CN115863279A - A high overload capacity power module based on the metal block design on the top of the chip - Google Patents
A high overload capacity power module based on the metal block design on the top of the chip Download PDFInfo
- Publication number
- CN115863279A CN115863279A CN202211730406.6A CN202211730406A CN115863279A CN 115863279 A CN115863279 A CN 115863279A CN 202211730406 A CN202211730406 A CN 202211730406A CN 115863279 A CN115863279 A CN 115863279A
- Authority
- CN
- China
- Prior art keywords
- chip
- power module
- metal block
- convex part
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 63
- 239000002184 metal Substances 0.000 title claims abstract description 63
- 229910052802 copper Inorganic materials 0.000 claims abstract description 46
- 239000010949 copper Substances 0.000 claims abstract description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000000919 ceramic Substances 0.000 claims abstract description 41
- 229910000679 solder Inorganic materials 0.000 claims abstract description 34
- 239000007769 metal material Substances 0.000 claims abstract description 21
- 239000011810 insulating material Substances 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 238000003466 welding Methods 0.000 claims abstract description 5
- 238000010521 absorption reaction Methods 0.000 claims abstract 2
- 239000010410 layer Substances 0.000 claims description 56
- 238000005476 soldering Methods 0.000 claims description 9
- 230000005684 electric field Effects 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 230000004907 flux Effects 0.000 claims 3
- 238000000034 method Methods 0.000 abstract description 5
- 230000004044 response Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 239000012782 phase change material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 241001672018 Cercomela melanura Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体器件技术领域,尤其涉及一种基于芯片顶部金属块设计的高过载能力功率模块。The invention relates to the technical field of semiconductor devices, in particular to a power module with high overload capability designed based on a metal block on the top of a chip.
背景技术Background technique
电力电子系统中,存在短时过载工况。例如,电网系统黑启动模式下的浪涌电流为额定电流的3倍且持续4.4s;电动汽车在满载启动和加速爬坡阶段,加速爬坡阶段,电机输出转矩大,为了保证电机的动态性能,电机控制器此时可能直接处于1.5倍持续10s甚至更长时间的短时过载状态;电力系统继电保护动作时,故障电流为额定电流的2倍持续时间为0.12s。In power electronic systems, there are short-term overload conditions. For example, in the black start mode of the power grid system, the inrush current is three times the rated current and lasts for 4.4s; when the electric vehicle starts at full load and accelerates uphill, the motor output torque is large during the acceleration uphill phase, in order to ensure the dynamic performance of the motor Performance, the motor controller may be directly in a short-term overload state of 1.5 times for 10s or even longer; when the power system relay protection operates, the fault current is twice the rated current for 0.12s.
功率器件的总损耗主要由开关损耗和导通损耗两部分组成:Ptot=Psw+Pdc=(Eon+Eoff)*fsw+D*V*I,其中Ptot为功率芯片总损耗;Psw为开关损耗;Pdc为导通损耗;Eon为开通损耗;Eoff为关断损耗;fsw为开关频率;D为占空比;V为导通压降;I为导通电流。一方面,导通电流越大,导通压降越大,导通损耗也越大;另一方面,导通电流越大,开通损耗和关断损耗越大,开关损耗也越大。当电力电子系统处于过载状态下,器件承受的电流为额定电流的数倍,损耗迅速增大,结温急速上升,对于功率器件可靠性带来巨大挑战。因此,提升功率器件短时过载能力对电力电子系统安全可靠运行具有重要意义。The total loss of power devices is mainly composed of switching loss and conduction loss: P tot =P sw +P dc =(E on +E off )*f sw +D*V*I, where P tot is the total power chip loss; P sw is switching loss; P dc is conduction loss; E on is turn-on loss; E off is turn-off loss; f sw is switching frequency; D is duty cycle; V is conduction voltage drop; I is conduction Pass current. On the one hand, the larger the conduction current, the greater the conduction voltage drop, and the greater the conduction loss; on the other hand, the larger the conduction current, the greater the turn-on loss and turn-off loss, and the greater the switching loss. When the power electronic system is in an overload state, the current that the device bears is several times the rated current, the loss increases rapidly, and the junction temperature rises rapidly, which poses a huge challenge to the reliability of the power device. Therefore, improving the short-term overload capability of power devices is of great significance to the safe and reliable operation of power electronic systems.
功率器件的短时过载能力与芯片结构、封装结构和栅极驱动状态有关。根据功率模块Cauer热网络模型,如图1所示,在功率模块运行过程中,结温由功率损耗和结壳热阻的乘积决定,功率模块结壳热阻由其各层材料的RC热网络模型构成:The short-term overload capability of power devices is related to chip structure, package structure and gate drive state. According to the Cauer thermal network model of the power module, as shown in Figure 1, during the operation of the power module, the junction temperature is determined by the product of the power loss and the junction-to-case thermal resistance, and the junction-to-case thermal resistance of the power module is determined by the RC thermal network of each layer of material Model composition:
其中Zthjc为功率模块结壳阻抗;Ri为第i层热阻;Ci为第i层热容。因此,在封装层面,存在两种基本方法提升功率器件短时过载能力:一是降低封装结构的热阻;二是增大封装结构的热容。Where Z thjc is the junction-to-case impedance of the power module; R i is the thermal resistance of the i-th layer; C i is the heat capacity of the i-th layer. Therefore, at the packaging level, there are two basic methods to improve the short-term overload capability of power devices: one is to reduce the thermal resistance of the packaging structure; the other is to increase the thermal capacity of the packaging structure.
重庆大学提出通过在传统功率模块中填充相变材料的方法提升其短时过载能力,如图2所示,该功率模块包括基板,陶瓷覆铜板,相变模块和功率端子;基板上表面呈长方形,多块陶瓷覆铜板分别设置在基板上,陶瓷覆铜板之间通过铜排连接;相变模块设置在陶瓷覆铜板上,多块功率端子设置在功率端子安装端上;相变模块包含传热增强框架和密封盖,传热增强框架里面填充有相变材料;密封盖的外表面还焊接有功率半导体芯片。该技术通过提高功率模块瞬时热容以抑制过载工况下功率模块结温。但是,传统功率模块等效热容低、等效暂态热阻大,短时过载能力不足,难以满足电力电子系统实际运用需求,易发生热失效造成系统运行崩溃等安全问题。而且上述相变功率模块将相变材料填充于芯片与陶瓷覆铜板间,增大了功率模块正常工作时热阻,传热增强框架温度升高时与芯片间将会产生热应力可能损坏芯片,且其工艺难度大实现较为困难,所需相变材料成本较高,制作实施成本高。Chongqing University proposed to improve its short-term overload capability by filling phase-change materials in traditional power modules. As shown in Figure 2, the power module includes a substrate, a ceramic copper-clad laminate, a phase-change module and power terminals; the upper surface of the substrate is rectangular , a plurality of ceramic copper clad laminates are arranged on the substrate respectively, and the ceramic copper clad laminates are connected by copper bars; the phase change module is arranged on the ceramic copper clad laminate, and a plurality of power terminals are arranged on the power terminal installation end; the phase change module includes heat transfer The reinforced frame and the sealed cover are filled with phase change materials inside the heat transfer enhanced frame; the outer surface of the sealed cover is also welded with power semiconductor chips. This technology suppresses the junction temperature of the power module under overload conditions by increasing the instantaneous heat capacity of the power module. However, traditional power modules have low equivalent thermal capacity, large equivalent transient thermal resistance, insufficient short-term overload capability, and are difficult to meet the actual application requirements of power electronic systems, and are prone to thermal failures that cause system crashes and other safety issues. Moreover, the above-mentioned phase-change power module fills the phase-change material between the chip and the ceramic copper-clad laminate, which increases the thermal resistance of the power module during normal operation. When the temperature of the heat transfer enhancement frame rises, thermal stress will be generated between the chip and the chip, which may damage the chip. Moreover, the process is difficult to realize, the cost of the required phase change material is relatively high, and the cost of production and implementation is high.
需要说明的是,在上述背景技术部分公开的信息只用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。It should be noted that the information disclosed in the background section above is only used to enhance the understanding of the background of the present disclosure, and therefore may include information that does not constitute the prior art known to those of ordinary skill in the art.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点,提供了一种基于芯片顶部金属块设计的高过载能力功率模块,解决了传统功率模块存在的问题。The purpose of the present invention is to overcome the disadvantages of the prior art, provide a high overload capacity power module based on the metal block design on the top of the chip, and solve the problems existing in the traditional power module.
本发明的目的通过以下技术方案来实现:一种基于芯片顶部金属块设计的高过载能力功率模块,它包括从下到上依次设置的基板、第二焊料层、陶瓷覆铜板下铜层、陶瓷覆铜板陶瓷层、陶瓷覆铜板上铜层、第一焊料层和芯片;The purpose of the present invention is achieved through the following technical solutions: a high overload capacity power module designed based on the metal block on the top of the chip, which includes a substrate, a second solder layer, a lower copper layer of a ceramic copper clad laminate, and a ceramic The ceramic layer of the copper clad laminate, the copper layer of the ceramic copper clad laminate, the first solder layer and the chip;
在所述芯片的上方通过第三焊料层焊接有提升热容以增强功率模块过载能力的金属块,同时金属块通过第一焊料层焊接于陶瓷覆铜板上铜层上,在芯片的两侧设置有用于填充绝缘材料的空隙,防止功率模块被高电场击穿,在金属块内填充有高比热容的金属材料,通过金属材料快速吸收芯片短时过载时所产生的热量,增强功率模块的过载能力。On the top of the chip, a metal block that improves the heat capacity to enhance the overload capacity of the power module is welded through the third solder layer, and at the same time, the metal block is welded to the copper layer of the ceramic copper-clad board through the first solder layer, and is arranged on both sides of the chip There are gaps for filling insulating materials to prevent the power module from being broken down by high electric fields. The metal block is filled with metal materials with high specific heat capacity, and the metal materials can quickly absorb the heat generated by the chip when it is overloaded for a short time, and enhance the overload capacity of the power module. .
所述金属块包括通过真空回流焊技术将金属块经由第三焊料层焊接于所述芯片上的中间凸出部,所述中间凸出部分别向芯片左右两侧以半径为r的圆弧向上延伸,然后横向延伸距离d,再垂直向下延伸距离h,得到左侧凸出部和右侧凸出部,并在左侧凸出部和中间凸出部以及右侧凸出部和中间凸出部之间形成用于填充绝缘材料的空隙,防止功率模块被高电场击穿,在中间凸出部内填充有高比热容的金属材料;The metal block includes a middle protruding part that welds the metal block to the chip via the third solder layer by vacuum reflow soldering technology, and the middle protruding part goes upwards to the left and right sides of the chip with an arc of radius r Extend, then extend horizontally for a distance d, and then extend vertically downward for a distance h to obtain a left bulge and a right bulge, and between the left bulge and the middle bulge and the right bulge and the middle bulge A gap for filling insulating material is formed between the protrusions to prevent the power module from being broken down by a high electric field, and the middle protrusion is filled with a metal material with a high specific heat capacity;
所述左侧凸出部和右侧凸出部通过第一焊料层焊接于陶瓷覆铜板上铜层上。The left protruding part and the right protruding part are soldered to the copper layer on the ceramic copper clad laminate through the first solder layer.
所述中间凸出部通过第三焊料层焊接于位于芯片中间的有源区,且中间凸出部底面面积小于有源区的面积,不与位于芯片外围的终端区接触,为键合线预留空间,保证芯片与外界的电气连接。The middle protrusion is soldered to the active area located in the middle of the chip through the third solder layer, and the bottom surface area of the middle protrusion is smaller than the area of the active area, and does not contact with the terminal area located on the periphery of the chip, providing a pre-wired connection for the bonding wire. Leave space to ensure the electrical connection between the chip and the outside world.
所述中间凸出部与左侧凸出部和右侧凸出部的距离为5mm至20mm,半径r的大小为1mm至5mm,以保证绝缘且在中间凸出部内填充足够的金属材料;d的大小为1mm至5mm,h的高度大于半径r一个芯片的高度。The distance between the middle protrusion and the left protrusion and the right protrusion is 5 mm to 20 mm, and the radius r is 1 mm to 5 mm, so as to ensure insulation and fill enough metal material in the middle protrusion; d The size of h is 1mm to 5mm, and the height of h is greater than the height of one chip of radius r.
所述金属块包括通过真空回流焊技术将金属块经由第三焊料层焊接于所述芯片上的中间凸出部,所述中间凸出部分别向芯片左右两侧以半径为r1的圆弧向上延伸,然后横向延伸距离d,再以半径为r2的圆弧向下延伸,得到左侧凸出部和右侧凸出部,并在左侧凸出部和中间凸出部以及右侧凸出部和中间凸出部之间形成用于填充绝缘材料的空隙,防止功率模块被高电场击穿,在中间凸出部内填充有高比热容的金属材料;The metal block includes a middle protrusion that welds the metal block to the chip via a third solder layer by vacuum reflow technology, and the middle protrusion is respectively extended to the left and right sides of the chip by an arc with a radius of r1 . Extend upwards, then extend laterally for a distance d, and then extend downwards in an arc of radius r 2 to get the left and right bulges, and the left and middle bulges and the right A gap for filling insulating material is formed between the protruding part and the middle protruding part to prevent the power module from being broken down by a high electric field, and the middle protruding part is filled with a metal material with high specific heat capacity;
所述左侧凸出部和右侧凸出部通过第一焊料层焊接于陶瓷覆铜板上铜层上。The left protruding part and the right protruding part are soldered to the copper layer on the ceramic copper clad laminate through the first solder layer.
所述金属块的两侧延伸出支架,支架中心设置有圆孔,圆孔通过螺栓形式与其他芯片或者端子相连,实现电气连接。Both sides of the metal block extend out of the bracket, and a round hole is arranged in the center of the bracket, and the round hole is connected with other chips or terminals through bolts to realize electrical connection.
半径r2的大小为1mm至5mm,以保证绝缘且在中间凸出部内填充足够的金属材料;半径r2的大小比半径r1的大小长一个芯片的长度,d的大小为1mm至5mm。The size of the radius r 2 is 1 mm to 5 mm to ensure insulation and fill enough metal material in the middle protrusion; the size of the radius r 2 is longer than the size of the radius r 1 by the length of a chip, and the size of d is 1 mm to 5 mm.
所述金属块的边缘均匀涂抹有单层石墨烯,以增大热导率达到均温和热传导的目的;绝缘材料包括硅胶,金属材料包括钼或铜或银材料。The edge of the metal block is uniformly coated with single-layer graphene to increase thermal conductivity to achieve uniformity and heat conduction; the insulating material includes silica gel, and the metal material includes molybdenum or copper or silver materials.
本发明具有以下优点:一种基于芯片顶部金属块设计的高过载能力功率模块,提高了功率模块的过载能力,所采用的材料成本低廉,实现方法简单仅需真空焊接即可,由于所增加的结构在接近芯片的上方因此其温度响应速度较快且没有给功率模块增加额外的热阻。The present invention has the following advantages: a power module with high overload capacity designed based on the metal block on the top of the chip, which improves the overload capacity of the power module, the cost of the material used is low, and the realization method is simple and only needs vacuum welding. The structure is close to the top of the chip so its temperature response is faster and does not add additional thermal resistance to the power module.
附图说明Description of drawings
图1为传统功率模块的Cauer模型示意图;Fig. 1 is a schematic diagram of a Cauer model of a traditional power module;
图2为传统相变功率模块的结构示意图;FIG. 2 is a schematic structural diagram of a traditional phase-change power module;
图3为本发明实施方式1的结构示意图;3 is a schematic structural diagram of
图4为本发明实施方式1中空隙的结构示意图;Fig. 4 is a schematic structural diagram of a void in
图5为本发明实施方式2的结构示意图;FIG. 5 is a schematic structural diagram of
图6为本发明实施方式2中空隙的结构示意图;FIG. 6 is a schematic structural diagram of a void in
图7为本发明实施方式2的俯视图;7 is a top view of
图中:1-基板,2-第二焊料层,3-陶瓷覆铜板下铜层,4-陶瓷覆铜板陶瓷层,5-陶瓷覆铜板上铜层,6-第一焊料层,7-芯片,8-第三焊料层,9-金属块,91-左侧凸出部,92-右侧凸出部,93-中间凸出部,10-支架,11-圆孔。In the figure: 1-substrate, 2-second solder layer, 3-under copper layer of ceramic copper clad laminate, 4-ceramic layer of ceramic copper clad laminate, 5-copper layer of ceramic copper clad laminate, 6-first solder layer, 7-chip , 8-third solder layer, 9-metal block, 91-left protrusion, 92-right protrusion, 93-middle protrusion, 10-bracket, 11-round hole.
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下结合附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的保护范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。下面结合附图对本发明做进一步的描述。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only It is a part of the embodiments of this application, not all of them. The components of the embodiments of the application generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations. Therefore, the following detailed description of the embodiments of the application provided in conjunction with the accompanying drawings is not intended to limit the scope of the claimed application, but merely represents selected embodiments of the application. Based on the embodiments of the present application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the scope of protection of the present application. The present invention will be further described below in conjunction with the accompanying drawings.
如图3所示,本发明具体涉及一种基于芯片顶部金属块设计的高过载能力功率模块,其中一种实时方式包括基板1,第二焊料层2,陶瓷覆铜板下铜层3,陶瓷覆铜板陶瓷层4,陶瓷覆铜板上铜层5,第一焊料层6以及芯片7。功率模块芯片通过无铅焊料回流焊技术,将半导体芯片、陶瓷覆铜板、基板连接在一起,为了有效地增强功率模块的过载能力,且避免了给功率模块增加额外的热阻,在芯片7的上方增加了第三焊料层8和金属块9,其中金属块与芯片连接部分称为金属块9的中间凸出部93,金属块9两侧与陶瓷覆铜板上铜层5连接部分分别称为金属块9的左侧凸出部91和金属块9的右侧凸出部92。As shown in Figure 3, the present invention specifically relates to a high overload capacity power module based on the design of the metal block on the top of the chip, wherein a real-time mode includes a
进一步地,金属块9的中间凸出部93通过真空回流焊技术将金属块9经由第三焊料层8焊接于芯片7之上,考虑到功率模块热适配问题,芯片上方焊接材料选取与芯片材料热膨胀系数相差不大的材料,如钼,若考虑到成本等因素,也可选择铜铝等其他金属材料。金属块9的中间凸出部9底面面积小于芯片7的面积,金属块9焊接于芯片7的有源区而不与芯片7终端区接触,且需留有一定裕量,为键合线预留空间,保证芯片与外界的电气连接。Further, the middle protruding portion 93 of the
金属块9的中间凸出部93向上延伸时留有一定弧度,以填充更多金属材料,而后横向延伸出金属块9的左侧凸出部91和右侧凸出部92经由第一焊料层6焊接于陶瓷覆铜板上铜层5之上,横向延伸长度为5毫米至20毫米,即金属块9的中间凸出部92与金属块9的左侧凸出部91或右侧凸出部93距离为5毫米至20毫米,以保证芯片7与外部的电气连接。由于功率模块正常工作时,金属块9空隙间存在电场,因此需在空隙间填充绝缘物质,如硅胶等材料,以保证器件不被高电场击穿,如图4所示。由于硅胶材质的击穿电压为20-25kV/mm,因此金属块9的中间凸出部93的圆弧半径,即图4中的r,需大于1毫米以保证绝缘,且需小于5毫米以填充足够的金属材料,两侧凸出部分长度h比中间凸出部93高一个芯片的高度,通常高出的长度为0.1毫米至2毫米,圆弧与两侧凸出部分距离d为1毫米至5毫米。此外空隙可为金属块9温度升高后体积膨胀预留空间,金属块9边缘处可均匀涂抹单层石墨烯增大热导率,以达到均温、热传导的效果。The middle protrusion 93 of the
如图5所示,本发明的另一种实施方式包括基板1,第二焊料层2,陶瓷覆铜板下铜层3,陶瓷覆铜板陶瓷层4,陶瓷覆铜板上铜层5,第一焊料层6以及芯片7。功率模块芯片通过无铅焊料回流焊技术,将半导体芯片、陶瓷覆铜板、基板连接在一起,为了有效地增强功率模块的过载能力,且避免了给功率模块增加额外的热阻,在芯片7的上方增加了第三焊料层8和金属块9,其中金属块与芯片连接部分称为金属块9的中间凸出部93,金属块9两侧与陶瓷覆铜板上铜层5连接部分分别称为金属块9的左侧凸出部91和金属块9的右侧凸出部92。As shown in Figure 5, another embodiment of the present invention comprises a
进一步地,如图6所示,高过载能力功率模块所加金属块9拐角处设置一定的弧度以增加其所加金属材料,金属块9的空隙处填充硅胶等绝缘物质,由于硅胶材质的击穿电压为20-25kV/mm,因此金属块9中间凸出部93的圆弧半径需大于1毫米以保证绝缘,且需小于5毫米以填充足够的金属材料,即图6中r1所示,两侧凸出部分圆弧半径r2比r1长一个芯片7的高度,通常长出的长度为0.1毫米至2毫米,中心凸出部93圆弧与两侧凸出部分圆弧距离d为1毫米至5毫米。如图7所示,该高过载能力功率芯片不采用键合线方式实现电气连接,可将金属块9延伸出支架10,支架10中心为圆孔11,圆孔11可通过螺栓形式与其他具有圆孔11的芯片7或端子相连接,从而实现电气连接,这样可以避免使用键合线,能够避免键合线老化失效使得功率模块失效。Furthermore, as shown in Figure 6, a certain arc is set at the corner of the
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。The above descriptions are only preferred embodiments of the present invention, and it should be understood that the present invention is not limited to the forms disclosed herein, and should not be regarded as excluding other embodiments, but can be used in various other combinations, modifications and environments, and Modifications can be made within the scope of the ideas described herein, by virtue of the above teachings or skill or knowledge in the relevant art. However, changes and changes made by those skilled in the art do not depart from the spirit and scope of the present invention, and should all be within the protection scope of the appended claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211730406.6A CN115863279A (en) | 2022-12-30 | 2022-12-30 | A high overload capacity power module based on the metal block design on the top of the chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211730406.6A CN115863279A (en) | 2022-12-30 | 2022-12-30 | A high overload capacity power module based on the metal block design on the top of the chip |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115863279A true CN115863279A (en) | 2023-03-28 |
Family
ID=85656519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211730406.6A Pending CN115863279A (en) | 2022-12-30 | 2022-12-30 | A high overload capacity power module based on the metal block design on the top of the chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115863279A (en) |
-
2022
- 2022-12-30 CN CN202211730406.6A patent/CN115863279A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018227655A1 (en) | Low parasitic inductance power module and double-sided heat-dissipation low parasitic inductance power module | |
CN102244066B (en) | Power semiconductor module | |
US20240203841A1 (en) | Novel packaging structure of power semiconductor module | |
CN113517237B (en) | Full-bridge direct water-cooling SiC vehicle module | |
CN112736040B (en) | Double-sided welding power module and welding process | |
CN107146775A (en) | A kind of low stray inductance two-side radiation power model | |
CN206806321U (en) | A semiconductor packaging structure without a lead frame | |
CN116646326B (en) | Intelligent power module and electronic equipment with same | |
WO2022127060A1 (en) | Power device packaging structure and power electronic device | |
CN204614783U (en) | An intelligent power module | |
CN221102080U (en) | Power device | |
CN115602672A (en) | Multi-chip stacking and packaging structure | |
CN115863279A (en) | A high overload capacity power module based on the metal block design on the top of the chip | |
CN114975128A (en) | Intelligent power module and preparation method thereof | |
CN118522699A (en) | DBC substrate with high power density and high heat dissipation and power module | |
CN116995041A (en) | Packaging structure and packaging method of power semiconductor device | |
CN215731681U (en) | Bridging structure for improving reliability of discrete device | |
CN116504772A (en) | Intelligent power module and packaging method thereof | |
CN211428165U (en) | High-heat-dissipation and high-reliability IGBT power module structure | |
CN108878391A (en) | intelligent power module structure and manufacturing method thereof | |
CN210429794U (en) | Semiconductor module and packaging structure | |
CN109545697B (en) | Semiconductor packaging method and semiconductor packaging structure | |
CN216413059U (en) | Current-limiting protector | |
CN113053850A (en) | Power Module Package Structure | |
CN116230659A (en) | High overload capacity power module based on substrate groove design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |