CN115967256A - 一种基于改进桥臂电流预测的mmc低频运行控制方法 - Google Patents

一种基于改进桥臂电流预测的mmc低频运行控制方法 Download PDF

Info

Publication number
CN115967256A
CN115967256A CN202310008799.8A CN202310008799A CN115967256A CN 115967256 A CN115967256 A CN 115967256A CN 202310008799 A CN202310008799 A CN 202310008799A CN 115967256 A CN115967256 A CN 115967256A
Authority
CN
China
Prior art keywords
bridge arm
current
phase
voltage
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310008799.8A
Other languages
English (en)
Inventor
白志红
蒋守赞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310008799.8A priority Critical patent/CN115967256A/zh
Publication of CN115967256A publication Critical patent/CN115967256A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明公开了一种基于改进桥臂电流预测的MMC低频运行控制方法,属于电力电子设备低频运行时的控制方法领域。该方法将传统MPC算法离散模型中桥臂电流的预测量替换为最优参考值,从而直接得出桥臂电压的参考值,因此省略了目标函数的建立及滚动优化过程,大大减小了计算量。在此基础上,利用改进桥臂电流预测的方式注入高频环流,不仅可以兼顾系统多个控制目标的实现,还可以使系统控制器数量减少(即避免了传统的桥臂电流控制器)的情况下提高控制精度,达到无跟踪误差的目的,与此同时也实现了电容电压低频波动的显著抑制,相比于传统高频注入法效果更好。

Description

一种基于改进桥臂电流预测的MMC低频运行控制方法
技术领域
本发明涉及电力电子设备低频运行时的控制方法领域,具体涉及一种基于改进桥臂电流预测的MMC低频运行控制方法。
背景技术
随着电力电子技术的发展,在高压大功率领域,基于全控型电压源型逆变器的柔性直流输电技术得到广泛应用,但大多数逆变器结构复杂,不易扩展。2001年,德国的Marquardt等人提出了一种新型的模块化多电平变换器(MMC)。这种变换器具有模块化,可拓展性强,输出电压质量好,不需要笨重变压器等优势,被学者们认为是最具有潜力的柔性直流输电的电力电子拓扑之一。
MMC一般会通过DC-AC变换输出正弦电压电流,使得在输出的功率中有基波成分和二次谐波成分。根据输入输出功率守恒,可以推导出桥臂存在功率脉动,且会作用在子模块上,使得子模块电容电压在参考电压附近波动。而这种现象在中高压电机领域中会制约MMC的应用,由于电机多采用变频控制,电容电压的波动问题尤为严重,由此带来的电容器容量骤增、变换器成本升高及体积增大等后果都是不容忽视的问题。而目前抑制电容电压波动的方法主要有低频环流注入法和高频注入法等。
低频环流注入法可以抑制电压波动,但这种方法的本质是通过注入的低频环流来抑制上下桥臂电容电压波动中的共模成分,而电容电压波动中最主要的差模成分却并未得到抑制,因此其抑制波动的能力十分有限。高频注入法(专利申请号201911030745)通过在输出侧注入高频零序电压,桥臂中注入相同频率的高频环流的方法,建立功率传输通道,可以有效抑制电容电压波动。但在高频注入法中,由于高频环流注入部分需要利用PI调节等控制,参数设计复杂,且当注入波形非标准正弦时,如梯形波,会存在跟踪误差,电压波动的抑制效果也会有所影响。
MMC自身具有多个控制目标,包括输出电流控制、环流控制和子模块电容电压平衡等,又由于MMC是一个复杂的非线性系统,学者提出利用模型预测控制(Model PredictiveControl,MPC)对MMC进行多目标的控制。研究表明,将MPC算法应用于MMC的控制,不仅可以避免传统的PI、PR控制器,还能够实现多个目标的共同调节,从而控制系统设计更为简单。但是,由于传统MPC算法本身需要建立目标函数,进行滚动优化,所以不可避免地增大了计算量。
发明内容
基于上述背景,本发明提供了一种基于改进桥臂电流预测的MMC低频运行控制方法。该方法将传统MPC算法离散模型中桥臂电流的预测量替换为最优参考值,从而直接得出桥臂电压的参考值,因此省略了目标函数的建立及滚动优化过程,大大减小了计算量。在此基础上,利用改进桥臂电流预测的方式注入高频环流,不仅可以兼顾系统多个控制目标的实现,还可以使系统控制器数量减少(即避免了传统的桥臂电流控制器)的情况下提高控制精度,达到无跟踪误差的目的,与此同时也实现了电容电压低频波动的显著抑制,相比于传统高频注入法效果更好。
为了实现上述目的,本发明采用的技术方案如下:
一种基于改进桥臂电流预测的MMC低频运行控制方法,包括以下步骤:
(1)依据基尔霍夫定律,建立三相MMC拓扑的连续域数学模型;
(2)利用欧拉前向公式将三相MMC拓扑的连续域数学模型离散化,得到关于桥臂电流的离散域数学模型;
(3)将所述的离散域数学模型中桥臂电流预测值替换为最优参考值,得到关于MMC桥臂电压参考的计算公式;
(4)将高频零序电压引入到桥臂电流的离散域数学模型中,在步骤(3)所述的关于MMC桥臂电压参考的计算公式基础上得到注入高频电压后的桥臂电压参考的计算公式;
(5)通过输出电流、直流侧电流以及环流参考值以及各电流量之间的关系,得到桥臂电流的最优参考值,代入步骤(4)得到的注入高频电压后的桥臂电压参考的计算公式,得到桥臂电压参考值注入三相MMC拓扑,经合适的调制方法后实现MMC低频运行控制。
与现有技术相比,本发明具有以下有益效果:
(1)本发明采用直接预测最优桥臂电流的方法,充分利用了桥臂里的电流信息,相比于传统的模型预测控制,省略了选取目标函数以及滚动优化的复杂过程,计算量与子模块个数无关,大大减小了计算量。
(2)本发明利用桥臂电流预测的方式注入环流,无需PI、PR传统控制器的复杂结构,同时能够达到良好的跟踪效果。
(3)本发明采用桥臂电流预测的控制策略,在此基础上实现高频注入,能够达到比传统注入更好的波动抑制效果。
附图说明
图1为三相MMC电路拓扑;
图2为桥臂电流预测控制的总体框图;
图3为频率50Hz突变至10Hz时的电容电压波形(未注入高频);
图4为图3工况下的输出电流波形;
图5为图3工况下的桥臂电流跟踪波形;
图6为运行频率10Hz下高频注入后的子模块电压波形;
图7为频率渐变情况下的高频注入的子模块电压波形;
图8为图6工况下的输出电流波形。
具体实施方式
以下将结合附图和具体实施方式对本发明的技术方案进行详细说明。
图1所示为三相MMC的主拓扑图,三相MMC有6个桥臂,每个桥臂包含有N个子模块。其中直流母线电压为Udc,直流侧电流为idc,上桥臂电压和下桥臂电压分别为upj和unj(j=a,b,c),上桥臂电流和下桥臂电流分别为ipj和inj,桥臂环流的交流成分为izj,输出相电压为uj,输出相电流为ij,桥臂电感为L0,桥臂电阻为R0
图2所示为本发明提出的基于改进桥臂电流预测的MMC低频运行控制方法的框图,该控制方法包括功率外环控制、总体能量控制、桥臂电流预测控制以及子模块电压平衡控制四个部分。功率外环控制采用dq坐标系和瞬时功率理论,将功率的指令值和实时计算值比较,差值经过PI控制器,得到有功和无功电流分量;总体能量控制将Udc/N作为参考值,将三相所有子模块的电容电压平均值作为实时采样值,比较的差值送到PI调节器得到直流侧参考电流
Figure BDA0004036999660000031
再均分给各相,得到各相直流侧参考电流
Figure BDA0004036999660000032
桥臂电流预测控制是整个控制的核心,它将得到的输出电流、环流以及直流电流整合在一起,利用离散模型预测公式计算得到相应的桥臂电压参考值
Figure BDA0004036999660000033
子模块电压平衡控制是为了保证低频运行时桥臂内的子模块电容电压平衡,需要实时监测每一个子模块的电压uc(i),参考值为一相桥臂的子模块电压平均值
Figure BDA0004036999660000041
作差后结合桥臂电流的极性确定电压平衡信号ubal_ref(i)。
具体的,一种基于改进桥臂电流预测的MMC低频运行控制方法,包括以下步骤:
(1)对三相MMC拓扑中相关的系统参数物理量进行定义,并依据基尔霍夫定律,建立三相MMC拓扑的连续域数学模型;
(2)对于MMC的连续域数学模型,由于包含桥臂电流的微分,利用欧拉前向公式将其离散化,得到关于桥臂电流的离散域数学模型;
(3)将所述的离散域数学模型中桥臂电流预测值(k+1时刻的值)替换为最优参考值,得到关于MMC桥臂电压参考的计算公式。这样就可以利用适当的调制方法控制桥臂电压跟踪其需求值,进而得到桥臂电流的最优参考值;
(4)结合高频注入法,注入高频零序电压和高频环流。将高频零序电压引入到桥臂电流的离散域数学模型中,在步骤(3)所述的关于MMC桥臂电压参考的计算公式基础上得到注入高频电压后的桥臂电压参考的计算公式;
(5)通过输出电流、直流侧电流以及环流的参考值以及各电流量之间的关系得到桥臂电流的最优参考值,代入步骤(4)得到的注入高频电压后的桥臂电压参考的计算公式,得到桥臂电压参考值,最后通过适当的调制方法,实现MMC低频运行控制。
所述步骤(1)中,各物理量定义如下:
设直流母线电压为Udc,直流侧电流为idc上桥臂电压和下桥臂电压分别为upj和unj(j=a,b,c),上桥臂电流和下桥臂电流分别为ipj和inj,桥臂环流的交流成分为izj,输出相电压为uj,输出相电流为ij,桥臂电感为L0,桥臂电阻为R0
由基尔霍夫定律,建立MMC数学模型:
Figure BDA0004036999660000042
Figure BDA0004036999660000043
输出侧电流、桥臂电流及直流电流的关系式为:
ij=ipj-inj(3)
Figure BDA0004036999660000044
通过电流关系式可以推导出桥臂电流为:
Figure BDA0004036999660000051
所述步骤(2)中,为了得到MMC的离散数学模型,需要利用欧拉前向公式:
Figure BDA0004036999660000052
式中,x代表的是控制变量,k和k+1表示离散模型下的采样时刻,Ts表示控制步长。
因此,关于桥臂电流的离散模型可推导为:
Figure BDA0004036999660000053
Figure BDA0004036999660000054
式中,ipj(k+1)和inj(k+1)表示k+1时刻j相上下桥臂电流的预测值,Udc(k)和uj(k)分别是k时刻直流侧和j相交流侧的测量电压,upj(k)和unj(k)分别表示k时刻的上下桥臂电压,ipj(k)和inj(k)分别表示k时刻的j相上下桥臂电流,icj为j相桥臂环流。
所述步骤(3)中,通过将桥臂电流预测值替换为最优参考值,整理得到桥臂电压参考的计算公式:
Figure BDA0004036999660000055
Figure BDA0004036999660000056
由上可知,本发明中处理离散模型的方式与传统的模型预测控制策略(ModelPredictive Control,MPC)不同,传统MPC是需要设计控制变量的目标函数,通过离散模型正向预测各个控制变量的状态,并在每一个采样时刻选取最优的开关状态对开关管发出相应的脉冲指令,是一个滚动优化过程。本发明通过将预测值替换为参考值,可以直接计算出桥臂电压参考值,而不需要利用目标函数对所有开关状态进行判断之后得到最优的桥臂电压。在得到桥臂电压参考后,对应的开关状态即可通过合适的调制方法得到。
所述步骤(4)中,基于高频注入法的思想,在上下桥臂之间建立功率交换的通道,让两者的能量波动相互抵消,大幅度降低电容电压的波动。设注入的高频电压为uz=Uzsin(2πfht),Uz为高频电压的幅值,fh是高频电压的频率,则依据式(1)-(2),式(7)-(10),列出注入高频电压后桥臂电压的计算公式:
Figure BDA0004036999660000061
Figure BDA0004036999660000062
为了在桥臂之间建立功率通道,还需注入相对应的高频环流,根据式(5)可知,桥臂电流中包含直流电流、输出电流和环流各种成分,所以可通过设定桥臂电流的参考值来引入高频环流。
所述步骤(5)中,包括以下步骤:
步骤一:首先由上述分析可知,计算包含有各种电流成分的桥臂电流参考值是整个控制策略的关键。由式(5)得到桥臂电流参考的表达式:
Figure BDA0004036999660000063
其中*表示变量的参考值。
步骤二:对于输出电流的控制,从MMC外层整体控制的角度出发,选择控制交流侧的有功功率和无功功率来得到交流电流的参考值,即外环功率控制,需要采用常见的dq旋转坐标系。
依据瞬时功率理论得到,注入交流系统的瞬时有功功率和无功功率为:
Figure BDA0004036999660000064
式中ps,qs为有功和无功功率,ud,uq为dq坐标系下的相电压,id,iq为dq坐标系下的电流。
而由于稳态状况下,一般交流系统的电压d轴分量为相电压幅值,q轴分量为0,代入式(14)可得:
Figure BDA0004036999660000071
设给定的有功功率为P*,无功功率为Q*,得到dq坐标系下的交流电流参考值:
Figure BDA0004036999660000072
步骤三:对于各相直流电流参考值,可通过总体能量平衡控制得到。总体能量平衡是为了使得MMC三相所有的子模块电压的平均值稳定在电容电压的参考值附近。MMC的总体能量平衡可通过调节直流侧电流来控制,设直流侧电流为idc,因其为直流量,所以直接利用简单的PI控制器调节,计算公式为:
Figure BDA0004036999660000073
式中,N表示一个桥臂的子模块个数,Uc_avg表示MMC三相子模块的电容电压平均值,kp表示PI调节中的比例系数,ki表示PI调节中的积分系数。
由于三相MMC是完全对称结构,所以理论上三相桥臂的直流电流应相等,则有桥臂直流分量的参考值为
Figure BDA0004036999660000074
其中
Figure BDA0004036999660000075
表示j相桥臂直流分量的参考值。
步骤四:环流参考值在正常运行频率下通常设置为0,但为了抑制低频工况下的子模块电容电压波动,需要将环流的参考值设置为注入的高频环流,至此,根据桥臂电流的特征引入了高频环流的注入方法。
环流参考值的计算是基于高频注入法的思想,通过桥臂功率的成分,推导得出的。由MMC电压关系,可知:
Figure BDA0004036999660000076
结合式(3)-(4)得到上下桥臂的瞬时功率表达式:
Figure BDA0004036999660000077
假设桥臂环流中仅包含直流成分Idc,且输出的相电压为标准正弦波,电流滞后相位角
Figure BDA0004036999660000084
可以得到上下桥臂的功率:
Figure BDA0004036999660000081
式中,Uj表示j相输出相电压幅值,Ij表示j相输出电流幅值。
由式(21)看出,前两项即为桥臂功率的基频波动,为实现基频能量的抑制,得出高频注入法在上下桥臂之间的交换功率为:
Figure BDA0004036999660000082
在步骤(4)中已设定注入的高频零序电压表达式,将此表达式代入到式(22)并作简单处理,得环流表达式:
Figure BDA0004036999660000083
式中,uz表示注入的零序电压,ωh表示零序电压的角频率。
将注入环流与高频电压相乘,忽略其中的二倍频功率脉动,即得所需的基频功率,进一步的,若对式(23)进行积化和差,可以看到注入的环流实质上包含了两种频率成分,即fh±f。同时需要注意的是注入的三相环流相位差互为120°,这样环流就不会影响到直流侧,只在三相间流动。
为了验证本发明提出的控制策略抑制低频下电容电压波动的有效性,搭建了如图1所示的MMC仿真模型。仿真的主要参数为:桥臂子模块个数N为6,桥臂电阻为0.5Ω,桥臂电感为8mH,直流母线电压为3kV,子模块电容容值为2mF,子模块参考电压为500V,负载电阻为10Ω,负载电感为5mH,注入的高频电压频率为150Hz。
图3所示为未注入高频分量时,在0.5s,运行频率由50Hz突变至10Hz时的子模块电容电压波形,从图中看到电容电压的波动峰峰值由38V左右增大到了193V,造成了子模块电压的巨幅脉动。图4为动态过程下的输出电流波形,三相电流的THD在0.5%左右。图5是桥臂电流波形的实际值和参考值,可以观察到波形基本重合,跟踪效果良好。
图6所示为注入高频分量之后,运行频率10Hz下的子模块电容电压波形,其子模块电压波动由原来的193V减小到38V,波动幅度的百分比由38.6%降低到7.6%,已经达到频率为50Hz时的效果。
为了验证控制策略的动态特性,图7所示为基频频率从2Hz逐渐变为10Hz(公差为2Hz,每0.5s变化一次)的电容电压波形,在频率为2Hz时,波动峰峰值为97V左右,随着频率的升高,依次降低为66V、46V、39V、36V。尽管频率低至2Hz,波动值也可以保持在子模块电压基准值的20%附近,之后子模块电压波动也会明显下降。此外,此波形是单个桥臂所有子模块的电压,几乎完全重合,可以看到子模块的电压平衡效果良好。图8是此动态过程下的输出电流波形,由于注入高频分量,且基频频率较低,所以THD都在2.5%左右。
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于改进桥臂电流预测的MMC低频运行控制方法,其特征在于,包括以下步骤:
(1)依据基尔霍夫定律,建立三相MMC拓扑的连续域数学模型;
(2)利用欧拉前向公式将三相MMC拓扑的连续域数学模型离散化,得到关于桥臂电流的离散域数学模型;
(3)将所述的离散域数学模型中桥臂电流预测值替换为最优参考值,得到关于MMC桥臂电压参考的计算公式;(4)将高频零序电压引入到桥臂电流的离散域数学模型中,在步骤(3)所述的关于MMC桥臂电压参考的计算公式基础上得到注入高频电压后的桥臂电压参考的计算公式;
(5)通过输出电流、直流侧电流以及环流参考值以及各电流量之间的关系,得到桥臂电流的最优参考值,代入步骤(4)得到的注入高频电压后的桥臂电压参考的计算公式,得到桥臂电压参考值,通过调制后实现MMC低频运行控制。
2.根据权利要求1所述的一种基于改进桥臂电流预测的MMC低频运行控制方法,其特征在于,步骤(1)中,所述的三相MMC拓扑的连续域数学模型为:
Figure FDA0004036999650000011
Figure FDA0004036999650000012
输出侧电流、桥臂电流及直流电流的关系式为:
ij=ipj-inj
Figure FDA0004036999650000013
通过电流关系式,得到桥臂电流为:
Figure FDA0004036999650000014
式中,Udc为直流母线电压,L0为桥臂电感,R0为桥臂电阻,μpj和unj分别表示j相上下桥臂电压,ipj和inj分别表示j相上下桥臂电流,uj为j相输出相电压,ij为j相输出相电流,icj为j相桥臂环流,izj为j相桥臂环流的交流成分,idcj为j相直流电流,j=a,b,c分别表示三相。
3.根据权利要求2所述的一种基于改进桥臂电流预测的MMC低频运行控制方法,其特征在于,步骤(2)中,所述的离散域数学模型为:
Figure FDA0004036999650000021
Figure FDA0004036999650000022
式中,ipj(k+1)和inj(k+1)表示k+1时刻j相上下桥臂电流的预测值,Udc(k)和uj(k)分别是k时刻直流侧和j相交流侧的测量电压,upj(k)和unj(k)分别表示k时刻的j相上下桥臂电压,ipj(k)和inj(k)分别表示k时刻的j相上下桥臂电流,Ts表示控制步长。
4.根据权利要求1所述的一种基于改进桥臂电流预测的MMC低频运行控制方法,其特征在于,步骤(3)中,所述的关于MMC桥臂电压参考的计算公式为:
Figure FDA0004036999650000023
Figure FDA0004036999650000024
式中,
Figure FDA0004036999650000025
Figure FDA0004036999650000026
表示k+1时刻j相上下桥臂电流参考值,Udc(k)和uj(k)分别是k时刻直流侧和j相交流侧的测量电压,
Figure FDA0004036999650000027
Figure FDA0004036999650000028
分别表示k时刻的j相上下桥臂电压参考值,ipj(k)和inj(k)分别表示k时刻的j相上下桥臂电流,Ts表示控制步长,L0为桥臂电感,R0为桥臂电阻。
5.根据权利要求5所述的一种基于改进桥臂电流预测的MMC低频运行控制方法,其特征在于,步骤(4)中,所述的注入高频电压后的桥臂电压参考的计算公式为:
Figure FDA0004036999650000029
Figure FDA00040369996500000210
式中,uz(k)表示k时刻注入的高频电压,uz的表达式为:
uz=Uzsin(2μfht)
式中,Uz为高频电压的幅值,fh是高频电压的频率。
6.根据权利要求1所述的一种基于改进桥臂电流预测的MMC低频运行控制方法,其特征在于,步骤(5)中,包括以下步骤:
步骤(5.1):根据桥臂电流计算公式,得到桥臂电流参考的表达式为:
Figure FDA0004036999650000031
其中,
Figure FDA0004036999650000032
表示j相上下桥臂电流参考值,
Figure FDA0004036999650000033
表示j相输出相电流参考值,
Figure FDA0004036999650000034
表示j相桥臂环流的交流成分参考值,
Figure FDA0004036999650000035
表示j相直流侧电流,j=a,b,c分别表示三相;
步骤(5.2):通过外环功率控制,选择控制交流侧的有功功率和无功功率来得到交流电流参考值;依据瞬时功率理论,注入交流侧的瞬时有功功率和无功功率为:
Figure FDA0004036999650000036
式中,ps、qs分别为有功功率和无功功率,ud、uq分别为dq坐标系下的相电压,id、iq分别为dq坐标系下的电流;
稳态状况下,交流侧的电压d轴分量为相电压幅值,q轴分量为0,可得:
Figure FDA0004036999650000037
进一步得到dq坐标系下的交流电流参考值:
Figure FDA0004036999650000038
Figure FDA0004036999650000039
式中,P*为给定的有功功率,Q*为给定的无功功率;
将dq坐标系下的交流电流参考值经坐标变换后得到各相电流参考值
Figure FDA00040369996500000310
步骤(5.3):通过总体能量控制,得到各相直流电流参考值,计算公式为:
Figure FDA00040369996500000311
式中,N表示MMC拓扑中一个桥臂的子模块个数,Uc_avg表示MMC拓扑中三相子模块的电容电压平均值,Udc为直流母线电压,kp表示PI调节中的比例系数,ki表示PI调节中的积分系数;
由于三相MMC是完全对称结构,三相桥臂的直流电流应相等,则桥臂直流分量的参考值为
Figure FDA00040369996500000312
其中
Figure FDA00040369996500000313
表示j相桥臂直流分量的参考值,j=a,b,c分别表示三相;
步骤(5.4):将环流的参考值设置为注入的高频环流,首先由MMC电压关系和电流关系,得到上下桥臂的瞬时功率表达式:
Figure FDA0004036999650000041
假设桥臂环流中仅包含直流成分Idc,且输出的相电压为标准正弦波,电流滞后相位角
Figure FDA0004036999650000042
得到:
Figure FDA0004036999650000043
式中,ppj、pnj表示j相上下桥臂的瞬时功率,Uj表示j相输出相电压幅值,ηj表示j相输出电流的幅值,ω为角频率,
Figure FDA0004036999650000044
为相位,t为时间;
根据上下桥臂的瞬时功率表达式,得出高频注入法在上下桥臂之间的交换功率为:
Figure FDA0004036999650000045
环流表达式:
Figure FDA0004036999650000046
式中,uz表示注入的零序电压,ωh表示零序电压的角频率,Uz为高频电压的幅值。
CN202310008799.8A 2023-01-04 2023-01-04 一种基于改进桥臂电流预测的mmc低频运行控制方法 Pending CN115967256A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310008799.8A CN115967256A (zh) 2023-01-04 2023-01-04 一种基于改进桥臂电流预测的mmc低频运行控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310008799.8A CN115967256A (zh) 2023-01-04 2023-01-04 一种基于改进桥臂电流预测的mmc低频运行控制方法

Publications (1)

Publication Number Publication Date
CN115967256A true CN115967256A (zh) 2023-04-14

Family

ID=87359797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310008799.8A Pending CN115967256A (zh) 2023-01-04 2023-01-04 一种基于改进桥臂电流预测的mmc低频运行控制方法

Country Status (1)

Country Link
CN (1) CN115967256A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526911A (zh) * 2023-05-05 2023-08-01 兰州理工大学 一种中高压大容量fc-mmc型变频器低频运行控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116526911A (zh) * 2023-05-05 2023-08-01 兰州理工大学 一种中高压大容量fc-mmc型变频器低频运行控制方法
CN116526911B (zh) * 2023-05-05 2023-11-03 兰州理工大学 一种中高压大容量fc-mmc型变频器低频运行控制方法

Similar Documents

Publication Publication Date Title
Gao et al. A novel dual closed-loop control scheme based on repetitive control for grid-connected inverters with an LCL filter
Li et al. A modular multilevel converter type solid state transformer with internal model control method
Rathika et al. Fuzzy logic–based approach for adaptive hysteresis band and dc voltage control in shunt active filter
CN110212799B (zh) 用于抑制模块化多电平变换器环流的无源反步控制方法
CN107707142B (zh) 基于混合型模块化多电平换流器的低频模型预测控制方法
CN102223100A (zh) 基于修正比例谐振调节器的三相并网逆变器控制方法
CN114583702B (zh) Lcl型有源电力滤波器的并联电流控制系统及控制方法
CN112701720B (zh) 一种交流微网带恒功率负载的混合控制方法
CN111327213A (zh) 并联三相电压型pwm变流器中抑制零序环流的控制方法
CN106936157A (zh) 并网变流系统的控制方法和控制装置
CN113690889A (zh) 一种以新型多电平变流器改进有源电力滤波器的电力谐波治理方法
CN115967256A (zh) 一种基于改进桥臂电流预测的mmc低频运行控制方法
CN110266044B (zh) 一种基于储能变流器的微电网并网控制系统及方法
CN113394801A (zh) 一种铅酸蓄电池储能系统的功率控制方法
Routray et al. A robust fuzzy sliding mode control design for current source inverter based STATCOM application
CN108631624B (zh) 一种基于三维调制的级联h桥整流器及其控制方法
CN110649619A (zh) 一种模块化多电平有源电力滤波器滑模控制方法
Zhang et al. An improved robust model predictive and repetitive combined control for three-phase four-leg active power filters with fixed switching frequency
CN113241766B (zh) 三相四线制并网逆变器的变比组合式电流谐波治理方法
CN114928261A (zh) 三相五电平pwm整流器的模型预测及零序电压平衡控制方法
CN115065092A (zh) 单相并网变换器频率耦合调节控制方法
CN114069649A (zh) 一种基于负序电流和零序电压注入的级联式svg的直流侧电压平衡控制方法
Chen et al. The Research on Composite Control Strategy of Active Power Filter
CN114336660A (zh) 一种基于功角的upqc直接电流预测控制方法
Ma et al. Compensatory model predictive current control for modular multilevel converter with reduced computational complexity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination