CN115927757A - A method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones - Google Patents

A method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones Download PDF

Info

Publication number
CN115927757A
CN115927757A CN202211567418.1A CN202211567418A CN115927757A CN 115927757 A CN115927757 A CN 115927757A CN 202211567418 A CN202211567418 A CN 202211567418A CN 115927757 A CN115927757 A CN 115927757A
Authority
CN
China
Prior art keywords
pemv
primer
pcb301
fragments
inoculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211567418.1A
Other languages
Chinese (zh)
Inventor
陈小姣
陈泓霖
谢敏
兰平秀
谭冠林
李凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Agricultural University
Original Assignee
Yunnan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Agricultural University filed Critical Yunnan Agricultural University
Priority to CN202211567418.1A priority Critical patent/CN115927757A/en
Publication of CN115927757A publication Critical patent/CN115927757A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种基于PEMV‑1和PEMV‑2侵染性克隆高效筛选抗病毒种质资源的方法;包括:农杆菌浸根步骤。本发明具有以下优点:1、本发明方法操作简便,具有比人工摩擦接种更省时、更方便的优点;2、本发明方法可以通过调节侵染性克隆的浓度来控制病毒的接种量,同一批次的不同植株之间接种量误差小;3、本发明方法中一种侵染性克隆只具有一种病毒的侵染活性,解决了毒源不纯的问题,满足了要求特定病原接种的实验条件;4、本发明方法接种效果好,对植株的侵染率高;5、本发明方法使植株获毒时间早,病毒在植株体内积累的时间长;6、本发明方法成本相对较低,接种操作时间短。

Figure 202211567418

The invention relates to a method for efficiently screening antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones; comprising: a root soaking step of Agrobacterium. The present invention has the following advantages: 1. The method of the present invention is easy to operate, and has the advantages of saving time and more convenience than manual friction inoculation; 2. The method of the present invention can control the inoculum amount of the virus by adjusting the concentration of invasive clones, and the same The error of inoculum amount between different plants of batches is small; 3, an infective clone in the method of the present invention only has the infective activity of a kind of virus, has solved the problem of toxin source impurity, has satisfied the specific pathogen inoculation requirement Experimental conditions; 4, the inventive method has a good inoculation effect, and the infection rate of the plant is high; 5, the inventive method makes the plant acquire the virus early, and the time for the virus to accumulate in the plant is long; 6, the inventive method cost is relatively low , The inoculation operation time is short.

Figure 202211567418

Description

基于PEMV-1和PEMV-2侵染性克隆高效筛选抗病毒种质资源的 方法Method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 infectious clones

技术领域Technical Field

本发明属于分子生物学技术领域,尤其是涉及基于PEMV-1和PEMV-2侵染性克隆高效筛选抗病毒种质资源的方法技术领域。The invention belongs to the technical field of molecular biology, and in particular to the technical field of methods for efficiently screening antiviral germplasm resources based on PEMV-1 and PEMV-2 infectious clones.

背景技术Background Art

豌豆耳突花叶病毒1号(pea enation mosaic virus 1,PEMV-1)是Solemoviridae科耳突花叶病毒属(Enamovirus)的病毒,豌豆耳突花叶病毒2号(pea enation mosaicvirus 2,PEMV-2)是番茄丛矮病毒科(Tombusviridae)幽影病毒属(Umbravirus)的病毒,二者复合侵染引起豌豆耳突花叶病(Pea enation mosaic disease,PEMD)。PEMD分布广泛,在美国、德国、英国、法国、捷克等国家均有报道,曾导致英格兰的豌豆产量损失高达50%PEMV-1和PEMV-2在田间主要侵染豆科植物,包括豌豆、蚕豆、鹰嘴豆、大豆、菜豆在内的23种豆科植物。同时,PEMV-1和PEMV-2也会侵染非豆科植物,如番茄、辣椒、苦苣菜[13]、千日红、本氏烟等。PEMV-1和PEMV-2侵染后造成植株生长扭曲,发育迟缓,花叶,叶片黄化并有坏死斑,叶脉褪绿,在叶背及豆荚上出现耳状突起,豆荚常畸形,结实率显著降低,导致严重损失。PEMV-1与PEMV-2都能独立进行自我复制。PEMV-1可以通过蚜虫以循回非增殖的方式传播,PEMV-2需要PEMV-1的CP进行包壳才能进行蚜虫传播,而PEMV-2可以协助PEMV-1进行系统侵染及机械传播。多种蚜虫都是PEMV(PEMV-1和PEMV-2)的传播介体,如豌豆蚜、豇豆蚜、桃蚜、茄蚜等,这些蚜虫在中国及世界范围内分布广泛,且种群数量大,因而致使PEMD具有较高的传播流行风险。Pea mosaic virus 1 (PEMV-1) is a virus of the genus Enamovirus in the family Solemoviridae, and pea mosaic virus 2 (PEMV-2) is a virus of the genus Umbravirus in the family Tombusviridae. The combined infection of the two causes pea mosaic disease (PEMD). PEMD is widely distributed and has been reported in the United States, Germany, the United Kingdom, France, the Czech Republic and other countries. It has caused a pea yield loss of up to 50% in England. PEMV-1 and PEMV-2 mainly infect leguminous plants in the field, including 23 leguminous plants such as peas, broad beans, chickpeas, soybeans, and kidney beans. At the same time, PEMV-1 and PEMV-2 can also infect non-leguminous plants such as tomatoes, peppers, chicory [13] , globe amaranth, and Nicotiana benthamiana. PEMV-1 and PEMV-2 infection can cause plant growth distortion, stunted development, mosaic, yellowing of leaves with necrotic spots, chlorotic leaf veins, ear-like protrusions on the back of leaves and pods, pods are often deformed, and the fruiting rate is significantly reduced, resulting in serious losses. Both PEMV-1 and PEMV-2 can replicate themselves independently. PEMV-1 can be transmitted by aphids in a cyclical non-proliferative manner, PEMV-2 requires the CP of PEMV-1 to be encapsidated for aphid transmission, and PEMV-2 can assist PEMV-1 in systemic infection and mechanical transmission. Many aphids are vectors of PEMV (PEMV-1 and PEMV-2), such as pea aphids, cowpea aphids, peach aphids, and eggplant aphids. These aphids are widely distributed in China and around the world, and have large populations, which makes PEMD have a high risk of transmission and epidemic.

目前尚无报道防治PEMD有效的方法。据相关文献,使用杀虫剂来控制PEMD的病媒蚜虫收效甚微,因此,最好的防治方法是使用抗病品种。人工接种是抗病种质资源筛选和抗病育种的基础,也是研究病毒致病性、传播特性以及与病毒与媒介昆虫互作常用的方法。There are no effective methods reported to control PEMD. According to relevant literature, the use of insecticides to control PEMD vectors, aphids, has little effect. Therefore, the best control method is to use disease-resistant varieties. Artificial inoculation is the basis for screening disease-resistant germplasm resources and breeding for disease resistance. It is also a common method for studying the pathogenicity and transmission characteristics of viruses and the interaction between viruses and vector insects.

传统的利用毒源人工摩擦接种豌豆有许多局限性,而病毒侵染性克隆是指利用基因重组技术把含有病毒全长基因组基因序列插入特定载体中获得具有侵染寄主的功能的重组载体。病毒通过注射接种的方式易于侵染植株,但注射接种存在着成本较高,操作繁琐等问题。发展更加高效、更方便的接种方法是侵染性克隆的一个方向,其对该病毒致病机制和抗病种质资源筛选等研究具有重要意义。Traditional methods of artificially rubbing peas with virus sources have many limitations, while virus-infectious cloning refers to the use of gene recombination technology to insert the full-length genome gene sequence of the virus into a specific vector to obtain a recombinant vector with the function of infecting the host. Viruses can easily infect plants by injection inoculation, but injection inoculation has problems such as high cost and cumbersome operation. Developing a more efficient and convenient inoculation method is one direction of infectious cloning, which is of great significance for the study of the pathogenic mechanism of the virus and the screening of disease-resistant germplasm resources.

传统的摩擦接种技术存在着以下问题:费时费力,需要逐个摩擦叶片,一般每株植物摩擦两叶以上,摩擦后还要对接种植物进行清洗;The traditional friction inoculation technology has the following problems: it is time-consuming and labor-intensive, and requires rubbing leaves one by one, usually more than two leaves per plant, and the inoculated plants must be cleaned after rubbing;

1、人工摩擦的力度难以把握,具有一定技术难度,如用力过重会导致细胞受损甚至植株死亡;1. It is difficult to control the strength of artificial friction, which is technically difficult. Excessive friction may cause cell damage or even plant death.

2、毒源不纯,直接研磨病叶获得的病汁液有可能存在两种或两种以上的病毒,无法达到单一病原接种的目的;2. The virus source is impure. The diseased juice obtained by directly grinding the diseased leaves may contain two or more viruses, and the purpose of single pathogen inoculation cannot be achieved;

3、接种无法量化,同一批次的不同植株之间病毒接种量误差大,每次接种所蘸取的病汁液的量无法固定。3. The inoculation cannot be quantified. There is a large error in the amount of virus inoculation between different plants in the same batch, and the amount of diseased sap used for each inoculation cannot be fixed.

发明内容Summary of the invention

本发明为解决上述问题缺陷,提供了一种基于PEMV-1和PEMV-2侵染性克隆高效筛选抗病毒种质资源的方法。本发明为研究该病毒致病性、传播特性以及病毒与媒介昆虫互作奠定了基础,解决了抗病毒豌豆种质资源筛选中的技术问题。The present invention solves the above problems and defects and provides a method for efficiently screening antiviral germplasm resources based on PEMV-1 and PEMV-2 infectious clones. The present invention lays a foundation for studying the pathogenicity, transmission characteristics and interaction between viruses and insect vectors of the virus and solves the technical problems in the screening of antiviral pea germplasm resources.

本发明采用如下技术方案实现。The present invention is implemented by adopting the following technical solutions.

一种用于检测PEMV-1的引物,所述引物为:A primer for detecting PEMV-1, the primer comprising:

PEMV-1-801-F:5’-AGTTCGTCCTGGTGTCCTGG-3’;PEMV-1-801-F: 5’-AGTTCGTCCTGGTGTCCTGG-3’;

PEMV-1-801-R:5’-CATACCACTTCCCATCCCGC-3’。PEMV-1-801-R: 5’-CATACCACTTCCCATCCCGC-3’.

一种用于检测PEMV-2的引物,所述引物为:A primer for detecting PEMV-2, the primer comprising:

PEMV-2-483-F:5’-TTCAGGAGCACCCGAAACAC-3’;PEMV-2-483-F: 5’-TTCAGGAGCACCCGAAACAC-3’;

PEMV-2-483-R:5’-CGTAGTGAGAGGCATGGCAT-3’。PEMV-2-483-R: 5’-CGTAGTGAGAGGCATGGCAT-3’.

本发明上述的引物的反应体系为:5μL Tap mix、3.6μL dd H2O、0.2μL Primer(For)和0.2μLPrimer(Rev),1μL cDNA;反应程序为:94℃3min;94℃30s,56℃30s,72℃50s,35cycles;72℃5min。The reaction system of the primers of the present invention is: 5 μL Tap mix, 3.6 μL dd H 2 O, 0.2 μL Primer (For) and 0.2 μL Primer (Rev), 1 μL cDNA; the reaction program is: 94°C 3min; 94°C 30s, 56°C 30s, 72°C 50s, 35 cycles; 72°C 5min.

一种用于扩增PEMV-1基因组的5′和3′端序列的引物,所述引物为:PEMV-1 5'RACE-GSP:5'-GCGGTAGTTGAGGCTGCTCAATTCC-3';A primer for amplifying the 5' and 3' end sequences of the PEMV-1 genome, the primer being: PEMV-1 5'RACE-GSP: 5'-GCGGTAGTTGAGGCTGCTCAATTCC-3';

PEMV-1 3'RACE-GSP:5'-AGGCCAGGAGTTCTCTGCCTGTGAG-3'。PEMV-1 3'RACE-GSP: 5'-AGGCCAGGAGTTCTCTGCCTGTGAG-3'.

一种用于扩增PEMV-2基因组的5′和3′端序列的引物,所述引物为:PEMV-2 5'RACE-GSP:5'-TACTGTCAGCATCGCGGCGCGCTCG-3';A primer for amplifying the 5' and 3' end sequences of the PEMV-2 genome, the primer being: PEMV-2 5'RACE-GSP: 5'-TACTGTCAGCATCGCGGCGCGCTCG-3';

PEMV-2 3'RACE-GSP:5'-ACACCCTGCCACGAGGTGCGTGGA-3'。PEMV-2 3'RACE-GSP: 5'-ACACCCTGCCACGAGGTGCGTGGA-3'.

一种用于扩增PEMV-1的方法,本发明将PEMV-1分为三个片段:PEMV-1-1、PEMV-1-2和PEMV-1-3;使用引物组pCB301-PEMV-1-1F/PEMV-1-1R,PEMV-1-2F/PEMV-1-2R和PEMV-1-3F/pCB301-PEMV-1-3R分别扩增PEMV-1的片段PEMV-1-1、PEMV-1-2和PEMV-1-3;A method for amplifying PEMV-1, the invention divides PEMV-1 into three fragments: PEMV-1-1, PEMV-1-2 and PEMV-1-3; uses primer sets pCB301-PEMV-1-1F/PEMV-1-1R, PEMV-1-2F/PEMV-1-2R and PEMV-1-3F/pCB301-PEMV-1-3R to amplify the fragments PEMV-1-1, PEMV-1-2 and PEMV-1-3 of PEMV-1 respectively;

所述方法的PCR扩增体系为20μL:5×PrimeSTAR GXL Buffer 4μL,dNTP mixture(2.5mM each)1.6μL,上游引物0.6μL,下游引物0.6μL,PrimeSTAR GXLDNA Polymerase0.4μL,dd H2O 10.8μL,cDNA 2μL;引物pCB301-PEMV-1-1F/PEMV-1-1R退火温度54.5℃,延伸3min;PEMV-1-2F/PEMV-1-2R退火温度60℃,延伸3min;PEMV-1-3F/pCB301-PEMV-1-3R退火温度60℃,延伸2min;反应程序为:98℃30s;98℃10s,Y℃15s,68℃Zmin;68℃10min;4℃保存。The PCR amplification system of the method is 20 μL: 5× PrimeSTAR GXL Buffer 4 μL, dNTP mixture (2.5 mM each) 1.6 μL, upstream primer 0.6 μL, downstream primer 0.6 μL, PrimeSTAR GXL DNA Polymerase 0.4 μL, dd H 2 O 10.8 μL, cDNA 2 μL; primer pCB301-PEMV-1-1F/PEMV-1-1R annealing temperature 54.5°C, extension 3min; PEMV-1-2F/PEMV-1-2R annealing temperature 60°C, extension 3min; PEMV-1-3F/pCB301-PEMV-1-3R annealing temperature 60°C, extension 2min; reaction procedures are: 98°C 30s; 98°C 10s, Y°C 15s, 68°C Zmin; 68°C 10min; 4°C storage.

一种用于扩增PEMV-2的方法,本发明将PEMV-2分为三个片段:PEMV-2-1、PEMV-2-2、PEMV-2-3;使用引物组pCB301-PEMV-2-1F/PEMV-2-1R,PEMV-2-2F/PEMV-2-2R和PEMV-2-3F/pCB301-PEMV-2-3R分别扩增PEMV-2的片段PEMV-2-1、PEMV-2-2、PEMV-2-3;A method for amplifying PEMV-2. The invention divides PEMV-2 into three fragments: PEMV-2-1, PEMV-2-2, and PEMV-2-3; uses primer sets pCB301-PEMV-2-1F/PEMV-2-1R, PEMV-2-2F/PEMV-2-2R, and PEMV-2-3F/pCB301-PEMV-2-3R to amplify the fragments PEMV-2-1, PEMV-2-2, and PEMV-2-3 of PEMV-2 respectively;

所述方法的PCR扩增体系为20μL:5×PrimeSTAR GXL Buffer 4μL,dNTP mixture(2.5mM each)1.6μL,上游引物0.6μL,下游引物0.6μL,PrimeSTAR GXL DNA Polymerase0.4μL,dd H2O 10.8μL,cDNA 2μL。The PCR amplification system of the method is 20 μL: 5× PrimeSTAR GXL Buffer 4 μL, dNTP mixture (2.5 mM each) 1.6 μL, upstream primer 0.6 μL, downstream primer 0.6 μL, PrimeSTAR GXL DNA Polymerase 0.4 μL, dd H 2 O 10.8 μL, cDNA 2 μL.

(引物pCB301-PEMV-2-1F/PEMV-2-1R退火温度60℃,延伸2min30s;PEMV-2-2F/PEMV-2-2R退火温度60℃,延伸2mins;PEMV-2-3F/pCB301-PEMV-2-3R退火温度58℃,延伸1min),反应程序为98℃30s;98℃10s,Y℃15s,68℃Zmin,68℃10min;4℃保存。(Primers pCB301-PEMV-2-1F/PEMV-2-1R annealing temperature 60℃, extension 2min30s; PEMV-2-2F/PEMV-2-2R annealing temperature 60℃, extension 2mins; PEMV-2-3F/pCB301-PEMV-2-3R annealing temperature 58℃, extension 1min), the reaction procedure is 98℃30s; 98℃10s, Y℃15s, 68℃Zmin, 68℃10min; stored at 4℃.

一种用于测定PEMV-1、PEMV-2侵染性的引物组,所述引物组为:A primer set for determining the infectivity of PEMV-1 and PEMV-2, the primer set comprising:

PEMV-1-CP-F:5'-ATGCCGACTAGATCGAAATC-3';PEMV-1-CP-F: 5'-ATGCCGACTAGATCGAAATC-3';

PEMV-1-CP-R:5'-TCAGAGGGAGGCATTCATTA-3';PEMV-1-CP-R: 5'-TCAGAGGGAGGCATTCATTA-3';

PEMV2-ORF3-F:5'-ATGACGATAATCATTAATG-3';PEMV2-ORF3-F: 5'-ATGACGATAATCATTAATG-3';

PEMV2-ORF3-R:5'-TCACCCGTAGTGAGAGGCA-3';PEMV2-ORF3-R: 5'-TCACCCGTAGTGAGAGGCA-3';

一种耳突花叶病毒侵染性克隆载体的构建方法,本发明包括以下步骤:步骤1):A method for constructing an infectious cloning vector of ear mosaic virus comprises the following steps: Step 1):

提取自云南省大理市采集的感染了PEMV-1、PEMV-2豌豆植株的总RNA;Total RNA was extracted from pea plants infected with PEMV-1 and PEMV-2 collected in Dali, Yunnan Province;

步骤2):Step 2):

将PEMV-1和PEMV-2分成三个片段进行扩增,获得PEMV-1和PEMV-2的全长核苷酸序列;PEMV-1 and PEMV-2 were divided into three fragments and amplified to obtain the full-length nucleotide sequences of PEMV-1 and PEMV-2;

步骤3):Step 3):

基于PEMV-1和PEMV-2的基因组序列和二元载体pCB301-2X35S-MCS-HDVRZ-NOS-1设计全基因组序列扩增引物,将PEMV-1和PEMV-2分成3个片段进行扩增,片段末端有21-33bp的核苷酸重叠;Primers for amplification of the whole genome sequence were designed based on the genome sequences of PEMV-1 and PEMV-2 and the binary vector pCB301-2X35S-MCS-HDVRZ-NOS-1, and PEMV-1 and PEMV-2 were amplified by dividing them into three fragments with 21-33 bp of nucleotide overlap at the ends of the fragments;

步骤4):Step 4):

引物组pCB301-PEMV-1-1F/PEMV-1-1R,PEMV-1-2F/PEMV-1-2R和PEMV-1-3F/pCB301-PEMV-1-3R用于扩增PEMV-1的片段PEMV-1-1、PEMV-1-2和PEMV-1-3;Primer sets pCB301-PEMV-1-1F/PEMV-1-1R, PEMV-1-2F/PEMV-1-2R, and PEMV-1-3F/pCB301-PEMV-1-3R were used to amplify fragments PEMV-1-1, PEMV-1-2, and PEMV-1-3 of PEMV-1;

以cDNA为模板,扩增PEMV-1的三个片段并连接到线性化载体pCB301;通过冻融法将测序正确的重组质粒pCB301-PEMV-1转化到根癌农杆菌EHA105中。Using cDNA as a template, three fragments of PEMV-1 were amplified and connected to the linearized vector pCB301; the correctly sequenced recombinant plasmid pCB301-PEMV-1 was transformed into Agrobacterium tumefaciens EHA105 by freeze-thaw method.

步骤5):Step 5):

其他引物对pCB301-PEMV-2-1F/PEMV-2-1R,PEMV-2-2F/PEMV-2-2R和PEMV-2-3F/pCB301-PEMV-2-3R分别扩增PEMV-2的片段PEMV-2-1、PEMV-2-2、PEMV-2-3;The other primer pairs pCB301-PEMV-2-1F/PEMV-2-1R, PEMV-2-2F/PEMV-2-2R, and PEMV-2-3F/pCB301-PEMV-2-3R amplified the PEMV-2 fragments PEMV-2-1, PEMV-2-2, and PEMV-2-3, respectively;

以cDNA为模板,扩增PEMV-2的三个片段并连接到线性化载体pCB301;通过冻融法将测序正确的重组质粒pCB301-PEMV-2转化到根癌农杆菌EHA105中;Using cDNA as template, three fragments of PEMV-2 were amplified and connected to the linearized vector pCB301; the correctly sequenced recombinant plasmid pCB301-PEMV-2 was transformed into Agrobacterium tumefaciens EHA105 by freeze-thaw method;

步骤6):Step 6):

农杆菌浸根:将长出根的豌豆种子分别放在OD600=(0.5-1.0)的含PEMV-1、PEMV-2侵染性克隆载体的农杆菌LB培养基中在28℃培养箱中浸润2-3个小时,然后不完全倒尽菌液,继续在相同条件下共培养6-7小时,之后将其播种。Agrobacterium root dipping: pea seeds with roots were placed in Agrobacterium LB culture medium containing PEMV-1 and PEMV-2 infectious cloning vectors with OD600 = (0.5-1.0) and immersed in a 28°C incubator for 2-3 hours. Then, the bacterial solution was not completely poured out and co-culture was continued under the same conditions for 6-7 hours before sowing.

进一步为,本发明所述步骤6)为农杆菌浸根:将长出根的豌豆种子分别放在OD600=(0.5-1.0)的含PEMV-1、PEMV-2侵染性克隆载体的农杆菌LB培养基中在28℃培养箱中浸润3个小时,3个小时后不完全倒尽菌液,继续在相同条件下共培养6小时,之后将其播种。Furthermore, step 6) of the present invention is root soaking with Agrobacterium: the pea seeds with roots are placed in Agrobacterium LB culture medium containing PEMV-1 and PEMV-2 infectious cloning vectors with OD600 = (0.5-1.0) and immersed in a 28°C incubator for 3 hours. After 3 hours, the bacterial solution is not completely poured out, and co-culture is continued under the same conditions for 6 hours, and then the seeds are sown.

本发明的有益效果为:The beneficial effects of the present invention are:

1、本发明方法操作简便,具有比人工摩擦接种更省时、更方便的优点;1. The method of the present invention is easy to operate and has the advantages of being more time-saving and more convenient than manual friction inoculation;

2、本发明方法可以通过调节侵染性克隆的浓度来控制病毒的接种量,同一批次的不同植株之间接种量误差小;2. The method of the present invention can control the virus inoculation amount by adjusting the concentration of the infectious clone, and the error of the inoculation amount between different plants in the same batch is small;

3、本发明方法中一种侵染性克隆只具有一种病毒的侵染活性,解决了毒源不纯的问题,满足了要求特定病原接种的实验条件;3. In the method of the present invention, one infectious clone has only one virus's infectious activity, which solves the problem of impure virus source and meets the experimental conditions requiring specific pathogen inoculation;

4、本发明方法接种效果好,对植株的侵染率高;4. The inoculation method of the present invention has good effect and high infection rate on plants;

5、本发明方法使植株获毒时间早,病毒在植株体内积累的时间长;5. The method of the present invention enables the plant to acquire the virus earlier, and the virus accumulates in the plant for a long time;

6、本发明方法成本相对较低,接种操作时间短。6. The method of the present invention has relatively low cost and short inoculation operation time.

下面结合附图和具体实施方式本发明做进一步解释。The present invention is further explained below in conjunction with the accompanying drawings and specific embodiments.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明豌豆种子根长示意图;Fig. 1 is a schematic diagram of the root length of pea seeds of the present invention;

图2为本发明豌豆种子浸根示意图;Fig. 2 is a schematic diagram of pea seed root soaking according to the present invention;

图3为本发明PEMV-1、PEMV-2检测电泳图;1-14泳道为PEMV-1检测结果,条带大小为570bp;15-28泳道为PEMV-2的检测结果,条带大小为693bp;+CK表示阳性对照,-CK表示阴性对照;3 is an electrophoretic diagram of PEMV-1 and PEMV-2 detection of the present invention; lanes 1-14 are PEMV-1 detection results, with a band size of 570 bp; lanes 15-28 are PEMV-2 detection results, with a band size of 693 bp; +CK represents a positive control, and -CK represents a negative control;

图4为本发明不同豌豆品种经不同处理的PEMV-1检测电泳图;1-9泳道、10-20泳道、21-24泳道分别为粉红花荚豆王根不刺破、粉红花荚豆王根刺破、台湾长寿豌豆仁根不刺破的PEMV-1检测结果,条带大小为570bp;Fig. 4 is an electrophoresis diagram of PEMV-1 detection of different pea varieties treated differently according to the present invention; lanes 1-9, lanes 10-20, and lanes 21-24 are respectively the PEMV-1 detection results of the pink flower pod bean king without root puncture, the pink flower pod bean king with root puncture, and the Taiwan longevity pea kernel root without root puncture, and the band size is 570bp;

图5为本发明台湾长寿豌豆仁根经不刺破和刺破处理的PEMV-1检测电泳图;1-8泳道、9-15泳道分别为台湾长寿豌豆仁根不刺破和台湾长寿豌豆仁根刺破的PEMV-1检测结果,条带大小为570bp;FIG5 is an electrophoresis diagram of PEMV-1 detection of Taiwan longevity pea kernel roots without puncture and puncture treatment of the present invention; lanes 1-8 and lanes 9-15 are respectively the PEMV-1 detection results of Taiwan longevity pea kernel roots without puncture and Taiwan longevity pea kernel roots punctured, and the band size is 570bp;

图6为本发明不同豌豆品种经不同处理的PEMV-2检测电泳图;1-9泳道、10-20泳道、21-23泳道分别为粉红花荚豆王根不刺破、粉红花荚豆王根刺破、台湾长寿豌豆仁根不刺破的PEMV-2检测结果,条带大小为693bp;Fig. 6 is an electrophoresis diagram of PEMV-2 detection of different pea varieties treated differently according to the present invention; lanes 1-9, lanes 10-20, and lanes 21-23 are respectively the PEMV-2 detection results of the pink flower pod bean king without root puncture, the pink flower pod bean king with root puncture, and the Taiwan longevity pea kernel root without root puncture, and the band size is 693bp;

图7为本发明台湾长寿豌豆仁根经不刺破和刺破处理的PEMV-2检测电泳图;1-9泳道、10-16泳道分别为台湾长寿豌豆仁根不刺破和台湾长寿豌豆仁根刺破的PEMN-1检测结果,条带大小为693bp;FIG7 is an electrophoresis diagram of PEMV-2 detection of Taiwan longevity pea kernel roots without puncture and puncture treatment of the present invention; lanes 1-9 and lanes 10-16 are respectively the PEMN-1 detection results of Taiwan longevity pea kernel roots without puncture and Taiwan longevity pea kernel roots punctured, and the band size is 693 bp;

图8为本发明根经刺破和不刺破处理的PEMV-1检测电泳图;1-11泳道、12-17泳道分别为根刺破和根不刺破的PEMV-1检测结果,条带大小为801bp;FIG8 is an electrophoretic diagram of PEMV-1 detection of roots treated with puncture and without puncture according to the present invention; lanes 1-11 and lanes 12-17 are the PEMV-1 detection results of roots punctured and roots not punctured, respectively, and the band size is 801 bp;

图9为本发明根经不刺破和刺破处理的PEMV-1、PEMV-2检测电泳图;1-6泳道为根不刺破的PEMV-1检测结果,条带大小为801bp;9-17泳道为根刺破的PEMV-2检测结果,条带大小为483bp;+CK阳性对照失效;Fig. 9 is an electrophoresis diagram of PEMV-1 and PEMV-2 detection of roots treated with no puncture and puncture according to the present invention; lanes 1-6 are the detection results of PEMV-1 without puncture, with a band size of 801 bp; lanes 9-17 are the detection results of PEMV-2 with puncture, with a band size of 483 bp; +CK positive control is invalid;

图10为本发明根经刺破和不刺破处理的PEMV-2检测电泳图;1-2泳道为根刺破的PEMV-2检测结果,条带大小为483bp;3-14泳道为根不刺破的PEMV-2检测结果;+CK阳性失效;FIG10 is an electrophoretic diagram of PEMV-2 detection of roots treated with puncture and without puncture according to the present invention; Lanes 1-2 are the detection results of PEMV-2 with punctured roots, with a band size of 483 bp; Lanes 3-14 are the detection results of PEMV-2 with unpunctured roots; +CK positive failure;

图11为本发明根经不同处理的分别接种PEMV-1、PEMV-2的PEMV-1检测电泳图;1-6泳道、7-12泳道分别为根刺破和根不刺破的只接种pCB301-PEMV-1-YDL的PEMV-1检测结果,条带大小为801bp;13-17泳道为根刺破的只接种pCB301-PEMV-2的PEMV-1检测结果;Fig. 11 is an electrophoretic diagram of PEMV-1 detection of roots inoculated with PEMV-1 and PEMV-2 respectively after different treatments of the present invention; lanes 1-6 and lanes 7-12 are the PEMV-1 detection results of roots punctured and roots not punctured and only inoculated with pCB301-PEMV-1-YDL, respectively, with a band size of 801 bp; lanes 13-17 are the PEMV-1 detection results of roots punctured and only inoculated with pCB301-PEMV-2;

图12为本发明根经不同处理的只接种PEMV-2的PEMV-1和PEMV-2检测电泳图;1和2-3泳道分别为根刺破和根不刺破的只接种pCB301-PEMV-2的PEMV-1检测结果;+CK阳性对照失效;6-15泳道为根刺破的只接种pCB301-PEMV-2的PEMV-2检测结果,条带大小为483bp;+CK阳性对照失效;Fig. 12 is an electrophoretic diagram of PEMV-1 and PEMV-2 detection in roots inoculated with PEMV-2 in different treatments according to the present invention; lanes 1 and 2-3 are the detection results of PEMV-1 inoculated with pCB301-PEMV-2 only with and without root puncture, respectively; +CK positive control is invalid; lanes 6-15 are the detection results of PEMV-2 inoculated with pCB301-PEMV-2 only with root puncture, with a band size of 483 bp; +CK positive control is invalid;

图13为本发明以分别或同时感染PEMV-1、PEMV-2的毒源摩擦接种豌豆的PEMV-1、PEMV-2混合样检测电泳图;1-7泳道为混合样1-7的PEMV-1检测结果,条带大小为801bp;10-16泳道为混合样1-7的PEMV-2检测结果,条带大小为483bp;Fig. 13 is an electrophoretic diagram of the present invention for detecting a mixed sample of PEMV-1 and PEMV-2 inoculated peas by friction with a virus source that is infected with PEMV-1 or PEMV-2 separately or simultaneously; lanes 1-7 are the detection results of PEMV-1 of the mixed sample 1-7, with a band size of 801 bp; lanes 10-16 are the detection results of PEMV-2 of the mixed sample 1-7, with a band size of 483 bp;

图14为本发明以分别或同时感染PEMV-1、PEMV-2的毒源摩擦接种豌豆的PEMV-1、PEMV-2单一样检测电泳图;1-4和5-7泳道分别为上一步混合样1和3的单样品PEMV-1检测结果,条带大小为801bp;10-13和14-16泳道为上一步混合样1和3的单样品PEMV-2检测结果,条带大小为483bp;Fig. 14 is a single sample electrophoresis diagram of PEMV-1 and PEMV-2 inoculated peas with a virus source that infects PEMV-1 and PEMV-2 separately or simultaneously according to the present invention; lanes 1-4 and 5-7 are the single sample PEMV-1 detection results of mixed samples 1 and 3 in the previous step, respectively, with a band size of 801 bp; lanes 10-13 and 14-16 are the single sample PEMV-2 detection results of mixed samples 1 and 3 in the previous step, with a band size of 483 bp;

图15为本发明豌豆接种PEMV-1、PEMV-2和PEMV-1+PEMV-2后的症状图。FIG15 is a diagram showing symptoms of peas inoculated with PEMV-1, PEMV-2, and PEMV-1+PEMV-2 according to the present invention.

具体实施方式DETAILED DESCRIPTION

一种耳突花叶病毒侵染性克隆载体的构建方法,包括以下步骤:A method for constructing an infectious cloning vector of ear mosaic virus comprises the following steps:

提取植物总RNA;Extract plant total RNA;

(a)用75%乙醇清洗工作台表面和工具;(a) Clean the work surface and tools with 75% ethanol;

(b)在1.5ml离心管中加入1mlTrizol试剂;(b) Add 1 ml of Trizol reagent to a 1.5 ml centrifuge tube;

(c)取少量上述样品,在液氮中充分研磨,将样品研磨成粉末状后加入离心管,震荡混匀;(c) taking a small amount of the above sample, grinding it thoroughly in liquid nitrogen, grinding the sample into powder, adding it to a centrifuge tube, and shaking to mix;

(d)在4℃下,12000rpm离心10min,将上清转移到一个新的1.5ml离心管中,室温放置5min;(d) Centrifuge at 12000 rpm for 10 min at 4°C, transfer the supernatant to a new 1.5 ml centrifuge tube and place at room temperature for 5 min;

(e)加入300μL的氯仿;(e) Add 300 μL of chloroform;

(f)混匀后室温放置2-3min;(f) After mixing, place at room temperature for 2-3 minutes;

(g)4℃下,12000rpm离心15min;(g) Centrifugation at 12000 rpm for 15 min at 4°C;

(h)小心吸取样品中的水相(上清)至新的离心管中,注意不要吸到下层的有机相;(h) Carefully pipette the aqueous phase (supernatant) of the sample into a new centrifuge tube, taking care not to pipette the organic phase below;

(i)加入等体积的100%异丙醇,室温放置10min;(i) Add an equal volume of 100% isopropanol and leave at room temperature for 10 min;

(j)4℃下,12000rpm离心10min,弃上清;(j) Centrifuge at 12000 rpm for 10 min at 4°C and discard the supernatant;

(k)用1ml的75%乙醇将沉淀悬浮起来,静置数分钟;(k) Resuspend the precipitate in 1 ml of 75% ethanol and let it stand for several minutes;

(l)重复上述步骤2次;(l) Repeat the above steps 2 times;

(m)室温静置5min,以除去多余的无水乙醇;(m) standing at room temperature for 5 min to remove excess anhydrous ethanol;

(n)用RNA-free的无菌水溶解RNA,待用。(n) Dissolve RNA in RNA-free sterile water and set aside.

利用植物总RNA进行cDNA合成和病毒检测(预测扩增801bp产物的引物PEMV-1-801-F/R和预测扩增483bp片段的引物PEMV-2-483-F/R分别用于PEMV-1和PEMV-2的分子检测);cDNA synthesis and virus detection were performed using plant total RNA (primers PEMV-1-801-F/R predicted to amplify an 801 bp product and primers PEMV-2-483-F/R predicted to amplify a 483 bp fragment were used for molecular detection of PEMV-1 and PEMV-2, respectively);

(a)以下游Primer(Rev)为引物或使用随机引物,利用Reverse Transcriptase M-MLV(RNase H-)(TaKaRa)将上述步骤中的植物总RNA反转录成cDNA,具体如下:先加入3μLdd H2O、2μLRNA模板和1μL随机引物,混匀,将体系置于70℃下反应10min,迅速拿出于冰上冷却2min,离心数秒,加入以下试剂:2μL 5×M-MLV Buffer、1μL dd H2O、0.5μL dNTP mix(10mM)和RTase M-MLV(200u/μL),试剂加完后,混匀,将体系置于42℃保温1h、75℃保温15min,即获得cDNA模板;(a) Using downstream Primer (Rev) as a primer or using random primers, the total plant RNA in the above step was reverse transcribed into cDNA using Reverse Transcriptase M-MLV (RNase H - ) (TaKaRa), as follows: first add 3 μL dd H 2 O, 2 μL RNA template and 1 μL random primer, mix well, place the system at 70°C for 10 min, quickly take out and cool on ice for 2 min, centrifuge for a few seconds, add the following reagents: 2 μL 5×M-MLV Buffer, 1 μL dd H 2 O, 0.5 μL dNTP mix (10 mM) and RTase M-MLV (200u/μL), after adding the reagents, mix well, place the system at 42°C for 1 h and 75°C for 15 min, and obtain the cDNA template;

(b)预测扩增801bp产物的引物对PEMV-1-801-F/R和预期扩增483bp片段的引物对PEMV-2-483-F/R分别用于PEMV-1和PEMV-2的分子检测。(b) The primer pair PEMV-1-801-F/R predicted to amplify an 801 bp product and the primer pair PEMV-2-483-F/R expected to amplify a 483 bp fragment were used for the molecular detection of PEMV-1 and PEMV-2, respectively.

引物序列如下:The primer sequences are as follows:

PEMV-1-801-F:5’-AGTTCGTCCTGGTGTCCTGG-3’;PEMV-1-801-F: 5’-AGTTCGTCCTGGTGTCCTGG-3’;

PEMV-1-801-R:5’-CATACCACTTCCCATCCCGC-3’;PEMV-1-801-R: 5’-CATACCACTTCCCATCCCGC-3’;

PEMV-2-483-F:5’-TTCAGGAGCACCCGAAACAC-3’;PEMV-2-483-F: 5’-TTCAGGAGCACCCGAAACAC-3’;

PEMV-2-483-R:5’-CGTAGTGAGAGGCATGGCAT-3’;PEMV-2-483-R: 5’-CGTAGTGAGAGGCATGGCAT-3’;

以cDNA为模板,利用PEMV-1-801-F/R和PEMV-2-483-F/R对PEMV-1和PEMV-2基因组序列进行扩增,具体如下:先加入5μL Tap mix、3.2μL dd H2O、0.4μL Primer(For)和0.4μLPrimer(Rev),1μL cDNA。反应程序为:94℃3min;94℃30s,56℃30s,72℃50s,35cycles;72℃5min。Using cDNA as template, PEMV-1-801-F/R and PEMV-2-483-F/R were used to amplify the genomic sequences of PEMV-1 and PEMV-2, as follows: 5 μL Tap mix, 3.2 μL dd H 2 O, 0.4 μL Primer (For) and 0.4 μL Primer (Rev), 1 μL cDNA were added. The reaction program was: 94°C for 3 min; 94°C for 30 s, 56°C for 30 s, 72°C for 50 s, 35 cycles; 72°C for 5 min.

扩增的PCR产物使用SanPrep Column DNA Gel Extraction Kit试剂盒(SangonBiotech,中国上海)纯化,使用TA克隆策略克隆到pMD19-T载体(TaKaRa Biotechnology,中国大连)中,并通过Sanger测序进行测序。使用EditSeq软件(Lasergene 7.0,USA DNASTARInc.)组装和分析序列。The amplified PCR products were purified using the SanPrep Column DNA Gel Extraction Kit (Sangon Biotech, Shanghai, China), cloned into the pMD19-T vector (TaKaRa Biotechnology, Dalian, China) using the TA cloning strategy, and sequenced by Sanger sequencing. The sequences were assembled and analyzed using EditSeq software (Lasergene 7.0, USA DNASTAR Inc.).

随后分别根据获得的PEMV-1和PEMV-2的序列设计了5′和3′扩增引物,即PEMV-15′RACE、PEMV-1 3′RACE、PEMV-2 5′RACE和PEMV-2 3′RACE。Subsequently, 5′ and 3′ amplification primers were designed according to the obtained sequences of PEMV-1 and PEMV-2, namely PEMV-1 5′RACE, PEMV-1 3′RACE, PEMV-2 5′RACE and PEMV-2 3′RACE.

使用

Figure BDA0003986655120000071
RACE 5/3(TaKaRa Biotechnology,中国大连)扩增了PEMV-1、PEMV-2基因组的5′和3′端序列。克隆到pMD19-T载体中并进行sanger测序。PEMV-1和PEMV-2的完整核苷酸序列通过软件Lasergene 7.0组装和分析。use
Figure BDA0003986655120000071
The 5′ and 3′ end sequences of the PEMV-1 and PEMV-2 genomes were amplified by RACE 5/3 (TaKaRa Biotechnology, Dalian, China). The sequences were cloned into the pMD19-T vector and subjected to Sanger sequencing. The complete nucleotide sequences of PEMV-1 and PEMV-2 were assembled and analyzed by the software Lasergene 7.0.

为了获得PEMV-1和PEMV-2的全长侵染性克隆,基于PEMV-1和PEMV-2的基因组序列和二元载体pCB301-2X35S-MCS-HDVRZ-NOS-1设计全基因组序列扩增引物,将PEMV-1和PEMV-2分成3个片段进行扩增,片段末端有21-33bp的核苷酸重叠。In order to obtain the full-length infectious clones of PEMV-1 and PEMV-2, primers for amplification of the whole genome sequence were designed based on the genome sequences of PEMV-1 and PEMV-2 and the binary vector pCB301-2X35S-MCS-HDVRZ-NOS-1. PEMV-1 and PEMV-2 were divided into three fragments for amplification, and the ends of the fragments had 21-33 bp of nucleotide overlap.

引物组pCB301-PEMV-1-1F/PEMV-1-1R,PEMV-1-2F/PEMV-1-2R和Primer set pCB301-PEMV-1-1F/PEMV-1-1R, PEMV-1-2F/PEMV-1-2R and

PEMV-1-3F/pCB301-PEMV-1-3R用于扩增PEMV-1的片段PEMV-1-1、PEMV-1-2和PEMV-1-3。PEMV-1-3F/pCB301-PEMV-1-3R was used to amplify the PEMV-1 fragments PEMV-1-1, PEMV-1-2 and PEMV-1-3.

此外,使用其他引物对pCB301-PEMV-2-1F/PEMV-2-1R,PEMV-2-2F/PEMV-2-2R和PEMV-2-3F/pCB301-PEMV-2-3R分别扩增PEMV-2的片段PEMV-2-1、PEMV-2-2、PEMV-2-3;In addition, other primer pairs pCB301-PEMV-2-1F/PEMV-2-1R, PEMV-2-2F/PEMV-2-2R, and PEMV-2-3F/pCB301-PEMV-2-3R were used to amplify the fragments PEMV-2-1, PEMV-2-2, and PEMV-2-3 of PEMV-2, respectively;

PEMV-1各片段的扩增及其侵染性克隆载体的构建:Amplification of PEMV-1 fragments and construction of infectious cloning vectors:

以前述cDNA为模板,利用引物pCB301-PEMV-1-1F/PEMV-1-1R,PEMV-1-2F/PEMV-1-2R和PEMV-1-3F/pCB301-PEMV-1-3R扩增PEMV-1,获得长度为3002bp(PEMV-1-1)、1479bp(PEMV-1-2)和1317bp(PEMV-1-3)的三个片段。Using the aforementioned cDNA as a template, PEMV-1 was amplified using primers pCB301-PEMV-1-1F/PEMV-1-1R, PEMV-1-2F/PEMV-1-2R and PEMV-1-3F/pCB301-PEMV-1-3R to obtain three fragments with lengths of 3002bp (PEMV-1-1), 1479bp (PEMV-1-2) and 1317bp (PEMV-1-3).

其中,PCR扩增体系为20μL:5×PrimeSTAR GXL Buffer 4μL,dNTP mixture(2.5mMeach)1.6μL,上游引物0.6μL,下游引物0.6μL,PrimeSTAR GXL DNA Polymerase0.4μL,ddH2O10.8μL,cDNA2μL。(引物pCB301-PEMV-1-1F/PEMV-1-1R退火温度54.5℃,延伸3min;PEMV-1-2F/PEMV-1-2R退火温度60℃,延伸3min;PEMV-1-3F/pCB301-PEMV-1-3R退火温度60℃,延伸2min)反应程序为:98℃30s;98℃10s,Y℃15s,68℃Zmin;68℃10min;4℃保存。然后利用SanPrep Column DNAGel Extraction Kit试剂盒回收目的片段。The PCR amplification system was 20 μL: 5× PrimeSTAR GXL Buffer 4 μL, dNTP mixture (2.5 mM each) 1.6 μL, upstream primer 0.6 μL, downstream primer 0.6 μL, PrimeSTAR GXL DNA Polymerase 0.4 μL, ddH 2 O 10.8 μL, cDNA 2 μL. (Primers pCB301-PEMV-1-1F/PEMV-1-1R annealing temperature 54.5°C, extension 3 min; PEMV-1-2F/PEMV-1-2R annealing temperature 60°C, extension 3 min; PEMV-1-3F/pCB301-PEMV-1-3R annealing temperature 60°C, extension 2 min) The reaction program was: 98°C 30 s; 98°C 10 s, Y°C 15 s, 68°C Z min; 68°C 10 min; stored at 4°C. Then, the target fragment was recovered using the SanPrep Column DNA Gel Extraction Kit.

使用TaKaRa限制性内切酶SmaI和Stu I酶切pCB301双元载体,获得pCB301线性载体,反应体系:表达载体pCB301质粒20μL(0.8μg),1×QuickCut Green Buffer 5μL,限制性内切酶Sma I 1.0μL,ddH2O 23μL。反应条件:30℃温育2h。再加入1μL Stu I限制性内切酶,37℃温育2h。电泳验证后利用SanPrep Column DNAGel Extraction Kit试剂盒进行产物回收。TaKaRa restriction endonucleases SmaI and Stu I were used to digest the pCB301 binary vector to obtain the pCB301 linear vector. The reaction system was as follows: 20 μL (0.8 μg) of the expression vector pCB301 plasmid, 5 μL of 1×QuickCut Green Buffer, 1.0 μL of restriction endonuclease Sma I, and 23 μL of ddH 2 O. Reaction conditions: incubate at 30°C for 2 h. Then 1 μL of Stu I restriction endonuclease was added and incubated at 37°C for 2 h. After electrophoresis verification, the product was recovered using the SanPrep Column DNAGel Extraction Kit.

使用

Figure BDA0003986655120000081
Ultra One Step Cloning Kit试剂盒将PEMV-1三个片段的PCR产物连接到pCB301线性载体。使用TaKaRa限制性内切酶SmaI和Stu I酶切pCB301双元载体,获得pCB301线性载体,反应体系:表达载体pCB301质粒20μL(0.8μg),1×QuickCut GreenBuffer 5μL,限制性内切酶Sma I 1.0μL,ddH2O 23μL。反应条件:30℃温育2h。再加入1μLStu I限制性内切酶,37℃温育2h。电泳验证后利用SanPrep Column DNAGel ExtractionKit试剂盒进行产物回收。use
Figure BDA0003986655120000081
The Ultra One Step Cloning Kit was used to connect the PCR products of the three fragments of PEMV-1 to the pCB301 linear vector. The pCB301 binary vector was digested with TaKaRa restriction endonucleases SmaI and Stu I to obtain the pCB301 linear vector. The reaction system included 20 μL (0.8 μg) of the expression vector pCB301 plasmid, 5 μL of 1×QuickCut GreenBuffer, 1.0 μL of restriction endonuclease Sma I, and 23 μL of ddH 2 O. Reaction conditions: incubate at 30°C for 2 hours. Then 1 μL of Stu I restriction endonuclease was added and incubated at 37°C for 2 hours. After electrophoresis verification, the product was recovered using the SanPrep Column DNAGel ExtractionKit.

使用

Figure BDA0003986655120000082
Ultra One Step Cloning Kit试剂盒将PEMV-1三个片段的PCR产物连接到pCB301线性载体。通过冻融法将测序正确的重组质粒pCB301-PEMV-1转化到根癌农杆菌EHA105中。其中,同源重组体系为:2×ClonExpress Mix 10μL,片段PEMV-1-1 1μL,片段PEMV-1-2 1μL,片段PEMV-1-3 1μL,线性化pCB301 7μL。反应条件:50℃温育30min。use
Figure BDA0003986655120000082
The Ultra One Step Cloning Kit was used to connect the PCR products of the three fragments of PEMV-1 to the pCB301 linear vector. The correctly sequenced recombinant plasmid pCB301-PEMV-1 was transformed into Agrobacterium tumefaciens EHA105 by freeze-thaw method. Among them, the homologous recombination system was: 2×ClonExpress Mix 10μL, fragment PEMV-1-1 1μL, fragment PEMV-1-2 1μL, fragment PEMV-1-3 1μL, linearized pCB301 7μL. Reaction conditions: incubate at 50℃ for 30min.

PEMV-2片段的扩增及其侵染性克隆载体的获得Amplification of PEMV-2 fragment and acquisition of its infectious cloning vector

以前述cDNA为模板,利用引物pCB301-PEMV-2-1F/PEMV-2-1R,PEMV-2-2F/PEMV-2-2R和PEMV-2-3F/pCB301-PEMV-2-3R用于扩增PEMV-2,获得长度约2264bp(PEMV-2-1)、1344bp(PEMV-2-2)和740bp(PEMV-2-3)的三个片段。Using the aforementioned cDNA as a template, primers pCB301-PEMV-2-1F/PEMV-2-1R, PEMV-2-2F/PEMV-2-2R and PEMV-2-3F/pCB301-PEMV-2-3R were used to amplify PEMV-2, and three fragments of approximately 2264 bp (PEMV-2-1), 1344 bp (PEMV-2-2) and 740 bp (PEMV-2-3) in length were obtained.

其中,PCR扩增体系为20μL:5×PrimeSTAR GXL Buffer 4μL,dNTP mixture(2.5mMeach)1.6μL,上游引物0.6μL,下游引物0.6μL,PrimeSTAR GXL DNA Polymerase 0.4μL,ddH2O10.8μL,cDNA 2μL。(引物pCB301-PEMV-2-1F/PEMV-2-1R退火温度60℃,延伸2min30s;PEMV-2-2F/PEMV-2-2R退火温度60℃,延伸2mins;PEMV-2-3F/pCB301-PEMV-2-3R退火温度58℃,延伸1min),反应程序为98℃30s;98℃10s,Y℃15s,68℃Zmin,68℃10min;4℃保存。然后利用SanPrep Column DNAGel Extraction Kit试剂盒回收目的片段。The PCR amplification system was 20 μL: 5× PrimeSTAR GXL Buffer 4 μL, dNTP mixture (2.5 mM each) 1.6 μL, upstream primer 0.6 μL, downstream primer 0.6 μL, PrimeSTAR GXL DNA Polymerase 0.4 μL, ddH 2 O 10.8 μL, cDNA 2 μL. (Primers pCB301-PEMV-2-1F/PEMV-2-1R annealing temperature 60°C, extension 2 min 30 s; PEMV-2-2F/PEMV-2-2R annealing temperature 60°C, extension 2 mins; PEMV-2-3F/pCB301-PEMV-2-3R annealing temperature 58°C, extension 1 min), the reaction program was 98°C 30 s; 98°C 10 s, Y°C 15 s, 68°C Z min, 68°C 10 min; stored at 4°C. Then, the target fragment was recovered using the SanPrep Column DNA Gel Extraction Kit.

使用TaKaRa限制性内切酶Sma I和Stu I酶切pCB301双元载体,获得pCB301线性载体,反应体系:表达载体pCB301质粒20μL(0.8μg),1×QuickCut Green Buffer 5μL,限制性内切酶Sma I 1.0μL,ddH2O 23μL。反应条件:30℃温育2h。再加入1μL Stu I限制性内切酶,37℃温育2h。电泳验证后利用SanPrep Column DNA Gel Extraction Kit试剂盒进行产物回收。使用

Figure BDA0003986655120000091
Ultra One Step Cloning Kit试剂盒将PEMV-2-YDL三个片段的PCR产物连接到pCB301线性载体。TaKaRa restriction endonucleases Sma I and Stu I were used to digest the pCB301 binary vector to obtain the pCB301 linear vector. The reaction system included 20 μL (0.8 μg) of the expression vector pCB301 plasmid, 5 μL of 1×QuickCut Green Buffer, 1.0 μL of restriction endonuclease Sma I, and 23 μL of ddH2O. Reaction conditions: incubate at 30°C for 2 h. Then 1 μL of Stu I restriction endonuclease was added and incubated at 37°C for 2 h. After electrophoresis verification, the product was recovered using the SanPrep Column DNA Gel Extraction Kit.
Figure BDA0003986655120000091
The PCR products of the three fragments of PEMV-2-YDL were ligated to the pCB301 linear vector using the Ultra One Step Cloning Kit.

使用TaKaRa限制性内切酶Sma I和Stu I酶切pCB301双元载体,获得pCB301线性载体,反应体系:表达载体pCB301质粒20μL(0.8μg),1×QuickCut Green Buffer 5μL,限制性内切酶Sma I 1.0μL,ddH2O 23μL。反应条件:30℃温育2h。再加入1μL Stu I限制性内切酶,37℃温育2h。电泳验证后利用SanPrep Column DNA Gel Extraction Kit试剂盒进行产物回收。TaKaRa restriction endonucleases Sma I and Stu I were used to digest the pCB301 binary vector to obtain the pCB301 linear vector. The reaction system was as follows: 20 μL (0.8 μg) of the expression vector pCB301 plasmid, 5 μL of 1×QuickCut Green Buffer, 1.0 μL of restriction endonuclease Sma I, and 23 μL of ddH2O. Reaction conditions: incubate at 30°C for 2 h. Then 1 μL of Stu I restriction endonuclease was added and incubated at 37°C for 2 h. After electrophoresis verification, the product was recovered using the SanPrep Column DNA Gel Extraction Kit.

使用

Figure BDA0003986655120000092
Ultra One Step Cloning Kit试剂盒将PEMV-2-YDL三个片段的PCR产物连接到pCB301线性载体。通过冻融法将测序正确的重组质粒pCB301-PEMV-2转化到根癌农杆菌EHA105中。其中,同源重组体系为::2×ClonExpress Mix 10μL,片段PEMV-2-1 1μL,片段PEMV-2-2 1μL,片段PEMV-2-3 1μL,线性化pCB301载体7μL。反应条件:50℃温育30min。use
Figure BDA0003986655120000092
The Ultra One Step Cloning Kit was used to connect the PCR products of the three fragments of PEMV-2-YDL to the pCB301 linear vector. The correctly sequenced recombinant plasmid pCB301-PEMV-2 was transformed into Agrobacterium tumefaciens EHA105 by freeze-thaw method. Among them, the homologous recombination system was: 2×ClonExpress Mix 10μL, fragment PEMV-2-1 1μL, fragment PEMV-2-2 1μL, fragment PEMV-2-3 1μL, linearized pCB301 vector 7μL. Reaction conditions: incubate at 50℃ for 30min.

侵染性克隆载体的转化:Transformation with infectious cloning vectors:

(a)取1-10μL pCB301-PEMV-1/pCB301-PEMV-2质粒加入到EHA105感受态细胞中,冰上放置30min;(a) Add 1-10 μL of pCB301-PEMV-1/pCB301-PEMV-2 plasmid to EHA105 competent cells and place on ice for 30 min;

(b)液氮中放置5min;(b) Place in liquid nitrogen for 5 min;

(c)37℃水浴5min;(c) 37°C water bath for 5 min;

(d)冰上放置2min;(d) Place on ice for 2 min;

(e)超净工作台内加入不含抗生素的LB液体培养基890μL,28℃,220rpm,摇菌3-4h;(e) Add 890 μL of LB liquid medium without antibiotics into the clean bench and shake the culture at 28°C, 220 rpm for 3-4 h;

(f)5000rpm,5min,去上清,剩100μL重悬沉淀,将液体涂布于含100μg/ml Kan+Rif的LB固体培养基上,28℃倒置培养36-48h;(f) 5000 rpm, 5 min, remove the supernatant, leaving 100 μL of resuspended precipitate, spread the liquid on LB solid medium containing 100 μg/ml Kan+Rif, and culture inverted at 28°C for 36-48 h;

(g)挑取单班(单菌落)加入到3ml含100μg/ml Kan+Rif的LB液体培养基中28℃摇菌36-48h。(g) Pick a single colony and add it to 3 ml of LB liquid medium containing 100 μg/ml Kan+Rif and shake at 28°C for 36-48 h.

侵染性克隆载体的扩摇:Propagation of infectious cloning vectors:

(a)准备一定数量的灭菌试管(能装入足够浸根的LB培养基的量),加入LB培养基至试管的2/3处;(a) Prepare a certain number of sterile test tubes (enough to hold LB medium for root immersion) and add LB medium to 2/3 of the test tubes;

(b)每根试管加入0.1-1ml的转化菌液,在摇床中扩摇8-10小时,至适宜的菌液浓度即可。(b) Add 0.1-1 ml of transformed bacterial solution to each test tube and shake in a shaker for 8-10 hours until the bacterial solution reaches an appropriate concentration.

基于侵染性克隆通过农杆菌浸根接种:Infectivity-based cloning by Agrobacterium root dip inoculation:

(a)将豌豆种子加水浸泡,约2天后,豌豆种子冒出1-2cm的根(图1);(a) Soak pea seeds in water. After about 2 days, pea seeds will have roots of 1-2 cm in length (Figure 1);

(b)将冒根的豌豆种子放入一个容器内,加入含PEMV的侵染性克隆载体(OD600在0.5-1.0之间)的LB培养基至刚好没过豌豆种子的根(图2)(在浸根之前,对豌豆种子的根进行刺破处理,效果更佳,具体操作为:从根的基部至端部使用细针(绣花针即可)轻轻刺破3至4个孔,注意不要对根造成太大损伤)(图1);(b) Place the rooted pea seeds in a container, add LB medium containing the infectious cloning vector of PEMV ( OD600 between 0.5-1.0) until the roots of the pea seeds are just covered (Figure 2) (Before soaking the roots, pierce the roots of the pea seeds for better results. The specific operation is: use a fine needle (embroidery needle) to gently pierce 3 to 4 holes from the base to the end of the root, and be careful not to cause too much damage to the root) (Figure 1);

(c)放入设定为28℃、100%光照度的培养箱中培养3个小时后,倒出LB培养基(注意不要完全倒尽,以免之后的培养种子过于干燥),容器口套住一个透明袋子继续在培养箱中培养6个小时;(c) After culturing in an incubator set at 28°C and 100% illumination for 3 hours, pour out the LB medium (be careful not to pour out completely to prevent the cultured seeds from drying out too much), cover the container with a transparent bag, and continue culturing in the incubator for 6 hours;

(d)将培养好的种子用清水润洗一遍(去除种子表面的LB培养基)后播种。(d) Rinse the cultured seeds with clean water (to remove the LB medium on the surface of the seeds) and then sow them.

侵染性的测定:Determination of infectivity:

通过预实验(含PEMV-1、PEMV-2侵染性克隆载体的LB培养基的OD600值为0.5左右,18℃下培养2h,继续放置培养24h)发现,通过对根已突破种皮的豌豆品种“粉红花荚豆王”进行农杆菌浸根处理,利用引物PEMV1-CP-F/PEMV1-CP-R和PEMV2-ORF3-F/PEMV2-ORF3-R进行RT-PCR检测(图3),结果PEMV-1、PEMV-2的检出率分别为83.3%、50%。Through preliminary experiments (the OD600 value of the LB culture medium containing the infectious cloning vectors of PEMV-1 and PEMV-2 was about 0.5, cultured at 18°C for 2 hours, and then cultured for another 24 hours), it was found that by treating the roots of the pea variety "Pink Flower Pod King" whose roots had broken through the seed coat with Agrobacterium, RT-PCR detection was performed using primers PEMV1-CP-F/PEMV1-CP-R and PEMV2-ORF3-F/PEMV2-ORF3-R (Figure 3), the detection rates of PEMV-1 and PEMV-2 were 83.3% and 50%, respectively.

接着进行了第二批浸根实验(含PEMV-1、PEMV-2侵染性克隆载体的LB培养基的OD600值为0.5左右,28℃下培养2h,继续放置培养12h)的检测(表1):在浸根的种子播种后第10天,利用引物PEMV1-CP-F/PEMV1-CP-R和PEMV2-ORF3-F/PEMV2-ORF3-R对同时浸根接种了pCB301-PEMV-1和pCB301-PEMV-2的两个豌豆品种进行PCR检测(图4-图7)。检测结果如下表所示:Then the second batch of root dipping experiments (LB medium containing PEMV-1 and PEMV-2 infectious cloning vectors with an OD 600 value of about 0.5, cultured at 28°C for 2 hours, and then placed for 12 hours) was tested (Table 1): On the 10th day after sowing the root-dipped seeds, primers PEMV1-CP-F/PEMV1-CP-R and PEMV2-ORF3-F/PEMV2-ORF3-R were used to perform PCR tests on two pea varieties that were simultaneously root-dipped and inoculated with pCB301-PEMV-1 and pCB301-PEMV-2 (Figures 4-7). The test results are shown in the following table:

表1PEMV-1与PEMV-2在不同处理的不同豌豆品种上的系统侵染率Table 1 Systemic infection rates of PEMV-1 and PEMV-2 in different pea varieties under different treatments

Figure BDA0003986655120000101
Figure BDA0003986655120000101

Figure BDA0003986655120000111
Figure BDA0003986655120000111

第二批检测结果表明了本实验中豌豆耳突花叶病毒能够成功地侵染豌豆植株,并且效果较好,说明本发明基于侵染性克隆通过农杆菌浸根的方法接种豌豆植株具有可行性。综合PEMV-1、PEMV-2的检测结果,根刺破处理的检出率均高于不刺破处理,说明根刺破处理有助于PEMV的侵染。The second batch of test results showed that the pea ear mosaic virus could successfully infect pea plants in this experiment, and the effect was good, indicating that the method of inoculating pea plants by Agrobacterium root dipping based on infectious clones is feasible. Based on the test results of PEMV-1 and PEMV-2, the detection rate of root puncture treatment was higher than that of non-puncture treatment, indicating that root puncture treatment is conducive to PEMV infection.

之后又进行了第三批浸根实验(含PEMV-1、PEMV-2侵染性克隆载体的LB培养基的OD600值为0.8左右,28℃下培养3h,继续放置培养6h),除了在处理条件上进行了改进(图8-10),还设置了pCB301-PEMV-1和pCB301-PEMV-2的单独浸根接种(播种后第14天检测)(图11-12)(表2)以及pCB301-PEMV-1和pCB301-PEMV-2的复合摩擦接种和单独摩擦接种(摩擦接种后第14天检测;混合样1-4为同时接种pCB301-PEMV-1和pCB301-PEMV-2-,混合样5为只接种pCB301-PEMV-1,混合样6-7为只接种pCB301-PEMV-2)(图13-14)(表3)。检测结果如下表所示:After that, the third batch of root immersion experiments was conducted (the OD 600 value of the LB culture medium containing the infectious cloning vectors of PEMV-1 and PEMV-2 was about 0.8, cultured at 28°C for 3 hours, and then placed for 6 hours). In addition to the improvement in the treatment conditions (Figures 8-10), separate root immersion inoculation of pCB301-PEMV-1 and pCB301-PEMV-2 was set up (tested on the 14th day after sowing) (Figures 11-12) (Table 2) and composite friction inoculation and separate friction inoculation of pCB301-PEMV-1 and pCB301-PEMV-2 (tested on the 14th day after friction inoculation; mixed samples 1-4 were inoculated with pCB301-PEMV-1 and pCB301-PEMV-2 at the same time, mixed sample 5 was inoculated with only pCB301-PEMV-1, and mixed samples 6-7 were inoculated with only pCB301-PEMV-2) (Figures 13-14) (Table 3). The test results are shown in the following table:

表2PEMV-1与PEMV-2在不同处理的豌豆植株上的系统侵染率Table 2 Systemic infection rates of PEMV-1 and PEMV-2 in pea plants under different treatments

Figure BDA0003986655120000112
Figure BDA0003986655120000112

表3PEMV-1与PEMV-2经摩擦接种后,在豌豆植株上的系统侵染率Table 3 Systemic infection rate of PEMV-1 and PEMV-2 on pea plants after friction inoculation

Figure BDA0003986655120000113
Figure BDA0003986655120000113

第三批浸根接种的检测结果表明PEMV有较高的侵染率,其中根刺破处理的PEMV侵染率大于不刺破处理的,且PEMV-2的侵染率大于PEMV-1的检出率,而第二批的检测结果是PEMV-1的检出率大于PEMV-2,推测可能是菌液OD600值不同导致的差异。此外,PEMV-1或PEMV-2单独浸根接种时也能成功侵染豌豆,且侵染率较高。从摩擦接种的结果来看,PEMV-1和PEMV-2的侵染率显著低下。PEMV-1+PEMV-2同时浸根接种20天后,豌豆植株开始出现症状,但单独接种PEMV-1或PEMV-2的豌豆植株没有出现症状。(图15)。以上结果表明,与摩擦接种的方法相比,本发明的接种方法能使PEMV有效侵染豌豆植株,方便且省时。The test results of the third batch of root immersion inoculation showed that PEMV had a higher infection rate, among which the PEMV infection rate of the root puncture treatment was greater than that of the non-puncture treatment, and the infection rate of PEMV-2 was greater than the detection rate of PEMV-1, while the test results of the second batch showed that the detection rate of PEMV-1 was greater than that of PEMV-2. It is speculated that the difference may be caused by the different OD 600 values of the bacterial solution. In addition, PEMV-1 or PEMV-2 can also successfully infect peas when inoculated by root immersion alone, and the infection rate is relatively high. From the results of friction inoculation, the infection rates of PEMV-1 and PEMV-2 are significantly low. After 20 days of simultaneous root immersion inoculation of PEMV-1+PEMV-2, pea plants began to show symptoms, but pea plants inoculated with PEMV-1 or PEMV-2 alone did not show symptoms. (Figure 15). The above results show that compared with the friction inoculation method, the inoculation method of the present invention can enable PEMV to effectively infect pea plants, which is convenient and time-saving.

PEMV-1全长序列:(基因登录号:OP113929);PEMV-1 full-length sequence: (Gene accession number: OP113929);

PEMV-2全长序列:(基因登录号:OP113928)。PEMV-2 full-length sequence: (Gene accession number: OP113928).

以上所述的仅是本发明的部分具体实施例,方案中公知的具体内容或常识在此未作过多描述(包括但不仅限于简写、缩写、本领域惯用的单位)。应当指出,上述实施例不以任何方式限制本发明,对于本领域的技术人员来说,凡是采用等同替换或等效变换的方式获得的技术方案均落在本发明的保护范围内。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。The above are only some specific embodiments of the present invention. The known specific contents or common sense in the scheme are not described in detail here (including but not limited to abbreviations, abbreviations, and units commonly used in the art). It should be pointed out that the above embodiments do not limit the present invention in any way. For those skilled in the art, all technical solutions obtained by equivalent substitution or equivalent transformation fall within the protection scope of the present invention. The scope of protection required by this application shall be based on the content of its claims, and the specific implementation methods and other records in the specification can be used to interpret the content of the claims.

Claims (10)

1. A primer for detecting PEMV-1, wherein the primer is:
PEMV-1-801-F:5’-AGTTCGTCCTGGTGTCCTGG-3’;
PEMV-1-801-R:5’-CATACCACTTCCCATCCCGC-3’。
2. a primer for detecting PEMV-2, wherein the primer is:
PEMV-2-483-F:5’-TTCAGGAGCACCCGAAACAC-3’;
PEMV-2-483-R:5’-CGTAGTGAGAGGCATGGCAT-3’。
3. the primer according to claim 1 or 2, wherein the reaction system is: 5 μ L of Tap mix, 3.6 μ L of dd H 2 O, 0.2. Mu.L Primer (For) and 0.2. Mu.L Primer (Rev), 1. Mu.L cDNA;
the reaction procedure is as follows: 3min at 94 ℃; 30s at 94 ℃, 30s at 56 ℃, 50s at 72 ℃,35cycles; 5min at 72 ℃.
4. A primer for amplifying 5 'and 3' terminal sequences of the genome of PEMV-1, wherein the primer is:
PEMV-1 5'RACE-GSP:5'-GCGGTAGTTGAGGCTGCTCAATTCC-3';
PEMV-1 3'RACE-GSP:5'-AGGCCAGGAGTTCTCTGCCTGTGAG-3'。
5. a primer for amplifying 5 'and 3' terminal sequences of the PEMV-2 genome, wherein the primer is:
PEMV-2 5'RACE-GSP:5'-TACTGTCAGCATCGCGGCGCGCTCG-3';
PEMV-2 3'RACE-GSP:5'-ACACCCTGCCACGAGGTGCGTGGA-3'。
6. a method for amplifying PEMV-1, wherein the PEMV-1 is divided into three fragments: PEMV-1-1, PEMV-1-2 and PEMV-1-3; the fragments PEMV-1-1, PEMV-1-2 and PEMV-1-3 of PEMV-1 are respectively amplified by using primer sets pCB301-PEMV-1-1F/PEMV-1-1R, PEMV-1-2F/PEMV-1-2R and PEMV-1-3F/pCB 301-PEMV-1-3R;
the primer sequence of PEMV-1 is as follows:
pCB301-PEMV-1-1F:
5’-AGTTCATTTCATTTGGAGAGGGTGAAATAATTGTAAGAAAGCTCTAG-3’;
PEMV-1-1R:
5’-TTGTTACGAATCTTCTCCATCTTATGTGGTTCCAGC-3’;
PEMV-1-2F:5’-GGAACCACATAAGATGGAGAAGATTCGTAACAAGCGC-3’;
PEMV-1-2R:
5’-CGACCGAAAGTGGCAGACCCATTGGAACGA-3’;
PEMV-1-3F:
5’-ATGGGTCTGCCACTTTCGGTCGTGAAATTC-3’;
pCB301-PEMV-1-3R:
5 'GAGATGCCATGCCGACCTGCGATAATCCCATGAAAACGCTG-3'; the PCR amplification system of the method is 20 mu L:5 XPrimeSTAR GXL Buffer 4. Mu.L, dNTP mix (2.5 mM each) 1.6. Mu.L, upstream primer 0.6. Mu.L, downstream primer 0.6. Mu.L, primeSTAR GXL DNA polymerase 0.4. Mu.L, dd H 2 O10.8. Mu.L, cDNA 2. Mu.L; the annealing temperature of the primer pCB301-PEMV-1-1F/PEMV-1-1R is 54.5 ℃, and the extension is 3min; the annealing temperature of the PEMV-1-2F/PEMV-1-2R is 60 ℃, and the extension time is 3min; the annealing temperature of the PEMV-1-3F/pCB301-PEMV-1-3R is 60 ℃, and the extension is 2min; the reaction procedure is as follows: 30s at 98 ℃; 10s at 98 ℃, 15s at Y ℃, and Zmin at 68 ℃;10 min at 68 ℃; storing at 4 ℃.
7. A method for amplifying PEMV-2, wherein the PEMV-2 is divided into three fragments: PEMV-2-1, PEMV-2-2 and PEMV-2-3; respectively amplifying fragments PEMV-2-1, PEMV-2-2 and PEMV-2-3 of PEMV-2 by using primer sets pCB301-PEMV-2-1F/PEMV-2-1R, PEMV-2-2F/PEMV-2-2R and PEMV-2-3F/pCB 301-PEMV-2-3R;
the primer sequences of PEMV-2 are as follows:
pCB301-PEMV-2-1F:
5’-AGTTCATTTCATTTGGAGAGGGGGTATTTATAGAGATCGGTATGAAC-3’;
PEMV-2-1R:
5’-CGTTCTTCCATAAAGGGTGTGACTGGCACTTAGTCC-3’;
PEMV-2-2F:
5’-CTAAGTGCCAGTCACACCCYYTATGGAAGAACGARGGG-3’;
PEMV-2-2R:
5’-GCGAAGCCTCACTTAGAAGCCTGGGTACACA-3’;
PEMV-2-3F:
5’-ACCCAGGCTTCTAAGTGAGGCTTMGCTTCC-3’;
pCB301-PEMV-2-3R:
5’-GAGATGCCATGCCGACCCGGGCGCCAGGGAGGTAACCACCTGGC-3’;
the PCR amplification system of the method is 20 mu L:5 XPrimeSTAR GXL Buffer 4. Mu.L, dNTP mix (2.5 mM each) 1.6. Mu.L, forward primer 0.6. Mu.L, downstream primer 0.6. Mu.L, primeSTAR GXL DNA Polymerase 0.4. Mu.L, dd H 2 O10.8. Mu.L, cDNA 2. Mu.L; annealing the primer pCB301-PEMV-2-1F/PEMV-2-1R at 60 ℃, and extending for 2min and 30s; the annealing temperature of the PEMV-2-2F/PEMV-2-2R is 60 ℃, and the extension is 2mins; the annealing temperature of the PEMV-2-3F/pCB301-PEMV-2-3R is 58 ℃, the extension is 1min, and the reaction program is 98 ℃ for 30s; 10s at 98 ℃, 15s at Y ℃, zmin at 68 ℃ and 10min at 68 ℃; storing at 4 ℃.
8. A primer set for determining the infectivity of PEMV-1 and PEMV-2, wherein the primer set comprises:
PEMV-1-CP-F:5'-ATGCCGACTAGATCGAAATC-3';
PEMV-1-CP-R:5'-TCAGAGGGAGGCATTCATTA-3';
PEMV2-ORF3-F:5'-ATGACGATAATCATTAATG-3';
PEMV2-ORF3-R:5'-TCACCCGTAGTGAGAGGCA-3'。
9. a construction method of an auris mosaic virus infectious cloning vector is characterized by comprising the following steps: step 1): extracting total RNA of pea plants infected with PEMV-1 and PEMV-2 simultaneously;
step 2): dividing the PEMV-1 and the PEMV-2 into three fragments for amplification to obtain full-length nucleotide sequences of the PEMV-1 and the PEMV-2;
and step 3): designing a whole genome sequence amplification primer based on genome sequences of the PEMV-1 and the PEMV-2 and a binary vector pCB301-2X35S-MCS-HDVRZ-NOS-1, dividing the PEMV-1 and the PEMV-2 into 3 fragments for amplification, wherein the tail ends of the fragments have nucleotide overlap of 21-33 bp;
and step 4): the primer group pCB301-PEMV-1-1F/PEMV-1-1R, PEMV-1-2F/PEMV-1-2R and PEMV-1-3F/pCB301-PEMV-1-3R is used for amplifying PEMV-1-1, PEMV-1-2 and PEMV-1-3 fragments of PEMV-1;
the PCR reaction was performed using cDNA of the PEMV-1 isolate as a template, and the amplified PCR product was ligated into the binary vector pCB301; transforming the recombinant plasmid pCB301-PEMV-1 with correct sequencing into agrobacterium tumefaciens EHA105 by a freeze-thawing method;
and step 5): the other primer pairs pCB301-PEMV-2-1F/PEMV-2-1R, PEMV-2-2F/PEMV-2-2R and PEMV-2-3F/pCB301-PEMV-2-3R respectively amplify the fragments PEMV-2-1, PEMV-2-2 and PEMV-2-3 of the PEMV-2;
the PCR reaction was performed using cDNA of the PEMV-2 isolate as a template, and the amplified PCR product was ligated into the binary vector pCB301; transforming the recombinant plasmid pCB301-PEMV-2 with correct sequencing into agrobacterium tumefaciens EHA105 by a freeze-thawing method;
step 6): root soaking of agrobacterium: placing the rooted pea seeds on OD 600 Soaking in LB culture medium containing PEMV-1 and PEMV-2 infectious cloning vectors for 2-3 hr at 28 deg.C, completely pouring out the strain, co-culturing under the same conditions for 6-7 hr, and sowing.
10. The method according to claim 9, wherein the step 6) is agrobacterium rhizolysis: placing the rooted pea seeds on OD 600 The agrobacterium of = (0.5-1.0) containing the PEMV-1 and PEMV-2 infectious cloning vectors was immersed in LB medium in an incubator at 28 ℃ for 3 hours, and after 3 hours, the suspension was not completely poured out, and the mixture was cultured under the same conditions for 6 hours, and then seeded.
CN202211567418.1A 2022-12-07 2022-12-07 A method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones Pending CN115927757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211567418.1A CN115927757A (en) 2022-12-07 2022-12-07 A method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211567418.1A CN115927757A (en) 2022-12-07 2022-12-07 A method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones

Publications (1)

Publication Number Publication Date
CN115927757A true CN115927757A (en) 2023-04-07

Family

ID=86648612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211567418.1A Pending CN115927757A (en) 2022-12-07 2022-12-07 A method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones

Country Status (1)

Country Link
CN (1) CN115927757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769977A (en) * 2023-08-18 2023-09-19 云南农业大学 PEMV-1, BYMV and BrYV one-step method multiplex RT-PCR detection kit and detection method
CN116926121A (en) * 2023-09-19 2023-10-24 云南农业大学 Infectious cloning vector of Chonglou mosaic necrosis virus carrying GFP gene and its construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498521A (en) * 2014-11-27 2015-04-08 浙江省农业科学院 Infectious clone vector of cucumber green mottle mosaic virus (CGMMV), agrobacterium strain and preparation method and application of infectious clone vector of cucumber green mottle mosaic virus (CGMMV)
CN105296526A (en) * 2015-09-02 2016-02-03 中国农业科学院郑州果树研究所 Infectious clone vector of melon necrotic spot virus and construction method of infectious clone vector
CN109609546A (en) * 2018-12-18 2019-04-12 中国农业大学 Development and application of a plant multipartite virus vector
CN113215189A (en) * 2021-05-19 2021-08-06 中国农业科学院植物保护研究所 Infectious cloning vector of tomato brown wrinkle fruit virus and construction method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104498521A (en) * 2014-11-27 2015-04-08 浙江省农业科学院 Infectious clone vector of cucumber green mottle mosaic virus (CGMMV), agrobacterium strain and preparation method and application of infectious clone vector of cucumber green mottle mosaic virus (CGMMV)
CN105296526A (en) * 2015-09-02 2016-02-03 中国农业科学院郑州果树研究所 Infectious clone vector of melon necrotic spot virus and construction method of infectious clone vector
CN109609546A (en) * 2018-12-18 2019-04-12 中国农业大学 Development and application of a plant multipartite virus vector
CN113215189A (en) * 2021-05-19 2021-08-06 中国农业科学院植物保护研究所 Infectious cloning vector of tomato brown wrinkle fruit virus and construction method and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEMLER S. A.等: ""Pea enation mosaic virus-1,complete genome;NCBI Reference Sequence: NC_003629.1"", 《NCBI GENBANK》, 13 August 2018 (2018-08-13), pages 1 - 4 *
DEMLER S. A.等: ""Pea enation mosaic virus-2,complete genome;NCBI Reference Sequence: NC_003853.1"", 《NCBI GENBANK》, 13 August 2018 (2018-08-13), pages 1 - 3 *
XIAOJIAO CHEN等: ""Molecular characteristics and pathogenicity of infectious cDNA clones of the Chinese isolates of pea enation mosaic virus 1 and pea enation mosaic virus 2"", 《PHYTOPATHOLOGY RESEARCH》, vol. 5, 25 April 2023 (2023-04-25), pages 1 - 15 *
XIAOJIAO CHEN等: ""The occurrence of Pea enation mosaic virus 1 and Pea enation mosaic virus 2 from disease-affected pea fields in China"", 《PLANT DIS》, 27 August 2020 (2020-08-27) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769977A (en) * 2023-08-18 2023-09-19 云南农业大学 PEMV-1, BYMV and BrYV one-step method multiplex RT-PCR detection kit and detection method
CN116769977B (en) * 2023-08-18 2023-11-03 云南农业大学 PEMV-1, BYMV, BrYV one-step multiplex RT-PCR detection kit and detection method
CN116926121A (en) * 2023-09-19 2023-10-24 云南农业大学 Infectious cloning vector of Chonglou mosaic necrosis virus carrying GFP gene and its construction method
CN116926121B (en) * 2023-09-19 2024-01-26 云南农业大学 Infectious cloning vector of Chonglou mosaic necrosis virus carrying GFP gene and its construction method

Similar Documents

Publication Publication Date Title
CN109679993B (en) A kind of construction method of transgenic plant mediated by Agrobacterium rhizogenes
CN102559666B (en) Plant virus inhibitory artificial miRNA (microRNA) and construction and application thereof
CN115927757A (en) A method for efficient screening of antiviral germplasm resources based on PEMV-1 and PEMV-2 invasive clones
CN114634941B (en) Upland cotton GhPP2Cs gene and application thereof in plant dwarfing
CN113652447A (en) Highly efficient gene silencing method in peach leaves based on VIGS
CN104388463B (en) The gene silencing system of cucumber mosaic virus induction and its application
CN115772212A (en) Chloroplast MsSAP22 Gene of Alfalfa and Its Application in Improving Plant Drought Resistance
CN110128520A (en) Phyllostachys pubescens PheHDZ45 protein and its coding gene and application
CN107056908B (en) Soybean Salt Tolerance Gene GmCHS5 and Its Application
CN108949809A (en) A kind of method of the carrier mediated Gene Silencing of Fructus Forsythiae blade TRV
JP6350995B2 (en) Nucleic acid molecules and methods for expressing foreign genes in plants
CN114591984B (en) Application of OsAP79 gene in inducing rice to resist brown planthoppers
CN114150003B (en) Application of cucumber green mottle mosaic virus gene interval region in resistant tobacco cultivation
CN106434689B (en) A kind of plant disease-resistant indispensable gene ShORR-1 and its application
CN108642080A (en) A kind of agriculture bacillus mediated Chinese cabbage transgenic method
CN112195178B (en) Tomato late blight resistance long non-coding RNA-lncRNA40787 and its cloning method and application method
CN114480481A (en) Hemerocallis fulva PDS gene VIGS silencing system and application thereof
CN115820660A (en) Hemerocallis fulva PDS gene VIGS silencing system and application thereof
CN114807166A (en) Liriodendron transcription factor LcbHLH02399 gene and expression protein and application thereof
CN104313051B (en) A kind of method for cultivating anti-TYLCV tomatoes high
CN114921490A (en) A method for genetic transformation of white clover callus mediated by Agrobacterium
CN116445540B (en) A method for constructing an infectious clone of sweet potato leaf curl virus and an efficient and simple infection method for sweet potatoes
CN110106172B (en) A kind of long non-coding RNA and its application in regulating plant low temperature tolerance
CN110643617A (en) Rice grain weight related OsGASR9 gene, application thereof, protein, expression vector and transgenic rice method
CN115807007B (en) Application of NbWhirly1 gene of Nicotiana benthamiana in regulating plant resistance to geminiviruses and method for breeding transgenic plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination