内的相变材料所释放的热量,经新风预热器13用于预热新风;当相变蓄热槽8和排风双源作为低温热源的热泵单元制取50℃以上热水无法满足空气处理单元的加热量需求时,相变蓄热槽8、排风和室外环境组成三温位热源,第一蓄热换热器9吸收相变材料的释热、排风热回收器7吸收排风废热以及空气源蒸发器5吸收室外环境热量,制冷剂通过第一节流部件101、第二节流部件102和第三节流部件103节流降压获得三级蒸发压力,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环制取50℃以上热水,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成的高压缩比和低压缩比的双源两级热泵循环制取50℃以上热水,从而由高、中、低压缩比的三源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现三个蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗;或者,当相变蓄热槽8和排风作为低温双源的热泵单元制取50℃以上热水完全满足空气处理单元的加热量的需求时,相变蓄热槽8和排风组成双温位热源,第一蓄热换热器9吸收相变材料的释热以及排风热回收器7吸收排风废热,第三节流部件103完全关闭,制冷剂通过第一节流部件101和第二节流部件102节流降压获得两级蒸发压力,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环制取50℃以上热水,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9和闪蒸分离器4组成的低压缩比的单级热泵循环制取50℃以上热水,从而,由中、低压缩比的双源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Third, the phase change
其四、相变蓄热槽8以既不蓄热也不释热模式工作:太阳能热水循环单元停止工作,此时无法向新风预热器13提供预热新风所需热量,新风预热器13不工作,多源热泵单元制取50℃以上热水仅通过排风和室外环境组成双温位热源,来满足空气处理单元所需的加热量;第一节流部件101全开,制冷剂流通第一节流部件但不节流降压,制冷剂流过第一蓄热换热器9无热交换,多源热泵单元通过空气源蒸发器5从室外环境吸收热量,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成高压缩比的热泵循环制取50℃以上热水,同时,多源热泵单元通过排风热回收器7从空调排风吸收废热,由第二压缩机6、第二单向阀202、冷凝器2、第二节流部件102、排风热回收器7组成低压缩比的热泵循环制取50℃以上热水,从而由高、低压缩比的并联热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Its four, the phase-change
本方案的工作原理如下:The scheme works as follows:
运行模式一:相变蓄热槽8以蓄热模式工作。太阳能集热器12所输出的热水温度高于环境温度,太阳能集热器12所输出热水的热能先经新风预热器13用于预热新风,再经第二蓄热换热器10用于加热相变蓄热槽8的相变材料并储能热能,实现低温热水热能的梯级利用;第一节流部件101全开,制冷剂流通第一节流部件101但不节流降压,制冷剂流过第一蓄热换热器9不进行热交换,多源热泵单元通过空气源蒸发器5从室外环境吸收热量,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成中间压缩比的热泵循环,同时,多源热泵单元通过排风热回收器7从空调排风吸收废热,由第二压缩机6、第二单向阀202、冷凝器2、第二节流部件102、排风热回收器7组成低压缩比的热泵循环,循环流程具体为:高温高压的制冷剂蒸气分别从第一压缩机1的高压排气口和第二压缩机6的高压排气口并分别通过第一单向阀201和第二单向阀202混合排出后,流入冷凝器2的制冷剂通道被冷凝成高温高压的制冷剂液体,液体出口分为两个支路,一支路通过第一节流部件101节流降压后流入经济器3,与第一蓄热换热器9不进行换热,再流入闪蒸分离器4进行气液分离,闪蒸分离器4底部中温中压的制冷剂液体通过液体出口经第三节流部件103节流降压后,再流入空气源蒸发器5,从室外环境空气中吸取热量,蒸发成低温低压的制冷剂蒸气,被吸入第一压缩机1的低压吸气口;另一支路通过经济器3换热,经第二节流部件102节流降压后流入排风热回收器7,吸收空调排风废热,蒸发成低温低压的制冷剂蒸气,被吸入第二压缩机6的低压吸气口,完成两个并联热泵循环流程。从而由两个并联热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Operation mode one: the phase change
运行模式二:相变蓄热槽8以蓄热与释热耦合模式工作。太阳能集热器12输出的热水温度高于环境温度,太阳能集热器12所输出热水的热能先经新风预热器13用于预热新风,再经第二蓄热换热器10用于加热相变蓄热槽8的相变材料并储能热能;当相变蓄热槽8和排风双源作为低温热源的热泵单元制取50℃以上热水无法满足空气处理单元的加热量需求时,相变蓄热槽8、排风和室外环境组成三温位热源,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成的高压缩比和低压缩比的双源两级热泵循环,具体为:高温高压的制冷剂蒸气分别从第一压缩机1的高压排气口和第二压缩机6的高压排气口并分别通过第一单向阀201和第二单向阀202混合排出后,流入冷凝器2的制冷剂通道被冷凝成高温高压的制冷剂液体,液体出口分为两个支路,一支路通过第一节流部件101节流降压后流入经济器3,再通过第一蓄热换热器9吸收相变材料发生相变所释放的热量,蒸发成中温中压的制冷剂蒸气,再流入闪蒸分离器4进行气液分离,闪蒸分离器4上部的中温中压制冷剂饱和蒸气通过气体出口被吸入第一压缩机1的中压吸气口,闪蒸分离器4底部的中温中压的制冷剂液体通过液体出口经第三节流部件103节流降压后,再流入空气源蒸发器5,从低温环境空气中吸取热量,蒸发成低温低压的制冷剂蒸气,被吸入第一压缩机1的低压吸气口;另一支路通过经济器3换热,经第二节流部件102节流降压后流入排风热回收器7,吸收空调排风废热,蒸发成低温低压的制冷剂蒸气,被吸入第二压缩机6的低压吸气口,完成高、中、低压缩比的三源热泵循环流程。从而由高、中、低压缩比的三源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现三个蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。或者,当相变蓄热槽8和排风作为低温双源的热泵单元制取50℃以上热水完全满足空气处理单元的加热量的需求时,相变蓄热槽8和排风组成双温位热源,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环制取50℃以上热水,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9和闪蒸分离器4组成低压缩比的单级热泵循环制取50℃以上热水,具体为:高温高压的制冷剂蒸气分别从第一压缩机1的高压排气口和第二压缩机6的高压排气口并分别通过第一单向阀201和第二单向阀202混合排出后,流入冷凝器2的制冷剂通道被冷凝成高温高压的制冷剂液体,液体出口分为两个支路,一支路通过第一节流部件101节流降压后流入经济器3,再通过第一蓄热换热器9吸收相变材料发生相变所释放的热量,蒸发成中温中压的制冷剂蒸气,再流入闪蒸分离器4,使其全部变成中温中压的制冷剂饱和蒸气,通过闪蒸分离器4上部气体出口被吸入第一压缩机1的中压吸气口;另一支路通过经济器3换热,经第二节流部件102节流降压后流入排风热回收器7,吸收空调排风废热,蒸发成低温低压的制冷剂蒸气,被吸入第二压缩机6的低压吸气口,完成中、低压缩比的双源热泵循环流程。从而由中、低压缩比的双源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Operation mode two: the phase change
运行模式三:相变蓄热槽8以释热模式工作。当无太阳能,如夜间时,太阳能热水循环单元的相变蓄热槽8向新风预热器13提供预热新风所需热量和向空气加热器14提供所需部分供热量,第二蓄热换热器10吸收相变蓄热槽内的相变材料所释放的热量,经新风预热器13用于预热新风;当相变蓄热槽8和排风双源作为低温热源的热泵单元制取50℃以上热水无法满足空气处理单元的加热量需求时,相变蓄热槽8、排风和室外环境组成三温位热源,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成的高压缩比和低压缩比的双源两级热泵循环,具体为:高温高压的制冷剂蒸气分别从第一压缩机1的高压排气口和第二压缩机6的高压排气口并分别通过第一单向阀201和第二单向阀202混合排出后,流入冷凝器2的制冷剂通道被冷凝成高温高压的制冷剂液体,液体出口分为两个支路,一支路通过第一节流部件101节流降压后流入经济器3,再通过第一蓄热换热器9吸收相变材料发生相变所释放的热量,蒸发成中温中压的制冷剂蒸气,再流入闪蒸分离器4进行气液分离,闪蒸分离器4上部的中温中压制冷剂饱和蒸气通过气体出口被吸入第一压缩机1的中压吸气口,闪蒸分离器4底部的中温中压的制冷剂液体通过液体出口经第三节流部件103节流降压后,再流入空气源蒸发器5,从低温环境空气中吸取热量,蒸发成低温低压的制冷剂蒸气,被吸入第一压缩机1的低压吸气口;另一支路通过经济器3换热,经第二节流部件102节流降压后流入排风热回收器7,吸收空调排风废热,蒸发成低温低压的制冷剂蒸气,被吸入第二压缩机6的低压吸气口,完成高、中、低压缩比的三源热泵循环流程。从而由高、中、低压缩比的三源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现三个蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。或者,当相变蓄热槽8和排风作为低温双源的热泵单元制取50℃以上热水完全满足空气处理单元的加热量的需求时,相变蓄热槽8和排风组成双温位热源,由第二压缩机6、第二单向阀202、冷凝器2、经济器3、第二节流部件102、排风热回收器7组成中间压缩比的热泵循环制取50℃以上热水,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9和闪蒸分离器4组成低压缩比的单级热泵循环制取50℃以上热水,具体为:高温高压的制冷剂蒸气分别从第一压缩机1的高压排气口和第二压缩机6的高压排气口并分别通过第一单向阀201和第二单向阀202混合排出后,流入冷凝器2的制冷剂通道被冷凝成高温高压的制冷剂液体,液体出口分为两个支路,一支路通过第一节流部件101节流降压后流入经济器3,再通过第一蓄热换热器9吸收相变材料发生相变所释放的热量,蒸发成中温中压的制冷剂蒸气,再流入闪蒸分离器4,使其全部变成中温中压的制冷剂饱和蒸气,通过闪蒸分离器4上部气体出口被吸入第一压缩机1的中压吸气口;另一支路通过经济器3换热,经第二节流部件102节流降压后流入排风热回收器7,吸收空调排风废热,蒸发成低温低压的制冷剂蒸气,被吸入第二压缩机6的低压吸气口,完成中、低压缩比的双源热泵循环流程。从而由中、低压缩比的双源热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Operation mode three: the phase change
运行模式四:相变蓄热槽8以既不蓄热也不释热模式工作。太阳能热水循环单元停止工作,此时无法向新风预热器13提供预热新风所需热量,新风预热器13不工作,多源热泵单元制取50℃以上热水仅通过排风和室外环境组成双温位热源,来满足空气处理单元所需加热量;第一节流部件101全开,制冷剂流通第一节流部件但不节流降压,制冷剂流过第一蓄热换热器9无热交换,多源热泵单元通过空气源蒸发器5从室外环境吸收热量,由第一压缩机1、第一单向阀201、冷凝器2、第一节流部件101、经济器3、第一蓄热换热器9、闪蒸分离器4、第三节流部件103和空气源蒸发器5组成高压缩比的热泵循环,同时,多源热泵单元通过排风热回收器7从空调排风吸收废热,由第二压缩机6、第二单向阀202、冷凝器2、第二节流部件102、排风热回收器7组成低压缩比的热泵循环,具体为:高温高压的制冷剂蒸气分别从第一压缩机1的高压排气口和第二压缩机6的高压排气口并分别通过第一单向阀201和第二单向阀202混合排出后,流入冷凝器2的制冷剂通道被冷凝成高温高压的制冷剂液体,液体出口分为两个支路,一支路通过第一节流部件101节流降压后流入经济器3,与第一蓄热换热器9不进行换热,再流入闪蒸分离器4,闪蒸分离器4底部中温中压的制冷剂液体通过液体出口经第三节流部件103节流降压后,再流入空气源蒸发器5,从室外环境空气中吸取热量,蒸发成低温低压的制冷剂蒸气,被吸入第一压缩机1的低压吸气口;另一支路通过经济器3换热,经第二节流部件102节流降压后流入排风热回收器7,吸收空调排风废热,蒸发成低温低压的制冷剂蒸气,被吸入第二压缩机6的低压吸气口,完成高、低压缩比的并联热泵循环流程。从而由高、低压缩比的并联热泵循环所制取的50℃以上热水向空气加热器14提供加热量处理空调送风,实现双蒸发温度下压缩机的梯级压缩热泵循环制热过程,从而降低压缩机能耗。Operation mode four: the phase change
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, may use the technical content disclosed above to make some changes or modify them into equivalent embodiments with equivalent changes, but as long as they do not depart from the technical solution of the present invention, the Technical Essence Any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310211157.8A CN116007093B (en) | 2023-03-07 | 2023-03-07 | Solar energy storage multi-source heat pump air conditioning system and heating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310211157.8A CN116007093B (en) | 2023-03-07 | 2023-03-07 | Solar energy storage multi-source heat pump air conditioning system and heating method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116007093A true CN116007093A (en) | 2023-04-25 |
CN116007093B CN116007093B (en) | 2024-06-11 |
Family
ID=86028363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310211157.8A Active CN116007093B (en) | 2023-03-07 | 2023-03-07 | Solar energy storage multi-source heat pump air conditioning system and heating method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116007093B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202126035U (en) * | 2011-05-12 | 2012-01-25 | 宁波工程学院 | Heat recovery type heat pump air conditioning system |
CN104329759A (en) * | 2014-11-10 | 2015-02-04 | 上海理工大学 | Temperature control dehumidification system and temperature control dehumidification method for fresh air of radiation air conditioner |
CN106705334A (en) * | 2016-11-18 | 2017-05-24 | 仲恺农业工程学院 | Energy recovery type double-cold-source large-enthalpy-difference energy storage fresh air handling unit and control method thereof |
WO2018045697A1 (en) * | 2016-09-08 | 2018-03-15 | 南通华信中央空调有限公司 | High-efficient fresh air dehumidifier based on heat pump heat recovery and dual-evaporation temperature |
KR20200032345A (en) * | 2018-09-18 | 2020-03-26 | 주식회사 탑솔 | Solar heat pump system with PVT collector connected |
CN113757875A (en) * | 2021-10-20 | 2021-12-07 | 福建工程学院 | A heat recovery type phase change energy storage fresh air system and its working method |
CN113915794A (en) * | 2021-09-27 | 2022-01-11 | 河南科技大学 | A cooling and heating method for a multi-energy complementary cooling/heating energy storage system |
CN215765842U (en) * | 2021-07-28 | 2022-02-08 | 珠海格力电器股份有限公司 | Enhanced vapor injection compressor unit, heat pump system and air source water heating equipment |
-
2023
- 2023-03-07 CN CN202310211157.8A patent/CN116007093B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202126035U (en) * | 2011-05-12 | 2012-01-25 | 宁波工程学院 | Heat recovery type heat pump air conditioning system |
CN104329759A (en) * | 2014-11-10 | 2015-02-04 | 上海理工大学 | Temperature control dehumidification system and temperature control dehumidification method for fresh air of radiation air conditioner |
WO2018045697A1 (en) * | 2016-09-08 | 2018-03-15 | 南通华信中央空调有限公司 | High-efficient fresh air dehumidifier based on heat pump heat recovery and dual-evaporation temperature |
CN106705334A (en) * | 2016-11-18 | 2017-05-24 | 仲恺农业工程学院 | Energy recovery type double-cold-source large-enthalpy-difference energy storage fresh air handling unit and control method thereof |
KR20200032345A (en) * | 2018-09-18 | 2020-03-26 | 주식회사 탑솔 | Solar heat pump system with PVT collector connected |
CN215765842U (en) * | 2021-07-28 | 2022-02-08 | 珠海格力电器股份有限公司 | Enhanced vapor injection compressor unit, heat pump system and air source water heating equipment |
CN113915794A (en) * | 2021-09-27 | 2022-01-11 | 河南科技大学 | A cooling and heating method for a multi-energy complementary cooling/heating energy storage system |
CN113757875A (en) * | 2021-10-20 | 2021-12-07 | 福建工程学院 | A heat recovery type phase change energy storage fresh air system and its working method |
Also Published As
Publication number | Publication date |
---|---|
CN116007093B (en) | 2024-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100552323C (en) | Solar-air source energy storage type solution heat pump device | |
CN105042931B (en) | A kind of trans critical cycle and the combined heat-pump system of absorption heat pump coproduction | |
CN100498128C (en) | Low grade energy driven and mechanical power driven composite heat pump, refrigeration system | |
CN1515850A (en) | Direct Expansion Solar Heat Pump Air Conditioning and Hot Water System | |
CN102798184A (en) | Heat tube and heat pump compounding system | |
CN102901167B (en) | Heat source tower heat pump device for achieving comprehensive utilization of solar energy | |
CN202853213U (en) | Heat source tower heat pump system based on solar energy regeneration | |
CN111156726B (en) | An air source heat pump system based on soil cross-season thermal defrosting and intermittent utilization of solar energy and its use method | |
CN113915794B (en) | A cooling and heating method for a multi-energy complementary refrigeration/heating energy storage system | |
CN210123212U (en) | A dry heating and cooling composite system | |
CN219955446U (en) | Photovoltaic photo-thermal integrated assembly and air source heat pump heating system | |
CN208871901U (en) | Two-stage compression heat pump system with incomplete cooling in the middle of secondary throttling | |
CN102494439A (en) | Photovoltaic photo-thermal energy-storage heat pump system | |
CN106839217A (en) | De- electrically independent operation combined type heat pump air conditioner system and its control method | |
CN102798250B (en) | Double-heat-source trans-critical carbon-dioxide multifunctional heat-pump system | |
CN206669935U (en) | De- electrically independent operation combined type heat pump air conditioner system | |
CN215002381U (en) | High-efficient absorption heat pump | |
CN113915786B (en) | A compression heat pump device using latent heat energy storage | |
CN116007093A (en) | A solar energy storage multi-source heat pump air conditioning system and heating method | |
CN214426082U (en) | Heat pump heating system with double heat sources | |
CN201166491Y (en) | Energy storage type compound heat source solution heat pump device | |
CN100561074C (en) | A Multifunctional Solar Auxiliary Air Conditioning System | |
CN113091349A (en) | High-efficient absorption heat pump | |
CN112923423A (en) | Heat pump heating system with solar heat energy and air heat energy complementary | |
CN116007092B (en) | Graded compression refrigeration/heating system and method for temperature and humidity independent air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20230425 Assignee: Luoyang Kaixing Electronic Technology Co.,Ltd. Assignor: HENAN University OF SCIENCE AND TECHNOLOGY Contract record no.: X2024980043303 Denomination of invention: A solar energy storage multi-source heat pump air conditioning system and heating method Granted publication date: 20240611 License type: Common License Record date: 20241227 |
|
EE01 | Entry into force of recordation of patent licensing contract |