CN115975832B - 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用 - Google Patents

甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用 Download PDF

Info

Publication number
CN115975832B
CN115975832B CN202211253734.1A CN202211253734A CN115975832B CN 115975832 B CN115975832 B CN 115975832B CN 202211253734 A CN202211253734 A CN 202211253734A CN 115975832 B CN115975832 B CN 115975832B
Authority
CN
China
Prior art keywords
formate dehydrogenase
strain
acetic acid
formic acid
microbial fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211253734.1A
Other languages
English (en)
Other versions
CN115975832A (zh
Inventor
袁文杰
杜聪
李益民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202211253734.1A priority Critical patent/CN115975832B/zh
Publication of CN115975832A publication Critical patent/CN115975832A/zh
Application granted granted Critical
Publication of CN115975832B publication Critical patent/CN115975832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/78Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Pseudomonas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05006Formate dehydrogenase-N (1.1.5.6)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用,属于生物技术领域。本发明利用氨基酸序列如SEQ ID NO.3所示的甲酸脱氢酶提高了微生物乙醇发酵菌株对纤维素水解液中甲酸和乙酸抗性的方法,在微生物中过表达甲酸脱氢酶,以提高甲酸脱氢酶活性,进而改善了甲酸和乙酸的抗性,在使用纤维素水解液作为底物进行发酵时,可免去发酵前脱毒的步骤,简化了工艺,节约了成本。

Description

甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和 乙酸抗性中的应用
技术领域
本发明属于生物技术领域,尤其涉及甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用。
背景技术
纤维素原料来源广泛、价格低廉,有效转化纤维素原料还有利于农村经济,被广泛研究为生产生物燃料和生物基化学品。木质纤维素原料需要进行预处理过程来获得微生物可直接利用的糖类,但是预处理之后会产生多种抑制物对细胞生长代谢有毒害作用,影响后续的发酵,抑制物主要包括:弱酸(甲酸和乙酸等)、呋喃类(糠醛和5-羟甲基糠醛等)、酚类化合物(香草醛和4-水杨酸等),预处理的方法不同,水解液中的抑制物含量也有所不同。
乙酸是纤维素水解液中含量最高的抑制物之一,浓度为1.0g/L~15.0g/L[Wei N,Enhanced biofuel production through coupled acetic acid and xyloseconsumption by engineered yeast[J].Nature Communication,2013,4:2580-2587.],其通过释放H+导致细胞内环境酸化,为了保持胞内环境稳定,细胞通过消耗ATP将乙酸排到胞外,造成能量损失致使细胞活性下降。乙酸的存在还会引起微生物细胞的氧化应激反应,产生大量ROS,引起细胞损伤。
甲酸在纤维素水解液中的浓度较低为1.4g/L左右,但是对酵母的毒性较乙酸强,甲酸pKa=3.75小于乙酸的pKa=4.75,且甲酸的分子更小更易于扩散,所以具有更强的毒性。由于胞内的pH较高,未解离的甲酸可以从培养基中扩散到整个质膜表面,从而降低胞质pH,影响细胞活性[Oshoma CE,Screening of Non-Saccharomyces cerevisiaeStrainsfor Tolerance to Formic Acid in BioethanolFermentation[J].PLoS One,2015,10(8),e0135626.]。所以提高微生物发酵菌株对纤维素水解液中主要抑制物(甲酸和乙酸)的耐受能力,对以纤维素水解液为底物生产的生物乙醇、生物油脂及其他生物基化学品,具有重要意义。
甲酸脱氢酶是通过催化甲酸的氧化产生二氧化碳,并产生还原性NADH和ATP,其是已知的,广泛的应用在腐胺的生成(专利申请号201780017515.4)、辅酶的还原(专利申请号201711230338.6)等反应中,但是对提高乙酸的胁迫能力方面,目前并无报道。
发明内容
为了解决上述技术问题,本发明提供了甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用。
为达上述目的,本发明采用如下的技术方案:
甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用,所述应用是通过在微生物发酵菌株中过表达氨基酸序列如SEQ ID NO.3所示的甲酸脱氢酶来实现的。
优选地,所述微生物发酵菌株选自大肠杆菌、毕赤酵母、运动假单胞菌、马克斯克鲁维酵母、假丝酵母或Spathaspora passalidarum。
更优选地,通过构建表达甲酸脱氢酶基因序列的重组表达载体,并转化至微生物发酵菌株中,实现微生物菌株过表达甲酸脱氢酶。
更优选地,所述表达载体选自天然或重组质粒、黏粒、病毒或噬菌体。
更优选地,利用序列如SEQ ID NO.1所示的上游引物和SEQ ID NO.2所示的下游引物PCR扩增序列SEQ ID NO.3对应的基因片段,后构建表达载体。
更优选地,所述PCR扩增条件为:98℃预变性5min;98℃15s,55℃15s,72℃60s,30循环;72℃延伸7min。
与现有技术相比,本发明具有如下有益效果:
本发明利用甲酸脱氢酶提高微生物乙醇发酵菌株对纤维素水解液中甲酸和乙酸抗性的方法。在微生物中过表达甲酸脱氢酶,提高甲酸脱氢酶活性,能够提高甲酸和乙酸的抗性,以便在使用纤维素水解液作为底物进行发酵时,免去发酵前脱毒的步骤,简化了工艺,节约了成本。
附图说明
实施例2中的图1A和图1B是在酿酒酵母中过表达甲酸脱氢酶后,重组菌株与对照经10倍浓度稀释后,在4g/L乙酸(图1A)和1g/L甲酸(图1B)的固体培养基中的生长情况比较。从结果可以看出,过表达甲酸脱氢酶,可显著提高乙酸的抗性,提高幅度为2个数量级。也可提高甲酸的抗性,提高幅度为1个数量级。
实施例3中的图2A和图2B是在酿酒酵母中过表达甲酸脱氢酶后,重组菌株与对照在4g/L乙酸的液体培养基中的葡萄糖消耗和生物量情况。从结果可以看出,过表达甲酸脱氢酶后,在较高浓度乙酸存在的情况下,重组菌的生长速度和消耗葡萄糖的速率都高于对照菌株。
实施例4中的图3A和图3B是在酿酒酵母中过表达甲酸脱氢酶后,重组菌株与对照在1g/L甲酸的液体培养基中的葡萄糖消耗和生物量情况。从结果可以看出,过表达甲酸脱氢酶后,在较高浓度甲酸存在的情况下,重组菌经过延迟期后,出现了生长和葡萄糖的消耗,但对照菌株在这种情况下被甲酸完全抑制并死亡。
具体实施方式
实施例1
本实施例提供菌株S.cerevisiae-FDH的构建过程,具体步骤如下:
1)以酿酒酵母模式菌株S288C的基因组为模板进行PCR扩增,获得Fdh基因片段,上下游引物核苷酸序列分别如SEQ ID NO.1,SEQ ID NO.2所示:
上游引物:attg cggccgct atgtcgaagggaaaggttttg(SEQ ID NO.1)
下游引物:acgcgc gtcgac ttatttcttctgtccataag(SEQ ID NO.2)
PCR扩增所用试剂盒为HS DNAPolymerase(Code No.:R010A),购于宝生物工程(大连)有限公司,PCR反应按照试剂盒说明书进行。
PCR扩增条件为:98℃预变性5min;98℃15s,55℃15s,72℃60s,30循环;72℃延伸7min;
2)获得的Fdh基因片段使用限制性核酸内切酶Not I和Sal I进行双酶切,再用连接酶进行连接到pRS424上(购于淼灵质粒平台),得到重组质粒pRS424-FDH;
3)将构建好的重组质粒pRS424-FDH转化入酿酒酵母S288C中,获得过表达甲酸脱氢酶的重组菌株S.cerevisiae-FDH;
筛选培养基为:SD-Trp培养基:YNB 6.7g/L,葡萄糖20g/L,不含Trp的氨基酸补充溶液。
其中,甲酸脱氢酶(Fdh)的氨基酸序列为(SEQ ID NO.3):
Mskgkvllvlyeggkhaeeqekllgcienelgirnfieeqgyelvttidkdpeptstvdrelkdaeivittpffpayisrnriaeapnlklcvtagvgsdhvdleaanerkitvtevtgsnvvsvaehvmatilvlirnyngghqqaingewdiagvakneydledkiistvgagrigyrvlerlvafnpkkllyydyqelpaeainrlneasklfngrgdivqrvekledmvaqsdvvtincplhkdsrglfnkklishmkdgaylvntargaicvaedvaeavksgklagyggdvwdkqpapkdhpwrtmdnkdhvgnamtvhisgtsldaqkryaqgvknilnsyfskkfdyrpqdiivqngsyatraygqkk。
实施例2
本实施例在含甲酸和乙酸的平板上进行生长情况的考察,具体过程如下:
1)活化培养基的制备:活化培养基:YNB 6.7g/L,葡萄糖10g/L,不含Trp的氨基酸补充溶液。
2)菌株的活化:取冰箱保藏的实施例1中制备的菌株S.cerevisiae-FDH和原始菌株S.cerevisiae S288C接种至活化培养基中,置于摇床中30℃,150rpm培养24h。
3)种子培养基的制备:种子培养基:YNB 6.7g/L,葡萄糖20g/L,不含Trp的氨基酸补充溶液。
4)步骤2)中取活化后的菌体转接至步骤3)中制备的种子培养基中,置于摇床中30℃,150rpm培养24h。
5)鉴别培养基得制备:鉴别培养基:YNB 6.7g/L,葡萄糖20g/L,琼脂粉20g/L,不含Trp的氨基酸补充溶液,甲酸1g/L或乙酸4g/L。
6)菌种经活化、种子扩大培养后,离心收集细胞,将收集细胞用适量的无菌水重悬,使各个菌种初始OD620保持一致(≈10.0)将收集的细胞10倍梯度稀释,取8μL的菌液点于鉴别平板上,待菌液晾干后,30℃倒置培养2-3d。
实验结果如图1A和图1B所示,在1g/L甲酸的固体培养基中,过表达了甲酸脱氢酶基因的S.cerevisiae-FDH较原始菌株生长情况更好,显示出更好的甲酸耐受能力;在4g/L乙酸的固体培养基中,重组菌株S.cerevisiae-FDH也表现出了更好的生长情况。以上实验结果说明,过表达甲酸脱氢酶基因后,重组菌株S.cerevisiae-FDH不仅提高了对甲酸的耐受能力,对乙酸的耐受能力也有明显提高。
实施例3
本实施例在含有乙酸的液体培养基中试验发酵情况,具体过程如下:
1)活化培养基:YNB 6.7g/L,葡萄糖10g/L,不含Trp的氨基酸补充溶液。
2)取冰箱保藏实施例1中制备的菌株S.cerevisiae-FDH和原始菌株接种至活化培养基中,置于摇床中30℃,150rpm培养24h。
3)种子培养基的制备:种子培养基:YNB 6.7g/L,葡萄糖20g/L,不含Trp的氨基酸补充溶液。
4)取活化后的菌体转接至步骤3)中制备的种子培养基中,置于摇床中30℃,150rpm培养24h-48h。
5)发酵培养基的制备:发酵培养基:YNB 6.7g/L,葡萄糖40g/L,不含Trp的氨基酸补充溶液,乙酸4g/L。
6)菌种经活化、种子扩大培养后,离心收集细胞,收集细胞接种至添加乙酸的发酵培养基中,接种量OD 620≈0.5,30℃,150rpm发酵72-96h,每12-24h取样。
发酵结果如图2A和图2B所示,在4g/L乙酸存在条件下,过表达了甲酸脱氢酶基因的S.cerevisiae-FDH较原始菌株的葡萄糖消耗更快,在发酵进行72h后,S.cerevisiae-FDH较原始菌株多消耗了3.6g/L葡萄糖,且菌株的生长更快,在24h生物量OD620较出发菌株提高了11%,实验结果说明过表达甲酸脱氢酶后菌株S.cerevisiae-FDH对乙酸的耐受能力增强有所增强。
实施例4
本实施例在含有甲酸的液体培养基中试验发酵情况,具体步骤如下:
本实施例采用与实施例3相同的方法进行种子培养与扩大培养,区别仅在于:所添加的抑制物为1g/L甲酸。
实验结果如图3A和图3B所示,原始菌株在甲酸存在的条件下,由于较强的抑制作用,发酵过程中并无葡萄糖消耗,且生物量在逐渐降低,而重组菌株S.cerevisiae-FDH在经过延滞期后,葡萄糖快速消耗,生物量也随着葡萄糖的消耗快速生长至OD620至0.83。以上实验结果说明,过表达甲酸脱氢酶后菌株的甲酸耐性明显增强。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (5)

1.甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用,其特征在于,所述微生物发酵菌株为酿酒酵母(Saccharomycescerevisiae)模式菌株S288C;所述应用是通过在微生物发酵菌株中过表达氨基酸序列如SEQ ID NO.3所示的甲酸脱氢酶来实现的。
2.根据权利要求1所述的应用,其特征在于,通过构建表达甲酸脱氢酶基因序列的重组表达载体,并转化至微生物发酵菌株中,实现微生物菌株过表达甲酸脱氢酶。
3.根据权利要求2所述的应用,其特征在于,所述表达载体选自天然或重组质粒。
4.根据权利要求3所述的应用,其特征在于,利用序列如SEQ ID NO.1所示的上游引物和SEQ ID NO.2所示的下游引物PCR扩增序列SEQ ID NO.3对应的基因片段,构建表达载体。
5.根据权利要求4所述的应用,其特征在于,所述PCR扩增条件为:98℃预变性5min;98℃15s,55℃15s,72℃60s,30循环;72℃延伸7min。
CN202211253734.1A 2020-03-11 2020-03-11 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用 Active CN115975832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211253734.1A CN115975832B (zh) 2020-03-11 2020-03-11 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211253734.1A CN115975832B (zh) 2020-03-11 2020-03-11 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用
CN202010166455.6A CN111394380A (zh) 2020-03-11 2020-03-11 一种利用甲酸脱氢酶提高纤维素水解液中甲酸和乙酸抗性的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202010166455.6A Division CN111394380A (zh) 2020-03-11 2020-03-11 一种利用甲酸脱氢酶提高纤维素水解液中甲酸和乙酸抗性的方法

Publications (2)

Publication Number Publication Date
CN115975832A CN115975832A (zh) 2023-04-18
CN115975832B true CN115975832B (zh) 2024-03-22

Family

ID=71427288

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211253734.1A Active CN115975832B (zh) 2020-03-11 2020-03-11 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用
CN202010166455.6A Pending CN111394380A (zh) 2020-03-11 2020-03-11 一种利用甲酸脱氢酶提高纤维素水解液中甲酸和乙酸抗性的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010166455.6A Pending CN111394380A (zh) 2020-03-11 2020-03-11 一种利用甲酸脱氢酶提高纤维素水解液中甲酸和乙酸抗性的方法

Country Status (1)

Country Link
CN (2) CN115975832B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322513A (zh) * 2020-10-19 2021-02-05 中国石油化工股份有限公司 一株耐乙酸和糠醛的发酵菌株及其构建方法
CN112280700B (zh) * 2020-10-19 2022-09-06 中国石油化工股份有限公司 一株耐乙酸和甲酸的发酵菌株及其构建方法
CN114540404B (zh) * 2022-02-28 2023-11-07 大连理工大学 一种乙醇发酵过程中二氧化碳原位固定的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154348A (zh) * 2015-08-05 2015-12-16 大连理工大学 一种提高酿酒酵母对纤维素水解液抑制物耐受性的方法
CN105602914A (zh) * 2016-02-01 2016-05-25 大连理工大学 一种来源于马克斯克鲁维酵母的烷基过氧化物还原酶和硫氧还蛋白还原酶及其应用
CN107299074A (zh) * 2017-08-30 2017-10-27 山东省科学院生态研究所 甲酸脱氢酶工程菌株的构建方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033097A1 (en) * 2011-08-29 2013-03-07 Gevo, Inc. Alteration of the nadh/nad+ ratio to increase flux through nadh-dependent pathways
EP3321368A3 (en) * 2011-11-30 2018-05-23 DSM IP Assets B.V. Yeast strains engineered to produce ethanol from acetic acid and glycerol
US20140256011A1 (en) * 2012-11-09 2014-09-11 Mascoma Corporation Method for Acetate Consumption During Ethanolic Fermentaion of Cellulosic Feedstocks
US9896702B2 (en) * 2014-06-16 2018-02-20 Invista North America S.A.R.L. Methods, reagents and cells for biosynthesizing compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154348A (zh) * 2015-08-05 2015-12-16 大连理工大学 一种提高酿酒酵母对纤维素水解液抑制物耐受性的方法
CN105602914A (zh) * 2016-02-01 2016-05-25 大连理工大学 一种来源于马克斯克鲁维酵母的烷基过氧化物还原酶和硫氧还蛋白还原酶及其应用
CN107299074A (zh) * 2017-08-30 2017-10-27 山东省科学院生态研究所 甲酸脱氢酶工程菌株的构建方法及应用

Also Published As

Publication number Publication date
CN111394380A (zh) 2020-07-10
CN115975832A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
Rudolf et al. A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce
Hernández et al. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production
CN115975832B (zh) 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用
CN102947440B (zh) 呈现增强的木质纤维素水解产物发酵的改良酵母菌株
Olsson et al. Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae
EP3222732B1 (en) Lignocellulosic simultaneous saccharification and fermentation method improved by utilizing surfactant
Liao et al. The significance of proline on lignocellulose-derived inhibitors tolerance in Clostridium acetobutylicum ATCC 824
CA2719280A1 (en) Novel ethanol-producing yeast
JP2011167096A (ja) バイオマスからのエタノールの生産方法
Wang et al. Comparison of process configurations for ethanol production from acid-and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression
Moshi et al. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol
US20230151348A1 (en) Application of mal33 gene deletion in improving tolerance of saccharomyces cerevisiae to inhibitors in the lignocellulose hydrolyzates
He et al. One-step utilization of non-detoxified pretreated lignocellulose for enhanced cellulolytic enzyme production using recombinant Trichoderma reesei RUT C30 carrying alcohol dehydrogenase and nicotinate phosphoribosyltransferase
Gao et al. Improving cellulosic ethanol fermentability of Zymomonas mobilis by overexpression of sodium ion tolerance gene ZMO0119
Olorunsogbon et al. Effects of Clostridium beijerinckii and Medium Modifications on Acetone–Butanol–Ethanol Production From Switchgrass
Germec et al. Kinetic modeling, sensitivity analysis, and techno-economic feasibility of ethanol fermentation from non-sterile carob extract-based media in Saccharomyces cerevisiae biofilm reactor under a repeated-batch fermentation process
Hoppert et al. Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam–exploded wheat straw hydrolysate
WO2009137804A1 (en) Yeast cells and mehtods for increasing ethanol production
CN112852649B (zh) 一株耐高温的生产纤维素乙醇的酿酒酵母菌株及其发酵应用
Yi et al. Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability
EP3234161B1 (en) Fermentation process with improved glycerol and acetic acid conversion
Hoppert et al. Synergistic effects of inhibitors and osmotic stress during high gravity bioethanol production from steam-exploded lignocellulosic feedstocks
US20220315886A1 (en) Methods for propagating microorganisms for fermentation & related methods & systems
CN112941097A (zh) 对木质纤维素来源抑制物耐受提高的耐热酵母菌株和应用
CN106480106B (zh) 一种利用微量通气提高菌株对抑制物抗性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant