CN115995875A - 一种应用于电流互感器取电的储能系统及其控制方法 - Google Patents

一种应用于电流互感器取电的储能系统及其控制方法 Download PDF

Info

Publication number
CN115995875A
CN115995875A CN202310290416.0A CN202310290416A CN115995875A CN 115995875 A CN115995875 A CN 115995875A CN 202310290416 A CN202310290416 A CN 202310290416A CN 115995875 A CN115995875 A CN 115995875A
Authority
CN
China
Prior art keywords
converter
current transformer
current
value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310290416.0A
Other languages
English (en)
Other versions
CN115995875B (zh
Inventor
徐秋实
余轶
吴启亮
莫石
乔立
王俊琪
张焱哲
任羽纶
王佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Peifang Li Technology Co ltd
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Wuhan Peifang Li Technology Co ltd
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Peifang Li Technology Co ltd, Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Wuhan Peifang Li Technology Co ltd
Priority to CN202310290416.0A priority Critical patent/CN115995875B/zh
Publication of CN115995875A publication Critical patent/CN115995875A/zh
Application granted granted Critical
Publication of CN115995875B publication Critical patent/CN115995875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

一种应用于电流互感器取电的储能系统及其控制方法,本发明在硬件上由AC‑DC变换器、DC‑DC变换器和蓄电池构成,可以应用于电流互感器取电装置中。本发明的控制方法在一只DC‑DC变换器和一只AC‑DC变换器上实现了电流互感器励磁电感的感性无功补偿、电流互感器输出有功功率的调控、蓄电池充电电压电流的控制、负载恒压控制等功能,优化了电路结构、提高电路综合性能。

Description

一种应用于电流互感器取电的储能系统及其控制方法
技术领域
本发明涉及蓄电池储能系统与电流互感器取电的交叉领域,尤其涉及一种应用于电流互感器取电的储能系统及其控制方法,具体适用于优化蓄能结构,简化蓄能电路。
背景技术
电流互感器(current transformer)简称CT,电流互感器取电也称CT取电。随着智能电网的蓬勃发展,在高压输电线上需要安装很多监控和通信设备,而这些设备没有合适的电源,电流互感器取电可以解决这些监控通信设备的供电问题。采用电流互感器从高压大电流的输电线路上感应出电能,从互感器二次侧线圈输出,经过整流、滤波、稳压等环节,可以给负载供电。现有的电流互感器取电装置往往采用不可控整流电路和部分可控整流电路,这些电路工作时会对电网造成一定的谐波影响,如果大量类似的设备同时工作,对电网造成的谐波需要进行抑制。当一次侧输电线路电流较小时,现有的电流互感器取电装置往往输出功率不足,当一次侧输电线路电流较大时,现有的电流互感器取电装置往往输出功率过大,需要采用泄放电路释放过多的能量,引起装置发热等问题。有文献提出在电流互感器取电装置中采用蓄电池或超级电容进行储能,当电流互感器取电装置输出功率过大时,蓄电池或超级电容储存能量,当电流互感器取电装置输出功率过小时,蓄电池或超级电容释放能量,但这些文献只是定性的进行了分析,且电流互感器的控制电路和蓄电池的控制电路没有有机结合,存在一定的冗余性。
发明内容
本发明的目的是克服现有技术中存在的电路综合性能较差、存在冗余的问题,提供了一种优化电路、提高综合性能的应用于电流互感器取电的储能系统及其控制方法。
为实现以上目的,本发明的技术解决方案是:
一种应用于电流互感器取电的储能系统,所述控制方法基于电流互感器取电的储能系统,所述储能系统一端连接电流互感器,另一端连接负载,所述储能系统包括: AC-DC变换器、DC-DC变换器和蓄电池,所述电流互感器的一次侧安装于电网中,所述电流互感器的二次侧输出正极与AC-DC变换器的交流侧输入正极相连接,所述电流互感器的二次侧输出负极与AC-DC变换器的交流侧输入负极相连接,所述AC-DC变换器的直流侧输出正极分别与DC-DC变换器的输出正极和负载正极相连接,所述AC-DC变换器的直流侧输出负极分别与DC-DC变换器的输出负极和负载的负极相连接,所述DC-DC变换器的输入正极与蓄电池的正极相连接,所述DC-DC变换器的输入负极与蓄电池的负极相连接;所述AC-DC变换器的主电路为单相全桥电路,所述DC-DC变换器的主电路为同步整流双向buck电路。
所述控制方法包括如下步骤:
步骤1,所述DC-DC变换器采用对输出电压vo的恒压控制;AC-DC变换器采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,使Z为容性阻抗,将Z等效成一只电容并联一只电阻,其中电容的阻抗为ZC,电阻的阻值为R,令,其中,ω为电流互感器一次侧电流i1的角频率,Lm为电流互感器二次侧励磁电感,Lm通过手工测量得到;电路启动时,令R=0,由下式可以计算出Z的设定值Zset,对AC-DC变换器进行控制,使其输入端口等效阻抗Z=Zset
   (1);
步骤2,用ib表示蓄电池的充电电流,ub表示蓄电池的端电压, ibM表示蓄电池允许的最大充电电流,ubM表示蓄电池允许的最大端电压;用V2表示电流互感器二次侧电压的有效值,用I2表示电流互感器二次侧电流的有效值, V2M表示电流互感器二次侧允许的最大工作电压的有效值,用I2M表示电流互感器二次侧允许的最大工作电流的有效值;系统以设定的测量周期,测量实时的ib、ub、V2、I2数据,判断以下关系是否满足:
     (2);
     (3);
     (4);
    (5);
步骤3,若步骤2中的四个不等式均满足,则将电阻R增加1个步进值;若步骤2中的四个不等式有任何一个不满足,则将电阻R减少1个步进值;
步骤4,根据步骤3中得到的R的值,由式(1)可以计算出Z的设定值Zset,对AC-DC变换器进行控制,使其输入端口等效阻抗Z=Zset,跳转到步骤2,循环执行算法。
所述AC-DC变换器采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,其控制方法如下:测量交流侧输入电流,该电流即电流互感器的二次侧输出电流;AC-DC变换器的交流侧输入阻抗的给定值为Zset,根据,可以计算出AC-DC变换器的交流侧输入电压的给定值,即可以得到AC-DC变换器的交流侧输入电压的有效值给定值V2set和相位给定值;对AC-DC变换器采用SPWM控制,SPWM控制中参考正弦波信号的有效值和相位分别为Vs;检测AC-DC变换器交流侧电压的有效值V2和相位,按照以下式子对Vs进行控制:
           (6);
   (7);
      (8);
           (9);
  (10);
     (11);
其中,△V2为V2的误差,KP、KI分别为PID控制中的比例系数和积分系数,为V2的误差累积和,Vs(n)为当前时刻参考正弦波信号的有效值,Vs(n-1)为上一采样时刻参考正弦波信号的有效值;的误差, 分别为PID控制中的比例系数和积分系数,的误差累积和,为当前时刻参考正弦波信号的相位,为上一采样时刻参考正弦波信号的相位。
所述DC-DC变换器采用对输出电压vo的恒压控制,其控制方法如下:DC-DC变换器输出电压的给定值为voset,检测DC-DC变换器的输出电压vo,按照以下式子进行控制:
            (12);
   (13);
       (14);
其中,△vo为vo的误差,KoP、KoI分别为PID控制中的比例系数和积分系数,为vo的误差累积和,D(n)为当前时刻的PWM信号的占空比,D(n-1)为上一采样时刻PWM信号的占空比。
与现有技术相比,本发明的有益效果为:
1、本发明在一种应用于电流互感器取电的储能系统中将电流互感器的控制电路和蓄电池的控制电路有机结合起来,利用一只DC-DC变换器和一只AC-DC变换器将电流互感器、蓄电池和负载连接起来,巧妙的在DC-DC变换器和AC-DC变换器上实现了电流互感器励磁电感的感性无功补偿、电流互感器输出有功功率的调控、蓄电池充电电压电流的控制、负载恒压控制等功能,整个电路简洁高效,性价比高。
2、本发明一种应用于电流互感器取电的储能系统中电流互感器励磁电感的感性无功需要进行补偿,使其具有纯电阻负载的特性,现有技术一般采用并联电容的方法进行补偿,但电容的容值参数有较大的分散性,且不便于连续调节,且电容老化后,电容容值会衰减,使得无功补偿不够准确,本发明采用AC-DC变换器模拟出一个等效电容进行补偿,AC-DC变换器的容值可以连续调节,且不会老化,因此,无功补偿精度很高;在对无功进行补偿时,不需要在电压很高的一次侧增加测量用的电流互感器,简化了电路、降低了成本、减小了体积;同时由于本申请对无功进行补偿,能够有效减小电网侧谐波。
3、本发明一种应用于电流互感器取电的储能系统的控制方法定量分析了电流互感器输出最大有功功率的约束条件,据此设计的算法,能在满足约束条件的情况下,将电流互感器输出的有功功率调节到最大,从而在相同负载条件下,使用更小尺寸的取电用电流互感器,可以降低成本,减小产品的体积。
4、本发明一种应用于电流互感器取电的储能系统的控制方法采用AC-DC变换器模拟出一个等效电阻对电流互感器输出的有功功率大小进行灵活调节,因此,在一次侧电流过大时,不需要通常被使用的泄放电路去泄放多余的功率,避免了装置发热,提高了电能的利用率,减小了设备的整体体积和降低了成本。
附图说明
图1是本发明储能系统的控制电路原理简图。
图2是本发明储能系统连接电流互感器和负载后的原理图。
图3是图2中电流互感器示意图。
图4是图2中电流互感器的等效模型原理图。
图5是图4中电流互感器一次侧电流折算到二次侧后的等效模型原理图。
图6是图5中电流互感器模型连接AC-DC变换器交流侧输入等效阻抗后的原理图。
图7是图2中AC-DC变换器交流侧输入等效阻抗等效成电容并联电阻的原理图。
图8是图2中AC-DC变换器主电路单相全桥电路的原理图。
图9是图2中DC-DC变换器主电路同步整流双向buck电路的原理图。
图中:电流互感器1、AC-DC变换器2、DC-DC变换器3、蓄电池4、负载5。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
在应用中,电流互感器二次侧输出正极接AC-DC变换器交流侧输入正极,电流互感器二次侧输出负极接AC-DC变换器交流侧输入负极,AC-DC变换器直流侧输出正极接DC-DC变换器输出正极和负载Ro正极,AC-DC变换器直流侧输出负极接DC-DC变换器输出负极和负载Ro负极,DC-DC变换器输入正极接蓄电池正极,DC-DC变换器输入负极接蓄电池负极,如图2。
本发明所提的一种应用于电流互感器取电的储能系统在硬件上由AC-DC变换器、DC-DC变换器和蓄电池构成。其中AC-DC变换器的主电路采用单相全桥电路,如图8。DC-DC变换器的主电路采用同步整流双向buck电路,如图9。控制电路采用以单片机STM32F103C8构成的电路,驱动电路采用半桥驱动芯片IR2104,二次侧交流电压v2和电流i2的测量采用微型测量互感器,直流电流测量采用INA225芯片。
参见图1至图8,一种应用于电流互感器取电的储能系统,所述控制方法基于电流互感器取电的储能系统,所述储能系统一端连接电流互感器1,另一端连接负载5,所述储能系统包括: AC-DC变换器2、DC-DC变换器3和蓄电池4,所述电流互感器1的一次侧安装于电网中,所述电流互感器1的二次侧输出正极与AC-DC变换器2的交流侧输入正极相连接,所述电流互感器1的二次侧输出负极与AC-DC变换器2的交流侧输入负极相连接,所述AC-DC变换器2的直流侧输出正极分别与DC-DC变换器3的输出正极和负载5正极相连接,所述AC-DC变换器2的直流侧输出负极分别与DC-DC变换器3的输出负极和负载5的负极相连接,所述DC-DC变换器3的输入正极与蓄电池4的正极相连接,所述DC-DC变换器2的输入负极与蓄电池4的负极相连接;所述AC-DC变换器2的主电路为单相全桥电路,所述DC-DC变换器3的主电路为同步整流双向buck电路。
一种应用于电流互感器取电的储能系统的控制方法,包括如下步骤:
步骤1,所述DC-DC变换器3采用对输出电压vo的恒压控制;AC-DC变换器2采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,使Z为容性阻抗,将Z等效成一只电容并联一只电阻,其中电容的阻抗为ZC,电阻的阻值为R,令,其中,ω为电流互感器一次侧电流i1的角频率,Lm为电流互感器二次侧励磁电感,Lm通过手工测量得到;电路启动时,令R=0,由下式可以计算出Z的设定值Zset,对AC-DC变换器2进行控制,使其输入端口等效阻抗Z=Zset
   (1);
步骤2,用ib表示蓄电池的充电电流,ub表示蓄电池的端电压, ibM表示蓄电池允许的最大充电电流,ubM表示蓄电池允许的最大端电压;用V2表示电流互感器二次侧电压的有效值,用I2表示电流互感器二次侧电流的有效值, V2M表示电流互感器二次侧允许的最大工作电压的有效值,用I2M表示电流互感器二次侧允许的最大工作电流的有效值;系统以设定的测量周期,测量实时的ib、ub、V2、I2数据,判断以下关系是否满足:
     (2);
     (3);
     (4);
    (5);
步骤3,若步骤2中的四个不等式均满足,则将电阻R增加1个步进值;若步骤2中的四个不等式有任何一个不满足,则将电阻R减少1个步进值;
步骤4,根据步骤3中得到的R的值,由式(1)可以计算出Z的设定值Zset,对AC-DC变换器2进行控制,使其输入端口等效阻抗Z=Zset,跳转到步骤2,循环执行算法。
所述AC-DC变换器2采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,其控制方法如下:测量交流侧输入电流,该电流即电流互感器1的二次侧输出电流;AC-DC变换器2的交流侧输入阻抗的给定值为Zset,根据,可以计算出AC-DC变换器2的交流侧输入电压的给定值,即可以得到AC-DC变换器2的交流侧输入电压的有效值给定值V2set和相位给定值;对AC-DC变换器2采用SPWM控制,SPWM控制中参考正弦波信号的有效值和相位分别为Vs;检测AC-DC变换器交流侧电压的有效值V2和相位,按照以下式子对Vs进行控制:
           (6);
   (7);
      (8);
           (9);
  (10);
     (11);
其中,△V2为V2的误差,KP、KI分别为PID控制中的比例系数和积分系数,为V2的误差累积和,Vs(n)为当前时刻参考正弦波信号的有效值,Vs(n-1)为上一采样时刻参考正弦波信号的有效值;的误差, 分别为PID控制中的比例系数和积分系数,的误差累积和,为当前时刻参考正弦波信号的相位,为上一采样时刻参考正弦波信号的相位。
所述DC-DC变换器3采用对输出电压vo的恒压控制,其控制方法如下:DC-DC变换器3输出电压的给定值为voset,检测DC-DC变换器3的输出电压vo,按照以下式子进行控制:
            (12);
   (13);
       (14);
其中,△vo为vo的误差,KoP、KoI分别为PID控制中的比例系数和积分系数,为vo的误差累积和,D(n)为当前时刻的PWM信号的占空比,D(n-1)为上一采样时刻PWM信号的占空比。
原理说明:由于本发明的电路使用的电路环境不同,造成控制方法中的采样周期需要根据实际使用需求设定。
实施例1:
为了便于理解本发明的技术方案,先叙述一下本发明的技术原理中对电流互感器1输出有功功率进行调控的原理。
本发明的技术原理中对电流互感器输出有功功率进行调控的原理:
电流互感器1一次侧线圈匝数为1, 电流互感器1二次侧线圈匝数为N2,忽略内阻和漏感,可以等效成1个理想变压器和1只励磁电感Lm构成的模型,如图4。将理想变压器一次侧的电流折算到二次侧,电流互感器1可以等效成1个电流源并联1只励磁电感的模型,如图5。
本发明所提的储能系统及其控制电路由AC-DC变换器2、DC-DC变换器3和蓄电池4构成,如图1。在应用中,本发明所提的储能系统及其控制电路的AC-DC变换器2交流侧的输入端口与电流互感器1二次侧的输出端口相连,本发明所提的储能系统及其控制电路的DC-DC变换器3直流侧的输出端口与负载Ro相连,如图2。
本发明所提的储能系统及其控制电路从AC-DC变换器2交流侧输入端口的等效阻抗为Z,将电流互感器模型与等效阻抗Z连接,如图6。采用相量分析法,ω为一次侧电流i1的角频率,可得:
           (1);
           (2);
Z为容性负载,将Z等效成一只电容并联一只电阻,其中电容的阻抗为ZC,电阻的阻值为R,如图7:
用Z2表示电流互感器1二次侧的总等效阻抗,则Z2为励磁电感Lm的阻抗与阻抗Z的并联阻抗。Z需要抵消由于励磁电感Lm产生的感性阻抗,使电流互感器1二次侧的总等效阻抗Z2为纯电阻性负载。因此,有:
                             (3);
        (4);
此时,电流互感器二次侧的总等效阻抗Z2为Z2=R。
此时,电流互感器输出的有功功率P2为:
                                  (5);
由式(5)可知,当电流互感器1一次侧电流有效值I1和二次侧线圈匝数N2一定时,电流互感器1输出的有功功率P2由电流互感器二次侧的总等效阻抗Z2即电阻R决定,R越大,输出的有功功率P2越大。但R有上限,R的上限由电流互感器1二次侧允许的最大工作电压和最大工作电流决定。用V2M表示电流互感器二次侧允许的最大工作电压的有效值,用I2M表示电流互感器二次侧允许的最大工作电流的有效值。
由式(1)、(4)可得:
                    (6);
由式(2)、(4)可得:
      (7);
在正常工作时,有:
                    (8);
                    (9);
由式(6)、(8)可得:
                 (10);
由式(7)、(9)可得:
        (11);
由式(10)、(11)可得:
1)当  时;
              (12);
此时,电流互感器输出的有功功率P2的最大值为:
          (13);
2)当 时;
        (14);
此时,电流互感器输出的有功功率P2的最大值为:
   (15);
由上述对电流互感器输出有功功率进行调控的原理可知:只需使本发明所提的储能系统及其控制电路从AC-DC变换器交流侧输入端口的等效阻抗Z满足式(4),即可使电流互感器二次侧的总等效阻抗Z2为纯电阻性负载,此时,Z2=R,且此时,电流互感器输出的有功功率P2满足式(5)。当电流互感器一次侧电流有效值I1和二次侧线圈匝数N2一定时,电流互感器输出的有功功率P2由电阻R决定,R越大,输出的有功功率P2越大。R的上限由电流互感器二次侧允许的最大工作电压V2M和最大工作电流I2M决定。
本发明所提的一种应用于电流互感器取电的储能系统,所述储能系统一端连接电流互感器1,另一端连接负载5,所述储能系统包括:AC-DC变换器2、DC-DC变换器3和蓄电池4,如图1,其连接关系如下:所述电流互感器1的一次侧安装于电网中,电流互感器1二次侧输出正极接AC-DC变换器2交流侧输入正极,电流互感器1二次侧输出负极接AC-DC变换器2交流侧输入负极,AC-DC变换器2直流侧输出正极接DC-DC变换器3输出正极和负载5正极,AC-DC变换器2直流侧输出负极接DC-DC变换器3输出负极和负载5负极,DC-DC变换器3输入正极接蓄电池4正极,DC-DC变换器3输入负极接蓄电池4负极。其中AC-DC变换器2的主电路采用单相全桥电路,DC-DC变换器3的主电路采用同步整流双向buck电路。
本发明所提的一种应用于电流互感器取电的储能系统采用如下控制方法:
步骤1,本发明所提电路中的DC-DC变换器3采用对输出电压vo的恒压控制;AC-DC变换器2采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,使Z为容性负载,将Z等效成1只电容并联1只电阻,其中电容的阻抗为ZC,电阻的阻值为R,令,其中,ω为一次侧电流i1的角频率,Lm为电流互感器1二次侧励磁电感,Lm可通过手工测量得到。电路启动时,令R=0,由式(4)可以计算出Z的设定值Zset,对AC-DC变换器进行控制,使其输入端口等效阻抗Z=Zset
步骤2,用ib表示蓄电池的充电电流,ub表示蓄电池的端电压, ibM表示蓄电池允许的最大充电电流,ubM表示蓄电池允许的最大端电压;用V2表示电流互感器二次侧电压的有效值,用I2表示电流互感器二次侧电流的有效值, V2M表示电流互感器二次侧允许的最大工作电压的有效值,用I2M表示电流互感器二次侧允许的最大工作电流的有效值;
系统以设定的测量周期,测量实时的ib、ub、V2、I2数据,判断以下关系是否满足:
    (16);
    (17);
     (18);
    (19);
步骤3,若步骤2中的四个不等式均满足,则将电阻R增加1个步进值;若步骤2中的四个不等式有任何一个不满足,则将电阻R减少1个步进值;
步骤4,根据步骤3中得到的R的值,由式(4)可以计算出Z的设定值Zset,对AC-DC变换器进行控制,使其输入端口等效阻抗Z=Zset,跳转到步骤2,循环执行算法。
本发明所提电路中的AC-DC变换器2采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,其控制方法如下:测量交流侧输入电流,该电流即电流互感器1二次侧输出电流。AC-DC变换器2交流侧输入阻抗的给定值为Zset,根据,可以计算出AC-DC变换器2的交流侧输入电压的给定值,即可以得到AC-DC变换器2的交流侧输入电压的有效值给定值V2set和相位给定值;对AC-DC变换器2采用SPWM控制,SPWM控制中参考正弦波信号的有效值和相位分别为Vs;检测AC-DC变换器交流侧电压的有效值V2和相位,按照以下式子对Vs进行控制:
               (20);
       (21);
          (22);
               (23);
     (24);
         (25);
其中,△V2为V2的误差,KP、KI分别为PID控制中的比例系数和积分系数,为V2的误差累积和,Vs(n)为当前时刻参考正弦波信号的有效值,Vs(n-1)为上一采样时刻参考正弦波信号的有效值;的误差, 分别为PID控制中的比例系数和积分系数,的误差累积和,为当前时刻参考正弦波信号的相位,为上一采样时刻参考正弦波信号的相位。
所述DC-DC变换器3采用对输出电压vo的恒压控制,其控制方法如下:DC-DC变换器3输出电压的给定值为voset,检测DC-DC变换器3的输出电压vo,按照以下式子进行控制:
              (26);
     (27);
         (28);
其中,△vo为vo的误差,KoP、KoI分别为PID控制中的比例系数和积分系数,为vo的误差累积和,D(n)为当前时刻的PWM信号的占空比,D(n-1)为上一采样时刻PWM信号的占空比。

Claims (4)

1.一种应用于电流互感器取电的储能系统,其特征在于:
所述储能系统一端连接电流互感器(1),另一端连接负载(5),所述储能系统包括: AC-DC变换器(2)、DC-DC变换器(3)和蓄电池(4),所述电流互感器(1)的一次侧安装于电网中,所述电流互感器(1)的二次侧输出正极与AC-DC变换器(2)的交流侧输入正极相连接,所述电流互感器(1)的二次侧输出负极与AC-DC变换器(2)的交流侧输入负极相连接,所述AC-DC变换器(2)的直流侧输出正极分别与DC-DC变换器(3)的输出正极和负载(5)正极相连接,所述AC-DC变换器(2)的直流侧输出负极分别与DC-DC变换器(3)的输出负极和负载(5)的负极相连接,所述DC-DC变换器(3)的输入正极与蓄电池(4)的正极相连接,所述DC-DC变换器(2)的输入负极与蓄电池(4)的负极相连接;所述AC-DC变换器(2)的主电路为单相全桥电路,所述DC-DC变换器(3)的主电路为同步整流双向buck电路。
2.一种权利要求1所述的应用于电流互感器取电的储能系统的控制方法,其特征在于:
所述控制方法包括如下步骤:
步骤1,所述DC-DC变换器(3)采用对输出电压vo的恒压控制;AC-DC变换器(2)采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,使Z为容性阻抗,将Z等效成一只电容并联一只电阻,其中电容的阻抗为ZC,电阻的阻值为R,令,其中,ω为电流互感器一次侧电流i1的角频率,Lm为电流互感器二次侧励磁电感,Lm通过手工测量得到;电路启动时,令R=0,由下式可以计算出Z的设定值Zset,对AC-DC变换器(2)进行控制,使其输入端口等效阻抗Z=Zset
 (1);
步骤2,用ib表示蓄电池的充电电流,ub表示蓄电池的端电压, ibM表示蓄电池允许的最大充电电流,ubM表示蓄电池允许的最大端电压;用V2表示电流互感器二次侧电压的有效值,用I2表示电流互感器二次侧电流的有效值, V2M表示电流互感器二次侧允许的最大工作电压的有效值,用I2M表示电流互感器二次侧允许的最大工作电流的有效值;系统以设定的测量周期,测量实时的ib、ub、V2、I2数据,判断以下关系是否满足:
 (2);
 (3);
 (4);
 (5);
步骤3,若步骤2中的四个不等式均满足,则将电阻R增加1个步进值;若步骤2中的四个不等式有任何一个不满足,则将电阻R减少1个步进值;
步骤4,根据步骤3中得到的R的值,由式(1)可以计算出Z的设定值Zset,对AC-DC变换器(2)进行控制,使其输入端口等效阻抗Z=Zset,跳转到步骤2,循环执行算法。
3.根据权利要求2所述的一种应用于电流互感器取电的储能系统的控制方法,其特征在于:
所述AC-DC变换器(2)采用对交流侧的输入端口等效阻抗Z的恒阻抗控制,其控制方法如下:测量交流侧输入电流,该电流即电流互感器(1)的二次侧输出电流;AC-DC变换器(2)的交流侧输入阻抗的给定值为Zset,根据,可以计算出AC-DC变换器(2)的交流侧输入电压的给定值,即可以得到AC-DC变换器(2)的交流侧输入电压的有效值给定值V2set和相位给定值;对AC-DC变换器(2)采用SPWM控制,SPWM控制中参考正弦波信号的有效值和相位分别为Vs;检测AC-DC变换器交流侧电压的有效值V2和相位,按照以下式子对Vs进行控制:
           (6);
   (7);
      (8);
           (9);
  (10);
     (11);
其中,△V2为V2的误差,KP、KI分别为PID控制中的比例系数和积分系数,为V2的误差累积和,Vs(n)为当前时刻参考正弦波信号的有效值,Vs(n-1)为上一采样时刻参考正弦波信号的有效值;的误差, 分别为PID控制中的比例系数和积分系数,的误差累积和,为当前时刻参考正弦波信号的相位,为上一采样时刻参考正弦波信号的相位。
4.根据权利要求2所述的一种应用于电流互感器取电的储能系统的控制方法,其特征在于:
所述DC-DC变换器(3)采用对输出电压vo的恒压控制,其控制方法如下:DC-DC变换器(3)输出电压的给定值为voset,检测DC-DC变换器(3)的输出电压vo,按照以下式子进行控制:
            (12);
   (13);
       (14);
其中,△vo为vo的误差,KoP、KoI分别为PID控制中的比例系数和积分系数,为vo的误差累积和,D(n)为当前时刻的PWM信号的占空比,D(n-1)为上一采样时刻PWM信号的占空比。
CN202310290416.0A 2023-03-23 2023-03-23 一种应用于电流互感器取电的储能系统及其控制方法 Active CN115995875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310290416.0A CN115995875B (zh) 2023-03-23 2023-03-23 一种应用于电流互感器取电的储能系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310290416.0A CN115995875B (zh) 2023-03-23 2023-03-23 一种应用于电流互感器取电的储能系统及其控制方法

Publications (2)

Publication Number Publication Date
CN115995875A true CN115995875A (zh) 2023-04-21
CN115995875B CN115995875B (zh) 2023-06-23

Family

ID=85995358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310290416.0A Active CN115995875B (zh) 2023-03-23 2023-03-23 一种应用于电流互感器取电的储能系统及其控制方法

Country Status (1)

Country Link
CN (1) CN115995875B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038612A1 (en) * 2001-08-21 2003-02-27 Kutkut Nasser H. High voltage battery charger
CN101689813A (zh) * 2007-06-28 2010-03-31 苹果公司 用于阻抗稳定的系统和方法
CN202334010U (zh) * 2011-11-10 2012-07-11 程顺 一种高压取电双超级电容储能的电源
CN203747501U (zh) * 2014-03-21 2014-07-30 河南理工大学 矿用本安型直流不间断电源
CN104598052A (zh) * 2014-09-23 2015-05-06 华强云投资控股有限公司 一种无线充电电磁笔及其系统
WO2015083578A1 (ja) * 2013-12-03 2015-06-11 株式会社 豊田自動織機 非接触電力伝送装置及び受電機器
JP2016063726A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
CN106487101A (zh) * 2016-09-13 2017-03-08 中国农业大学 一种基于负载控制的电流互感器取能装置及方法
CN114239383A (zh) * 2021-11-23 2022-03-25 南方电网数字电网研究院有限公司 智能电量管理系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038612A1 (en) * 2001-08-21 2003-02-27 Kutkut Nasser H. High voltage battery charger
CN101689813A (zh) * 2007-06-28 2010-03-31 苹果公司 用于阻抗稳定的系统和方法
CN202334010U (zh) * 2011-11-10 2012-07-11 程顺 一种高压取电双超级电容储能的电源
WO2015083578A1 (ja) * 2013-12-03 2015-06-11 株式会社 豊田自動織機 非接触電力伝送装置及び受電機器
CN203747501U (zh) * 2014-03-21 2014-07-30 河南理工大学 矿用本安型直流不间断电源
JP2016063726A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
CN104598052A (zh) * 2014-09-23 2015-05-06 华强云投资控股有限公司 一种无线充电电磁笔及其系统
CN106487101A (zh) * 2016-09-13 2017-03-08 中国农业大学 一种基于负载控制的电流互感器取能装置及方法
CN114239383A (zh) * 2021-11-23 2022-03-25 南方电网数字电网研究院有限公司 智能电量管理系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZENG HANCHAO 等: ""A single-stage isolated charging/discharging DC-AC converter with second harmonic current suppression in distributed generation systems"", 《IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY》 *
鲁帆 等: "\"结合超级电容与锂电池的CT取能电源研究\"", 《电测与仪表》 *

Also Published As

Publication number Publication date
CN115995875B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Zhu et al. Output power stabilization for wireless power transfer system employing primary-side-only control
WO2020029312A1 (zh) 一种充电电路移相控制方法
Yang et al. Analysis and design of three-coil structure WPT system with constant output current and voltage for battery charging applications
CN107733245B (zh) 一种高效调幅恒高频电除尘电源电路
CN104375039B (zh) 一种隔离型直流变压器测试系统
CN109217687A (zh) 基于mmc的配电网电力电子变压器及其控制方法
CN106786485B (zh) 用于不平衡负载下直流微电网的电压脉动抑制方法
CN105048821A (zh) 提高全桥隔离dc-dc变换器输出电压动态响应的负载电流前馈控制方法
CN105305842B (zh) 具有功率因数校正功能的三相ac‑dc非接触供电系统
CN102291014A (zh) 交流斩波-全桥整流的ac-dc变换器
CN105305553A (zh) 一种在线式不间断电源及利用该电源的电能质量治理方法
CN106533152A (zh) 一种提高Boost三电平变换器PF的装置及方法
CN105375800A (zh) 一种微型逆变器的拓扑电路
CN104578820A (zh) 一种高功率密度交流大电流发生器
CN108418422A (zh) 兼容单相、三相输入的供电系统
CN205490225U (zh) 一种高频斩波隔离型双向ac/dc电路
CN106208268A (zh) 基于变初级参数的恒流恒压感应式无线充电系统
CN115995875B (zh) 一种应用于电流互感器取电的储能系统及其控制方法
CN106487234B (zh) 电流混合工作模式的反激变换器的输出功率控制方法
CN112421792A (zh) 一种无线充电系统及恒流/恒压充电优化的控制方法
CN201656537U (zh) 蓄电池充电器
CN208257661U (zh) 35kV振荡波系统的可控高压直流电源
CN108199409B (zh) 一种燃料电池发电系统的电流脉动抑制方法
US20230066489A1 (en) Hybrid optimized control for dc-dc converter
US20220231509A1 (en) Vehicle-grid-home power interface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant