CN115815535A - Liquid nitrogen seepage air-blast molding method and device for freeze casting - Google Patents
Liquid nitrogen seepage air-blast molding method and device for freeze casting Download PDFInfo
- Publication number
- CN115815535A CN115815535A CN202310058848.9A CN202310058848A CN115815535A CN 115815535 A CN115815535 A CN 115815535A CN 202310058848 A CN202310058848 A CN 202310058848A CN 115815535 A CN115815535 A CN 115815535A
- Authority
- CN
- China
- Prior art keywords
- air
- liquid nitrogen
- sand
- molding
- small
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 158
- 239000007788 liquid Substances 0.000 title claims abstract description 80
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 79
- 238000005266 casting Methods 0.000 title claims abstract description 48
- 238000000465 moulding Methods 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000004576 sand Substances 0.000 claims abstract description 28
- 238000005325 percolation Methods 0.000 claims abstract description 22
- 238000005056 compaction Methods 0.000 claims abstract description 17
- 238000007710 freezing Methods 0.000 claims abstract description 11
- 230000008014 freezing Effects 0.000 claims abstract description 11
- 238000011010 flushing procedure Methods 0.000 claims description 63
- 244000035744 Hura crepitans Species 0.000 claims description 61
- 239000003110 molding sand Substances 0.000 claims description 56
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 35
- 238000003860 storage Methods 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 14
- 239000004927 clay Substances 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 238000004080 punching Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000005422 blasting Methods 0.000 abstract description 2
- 238000004321 preservation Methods 0.000 description 4
- 238000009415 formwork Methods 0.000 description 3
- 229910001141 Ductile iron Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Casting Devices For Molds (AREA)
Abstract
本发明属于铸造造型技术领域,具体为一种冷冻铸造用液氮渗流气冲造型方法及装置,气冲前将液氮冲入砂型上方,通过小气冲预紧实结合大气冲紧实,充分利用一次气冲与二次气流反弹使液氮均匀渗入砂型,有利于在气冲后得到冷冻密度均匀且冷冻效果极佳的铸型,造型时间短、质量高,造型时间相较于现有技术缩短一倍,能满足大规模大批量生产需要,更有利于提高铸件的质量。
The invention belongs to the technical field of casting molding, and specifically relates to a liquid nitrogen percolation air-impact molding method and device for frozen casting. Before air-impact, liquid nitrogen is injected into the top of the sand mold, pre-compacted by small air-impact combined with atmospheric-impact compaction, and fully utilized The first air blast and the second air flow rebound make the liquid nitrogen evenly infiltrate into the sand mold, which is beneficial to obtain a mold with uniform freezing density and excellent freezing effect after air blasting. The molding time is short and the quality is high. Compared with the existing technology, the molding time is shortened Double, can meet the needs of large-scale mass production, and is more conducive to improving the quality of castings.
Description
技术领域technical field
本发明涉及铸造造型技术领域,具体为一种冷冻铸造用液氮渗流气冲造型方法及装置。The invention relates to the technical field of casting molding, in particular to a liquid nitrogen percolation air-impact molding method and device for frozen casting.
背景技术Background technique
近年来随着世界工业化程度的快步发展,对铸造产业的需求越来越大,传统铸造由于采用树脂或膨润土、煤粉等作为型砂粘结剂,工作环境充斥着灰尘、树脂未完全燃烧造成的废气等,更是产生了大量的工业废物,不仅污染环境,损害工人身体健康,其后期回收处理的成本也不容小觑。In recent years, with the rapid development of the world's industrialization level, the demand for the foundry industry is increasing. Traditional casting uses resin or bentonite, coal powder, etc. as molding sand binders, and the working environment is full of dust. Exhaust gas, etc., also produces a large amount of industrial waste, which not only pollutes the environment, but also damages the health of workers, and the cost of subsequent recycling and treatment cannot be underestimated.
传统的冷冻铸造方法采用液氮冷却的方法实现型砂和水混合物的冰冻造型,由冷冻铸造方法得到的铸型,只包括型砂和水两种物质,在浇注后可以实现自动落砂,简化了浇注后的清理过程,工艺简单、绿色环保,且节约成本。虽满足绿色发展的需要,但冷冻速率慢,且砂型紧实度不均匀,影响铸件质量,不适合大规模大批量生产。The traditional freezing casting method adopts liquid nitrogen cooling method to realize the freezing molding of the mixture of molding sand and water. The casting mold obtained by the freezing casting method only includes molding sand and water. After pouring, it can realize automatic sand falling, which simplifies pouring The final cleaning process is simple, environmentally friendly, and cost-saving. Although it meets the needs of green development, the freezing rate is slow, and the compactness of the sand mold is uneven, which affects the quality of castings, and is not suitable for large-scale mass production.
发明内容Contents of the invention
为解决现有技术存在的问题,本发明的主要目的是提出一种冷冻铸造用液氮渗流气冲造型方法及装置。In order to solve the problems existing in the prior art, the main purpose of the present invention is to provide a liquid nitrogen percolation air-impact molding method and device for frozen casting.
为解决上述技术问题,根据本发明的一个方面,本发明提供了如下技术方案:In order to solve the above technical problems, according to one aspect of the present invention, the present invention provides the following technical solutions:
一种冷冻铸造用液氮渗流气冲造型方法,包括如下步骤:A liquid nitrogen percolation air-impact molding method for frozen casting, comprising the following steps:
S1.填砂;S1. Fill sand;
S2.液氮冲入砂箱;S2. Liquid nitrogen is flushed into the sand box;
S3.小气冲预紧实;打开小气冲阀,压缩空气贮存腔内的压缩空气进入砂箱,完成小气冲预紧实;S3. Small air punch pre-tightening; open the small air punch valve, the compressed air in the compressed air storage chamber enters the sand box, and completes the small air punch pre-tightening;
S4.大气冲紧实;关闭小气冲阀后打开大气冲阀,气罐内高压空气进入砂箱,完成大气冲紧实;S4. Atmospheric flushing and compacting; after closing the small air flushing valve, open the atmospheric flushing valve, and the high-pressure air in the air tank enters the sand box to complete the atmospheric compaction;
S5.取出模样,得到铸型。S5. Take out the pattern and obtain the casting mold.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型方法的优选方案,其中:所述步骤S1中,在模底板上砂箱内安放模型,在砂箱内铺型砂,型砂量取决于模具大小,一般填砂高度最好在20cm以上,简单震实以保证模板与砂箱深凹部位型砂的填充。As a preferred solution of the liquid nitrogen percolation air-impact molding method for frozen casting according to the present invention, wherein: in the step S1, the model is placed in the sand box on the mold bottom plate, and the molding sand is laid in the sand box. The amount of molding sand depends on Depending on the size of the mold, the height of the sand filling is generally better than 20cm, and it is simply shaken to ensure the filling of the molding sand in the deep recessed parts of the formwork and the flask.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型方法的优选方案,其中:所述步骤S1中,通过刮板刮去辅助框以上的多余型砂。As a preferred solution of the liquid nitrogen percolation air-impact molding method for frozen casting according to the present invention, wherein: in the step S1, the excess molding sand above the auxiliary frame is scraped off by a scraper.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型方法的优选方案,其中:所述步骤S1中,型砂采用二氧化硅砂,加入粘土增加型砂粘合性,型砂中水分应保持在3-5wt%,粘土含量3-10wt%。As a preferred solution of the liquid nitrogen percolation air-impact molding method for frozen casting according to the present invention, wherein: in the step S1, silica sand is used for the molding sand, clay is added to increase the adhesion of the molding sand, and the moisture in the molding sand should be kept at 3-5wt%, clay content 3-10wt%.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型方法的优选方案,其中:所述步骤S2中,打开小气冲阀,通过液氮冲入口向砂箱中冲入液氮,采用保温装置保证冲入液氮温度≤-130℃;关闭小气冲阀,静置2-3min,使液氮充分渗入型砂缝隙中。As a preferred solution of the liquid nitrogen percolation air-impact molding method for frozen casting according to the present invention, wherein: in the step S2, the small air-impact valve is opened, and liquid nitrogen is injected into the sand box through the liquid nitrogen inflow port, using The heat preservation device ensures that the temperature of the liquid nitrogen being flushed is ≤ -130°C; close the small air flushing valve and let it stand for 2-3 minutes to allow the liquid nitrogen to fully penetrate into the gaps in the molding sand.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型方法的优选方案,其中:所述步骤S2中,液氮与型砂的质量比为0.5-1.0,液氮流速控制在20-30mL/s,液氮冲入可能在小气冲阀中有残余,通过小气冲预紧实可以完全排出。As a preferred solution of the liquid nitrogen percolation air-impact molding method for frozen casting according to the present invention, wherein: in the step S2, the mass ratio of liquid nitrogen to molding sand is 0.5-1.0, and the flow rate of liquid nitrogen is controlled at 20-30mL /s, there may be residues in the small air flush valve when the liquid nitrogen is flushed in, and it can be completely discharged through the small air flush pre-tightening.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型方法的优选方案,其中:所述步骤S3中,在小气冲预紧实之前,将气压为3-15MPa的压缩空气贮存到压缩空气贮存腔内;在小气冲预紧实时,压缩空气进入砂箱顶部与型砂接触的升压速率为100-180MPa/s,气冲3-5s完成小气冲预紧实。As a preferred solution of the liquid nitrogen percolation air impact molding method for frozen casting according to the present invention, wherein: in the step S3, before the small air impact pre-compacting, the compressed air with a pressure of 3-15 MPa is stored in the compressed air. In the air storage chamber; when the small air punch is preloaded, the compressed air enters the top of the flask and contacts the molding sand at a pressure increase rate of 100-180MPa/s, and the small air punch preload is completed in 3-5s.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型方法的优选方案,其中:所述步骤S4中,在大气冲紧实之前,将气压为15-30MPa的高压空气贮存到气罐内;在大气冲紧实时,高压空气进入砂箱顶部与型砂接触的升压速率为150-230MPa/s,气冲5-10s完成大气冲紧实。As a preferred solution of the liquid nitrogen percolation air-impact molding method for frozen casting according to the present invention, wherein: in the step S4, the high-pressure air with a pressure of 15-30 MPa is stored in the air tank before the air is compacted. Inside; in the real time of atmospheric flushing, the pressure increase rate of high-pressure air entering the top of the flask and contacting the molding sand is 150-230MPa/s, and the air compaction is completed within 5-10s of air flushing.
为解决上述技术问题,根据本发明的另一个方面,本发明提供了如下技术方案:In order to solve the above technical problems, according to another aspect of the present invention, the present invention provides the following technical solutions:
一种冷冻铸造用液氮渗流气冲造型装置,包括:A liquid nitrogen percolation air-impact molding device for frozen casting, comprising:
气罐、大气冲阀、小气冲阀、砂箱、压缩空气贮存腔;Air tank, large air flushing valve, small air flushing valve, sand box, compressed air storage chamber;
所述气罐位于砂箱上部,用于贮存高压气体,通过大气冲阀的开闭实现高压空气进入砂箱完成大气冲紧实;所述压缩空气贮存腔位于砂箱上部且与气罐不连通,用于贮存压缩气体,通过小气冲阀的开闭实现压缩空气进入砂箱完成小气冲预紧实。The air tank is located on the upper part of the sand box and is used to store high-pressure gas. Through the opening and closing of the atmospheric flushing valve, the high-pressure air enters the sand box to complete the compacting of the atmospheric flushing; the compressed air storage chamber is located on the upper part of the sand box and is not connected to the air tank. , used to store compressed gas, through the opening and closing of the small air flushing valve, the compressed air enters the sand box to complete the small air flushing pre-tightening.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型装置的优选方案,其中:小气冲阀上开设小孔,且小孔面积与小气冲阀面积比为1:20-50。As a preferred solution of the liquid nitrogen percolation air-impact molding device for frozen casting according to the present invention, small holes are provided on the small air-impact valve, and the ratio of the area of the small hole to the area of the small air-impact valve is 1:20-50.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型装置的优选方案,其中:小气冲阀与大气冲阀面积比为1:8-20。As a preferred solution of the liquid nitrogen percolation air flush molding device for frozen casting according to the present invention, the area ratio of the small air flush valve to the large air flush valve is 1:8-20.
作为本发明所述的一种冷冻铸造用液氮渗流气冲造型装置的优选方案,其中:所述装置还包括辅助框、模底板、工作台、液氮冲入口,所述辅助框位于砂箱上部且位于气罐下部,所述模底板位于砂箱下部,所述工作台位于模底板和砂箱下部,所述液氮冲入口与压缩空气贮存腔连通,通过小气冲阀的开闭,实现向砂箱中导入液氮。As a preferred solution of a liquid nitrogen percolation air-impact molding device for frozen casting according to the present invention, the device also includes an auxiliary frame, a mold bottom plate, a workbench, and a liquid nitrogen flushing inlet, and the auxiliary frame is located in the sand box. The upper part is located at the lower part of the gas tank, the mold bottom plate is located at the lower part of the sand box, the workbench is located at the mold bottom plate and the lower part of the sand box, the liquid nitrogen flushing inlet is connected with the compressed air storage chamber, and the small air flushing valve is opened and closed to realize Introduce liquid nitrogen into the sandbox.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明提出一种冷冻铸造用液氮渗流气冲造型方法及装置,气冲前将液氮冲入砂型上方,通过小气冲预紧实结合大气冲紧实,充分利用一次气冲与二次气流反弹使液氮均匀渗入砂型,有利于在气冲后得到冷冻密度均匀且冷冻效果极佳的铸型,造型时间相较于现有技术缩短一倍,砂型的性能例如抗拉强度、抗压强度、透气性等相较于现有技术提高30%以上,能满足大规模大批量生产需要,更有利于提高铸件的质量。The present invention proposes a method and device for liquid nitrogen percolation air-impact molding for frozen casting. Liquid nitrogen is injected into the top of the sand mold before air-impact, pre-compacted by small air-impact combined with atmospheric-impact compaction, making full use of primary air-impact and secondary airflow The rebound makes the liquid nitrogen penetrate into the sand mold evenly, which is beneficial to obtain a mold with uniform freezing density and excellent freezing effect after air blasting. Compared with the existing technology, the molding time is doubled, and the properties of the sand mold such as tensile strength and compressive strength , gas permeability, etc. are improved by more than 30% compared with the existing technology, which can meet the needs of large-scale mass production, and is more conducive to improving the quality of castings.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to the structures shown in these drawings without creative effort.
图1为本发明冷冻铸造用液氮渗流气冲造型装置示意图。Fig. 1 is a schematic diagram of a liquid nitrogen percolation air-impact molding device for frozen casting according to the present invention.
附图标号说明:Explanation of reference numbers:
1-气罐、2-液氮冲入口、3-大气冲阀、4-辅助框、5-砂箱、6-工作台、7-压缩空气贮存腔、8-小气冲阀、9-模底板。1-air tank, 2-liquid nitrogen flushing inlet, 3-atmospheric flushing valve, 4-auxiliary frame, 5-sand box, 6-workbench, 7-compressed air storage chamber, 8-small air flushing valve, 9-mold bottom plate .
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described in conjunction with the embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
下面将结合实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。A clear and complete description will be made below in conjunction with the technical solutions in the embodiments. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
本发明提供一种冷冻铸造用液氮渗流气冲造型方法及装置,造型时间短、质量高,能满足大规模大批量生产需要,更有利于提高铸件的质量,气冲前将液氮冲入砂型上方,通过小气冲预紧实结合大气冲紧实,充分利用一次气冲与二次气流反弹使液氮均匀渗入砂型,有利于在气冲后得到冷冻密度均匀且冷冻效果极佳的铸型。The invention provides a liquid nitrogen seepage air-impact molding method and device for frozen casting, which has short molding time and high quality, can meet the needs of large-scale mass production, and is more conducive to improving the quality of castings. Above the sand mold, pre-compacting with small air impact combined with air impact compaction, making full use of the first air impact and the rebound of the secondary air flow to allow liquid nitrogen to penetrate into the sand mold evenly, which is conducive to obtaining a mold with uniform freezing density and excellent freezing effect after air impact .
根据本发明的一个方面,本发明提供了如下技术方案:According to one aspect of the present invention, the present invention provides following technical scheme:
一种冷冻铸造用液氮渗流气冲造型方法,包括如下步骤:A liquid nitrogen percolation air-impact molding method for frozen casting, comprising the following steps:
S1.填砂;S1. Fill sand;
S2.液氮冲入砂箱5;S2. Liquid nitrogen is flushed into the
S3.小气冲预紧实;打开小气冲阀8,压缩空气贮存腔7内的压缩空气进入砂箱5,完成小气冲预紧实;S3. Small air punch pre-compacting; open the small
S4.大气冲紧实;关闭小气冲阀8后打开大气冲阀3,气罐1内高压空气进入砂箱5,完成大气冲紧实;S4. Atmospheric flushing and compacting; after closing the small
S5.取出模样,得到铸型。S5. Take out the pattern and obtain the casting mold.
所述步骤S1中,在模底板9上砂箱5内安放模型,在砂箱5内铺型砂,型砂量取决于模具大小,一般填砂高度最好在20cm以上,简单震实以保证模板与砂箱深凹部位型砂的填充。通过刮板刮去辅助框4以上的多余型砂。型砂采用二氧化硅砂,加入粘土增加粘合性,型砂中水分应保持在3-5wt%,粘土含量为3-10wt%。具体的,所述型砂中水分应保持在例如但不限于3wt%、3.5wt%、4wt%、4.5wt%、5wt%中的任意一者或任意两者之间的范围;粘土含量为例如但不限于3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、10wt%中的任意一者或任意两者之间的范围。由于型砂不采用树脂或膨润土、煤粉等作为型砂粘结剂,浇注后不会产生废气,废砂量也得到很大程度的减少,绿色环保。In the step S1, the model is placed in the
所述步骤S2中,打开小气冲阀8,通过液氮冲入口2向砂箱中冲入液氮,采用保温装置保证冲入液氮温度≤-130℃;关闭小气冲阀8,静置2-3min,使液氮充分渗入型砂缝隙中。液氮与型砂的质量比为0.5-1.0,液氮流速控制在20-30mL/s,液氮冲入可能在小气冲阀8中有残余,通过小气冲预紧实可以尽可能多的排出小气冲阀8残余的液氮。具体的,静置时间为例如但不限于2min、2min10s、2min20s、2min30s、2min40s、2min50s、3min中的任意一者或任意两者之间的范围;液氮与型砂的质量比为例如但不限于0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0中的任意一者或任意两者之间的范围;液氮流速控制在例如但不限于20mL/s、22mL/s、24mL/s、26mL/s、28mL/s、30mL/s中的任意一者或任意两者之间的范围。In the step S2, open the small
所述步骤S3中,在小气冲预紧实之前,将气压为3-15MPa的压缩空气贮存到压缩空气贮存腔内;在小气冲预紧实时,压缩空气进入砂箱顶部与型砂接触的升压速率为100-180MPa/s,气冲3-5s完成小气冲预紧实。具体的,压缩空气的气压为例如但不限于3MPa、4MPa、5MPa、6MPa、7MPa、8MPa、9MPa、10MPa、11MPa、12MPa、13MPa、14MPa、15MPa中的任意一者或任意两者之间的范围;所述升压速率为例如但不限于100MPa/s、110MPa/s、120MPa/s、130MPa/s、140MPa/s、150MPa/s、160MPa/s、170MPa/s、180MPa/s中的任意一者或任意两者之间的范围;气冲时间为例如但不限于3s、3.5s、4s、4.5s、5s中的任意一者或任意两者之间的范围。In the step S3, before the small air punch is pre-compacted, the compressed air with a pressure of 3-15 MPa is stored in the compressed air storage chamber; when the small air punch is pre-compacted, the compressed air enters the top of the sand box to contact the molding sand to increase the pressure. The speed is 100-180MPa/s, and the air impact is 3-5s to complete the small air impact pre-tightening. Specifically, the pressure of the compressed air is, for example but not limited to, any one of 3MPa, 4MPa, 5MPa, 6MPa, 7MPa, 8MPa, 9MPa, 10MPa, 11MPa, 12MPa, 13MPa, 14MPa, 15MPa or a range between any two The pressurization rate is, for example but not limited to, any one of 100MPa/s, 110MPa/s, 120MPa/s, 130MPa/s, 140MPa/s, 150MPa/s, 160MPa/s, 170MPa/s, 180MPa/s or any range between the two; the air burst time is, for example but not limited to, any one of 3s, 3.5s, 4s, 4.5s, 5s or any range between the two.
所述步骤S4中,在大气冲紧实之前,将气压为15-30MPa的高压空气贮存到气罐内;在大气冲紧实时,高压空气进入砂箱顶部与型砂接触的升压速率为150-230MPa/s,气冲5-10s完成大气冲紧实。具体的,高压空气的气压为例如但不限于15MPa、16MPa、17MPa、18MPa、19MPa、20MPa、21MPa、22MPa、23MPa、24MPa、25MPa、26MPa、27MPa、28MPa、29MPa、30MPa中的任意一者或任意两者之间的范围;所述升压速率为例如但不限于150MPa/s、160MPa/s、170MPa/s、180MPa/s、190MPa/s、200MPa/s、210MPa/s、220MPa/s、230MPa/s中的任意一者或任意两者之间的范围;气冲时间为例如但不限于5s、5.5s、6s、6.5s、7s、7.5s、8s、8.5s、9s、9.5s、10s中的任意一者或任意两者之间的范围。In the step S4, before the atmosphere is compacted, the high-pressure air with an air pressure of 15-30 MPa is stored in the air tank; when the atmosphere is compacted, the pressure increase rate of the high-pressure air entering the top of the flask and contacting the molding sand is 150-30 MPa. 230MPa/s, air punching 5-10s to complete the air punching compaction. Specifically, the air pressure of the high-pressure air is, for example but not limited to, any one of 15MPa, 16MPa, 17MPa, 18MPa, 19MPa, 20MPa, 21MPa, 22MPa, 23MPa, 24MPa, 25MPa, 26MPa, 27MPa, 28MPa, 29MPa, 30MPa or any The range between the two; the boost rate is for example but not limited to 150MPa/s, 160MPa/s, 170MPa/s, 180MPa/s, 190MPa/s, 200MPa/s, 210MPa/s, 220MPa/s, 230MPa Any one of /s or the range between any two; air burst time is for example but not limited to 5s, 5.5s, 6s, 6.5s, 7s, 7.5s, 8s, 8.5s, 9s, 9.5s, 10s Any one of them or the range between any two.
根据本发明的另一个方面,本发明提供了如下技术方案:According to another aspect of the present invention, the present invention provides the following technical solutions:
一种冷冻铸造用液氮渗流气冲造型装置,如图1所示,包括:A liquid nitrogen percolation air-impact molding device for frozen casting, as shown in Figure 1, comprising:
气罐1、大气冲阀3、小气冲阀8、砂箱5、压缩空气贮存腔7;
所述气罐1位于砂箱5上部,用于贮存高压气体,通过大气冲阀3的开闭实现高压空气进入砂箱5完成大气冲紧实;所述压缩空气贮存腔7位于气罐1内且与气罐1不连通,用于贮存压缩气体,通过小气冲阀8的开闭实现压缩空气进入砂箱5完成小气冲预紧实;小气冲阀8上开设小孔,且小孔面积与小气冲阀8面积比为1:20-50。小气冲阀8与大气冲阀3面积比为1:8-20。具体的,小孔面积与小气冲阀8面积比为例如但不限于1:20、1:22、1:24、1:26、1:28、1:30、1:32、1:34、1:36、1:38、1:40、1:42、1:44、1:46、1:48、1:50中的任意一者或任意两者之间的范围;小气冲阀8与大气冲阀3面积比为1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17、1:18、1:19、1:20中的任意一者或任意两者之间的范围。The
所述装置还包括辅助框4、模底板9、工作台6、液氮冲入口2,所述辅助框4位于砂箱5上部且位于气罐1下部,所述模底板9位于砂箱5下部,所述工作台6位于模底板9和砂箱5下部,所述液氮冲入口2与压缩空气贮存腔7连通,通过小气冲阀8的开闭,实现向砂箱中导入液氮。The device also includes an
以下结合具体实施例对本发明技术方案进行进一步说明。The technical solutions of the present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
一种冷冻铸造用液氮渗流气冲造型方法,包括如下步骤:A liquid nitrogen percolation air-impact molding method for frozen casting, comprising the following steps:
S1.填砂;在模底板9上砂箱5内安放模型,在砂箱5内铺型砂,型砂量取决于模具大小,填砂高度在50cm,简单震实以保证模板与砂箱深凹部位型砂的填充,震实时间约为20s,震实频率60Hz。通过刮板刮去辅助框4以上的多余型砂,保证每箱造型填入型砂的量偏差≤砂箱总填砂体积的3-5%。型砂采用二氧化硅砂,加入粘土增加粘合性,型砂中水分应保持在3wt%,粘土含量为5wt%。S1. Sand filling; place the model in the
S2.液氮冲入砂箱5;打开小气冲阀8,通过液氮冲入口2向砂箱中冲入液氮,采用保温装置保证冲入液氮温度≤-130℃;关闭小气冲阀8,静置2min,使液氮充分渗入型砂缝隙中。液氮与型砂的质量比为0.75,液氮流速控制在20mL/s。S2. Liquid nitrogen rushes into the
S3.小气冲预紧实;在小气冲预紧实之前,将气压为10MPa的压缩空气贮存到压缩空气贮存腔7内;打开小气冲阀8,压缩空气贮存腔7内的压缩空气进入砂箱5,完成小气冲预紧实;压缩空气进入砂箱顶部与型砂接触的升压速率为150MPa/s,气冲3s完成小气冲预紧实。S3. Small air punch pre-compacting; before the small air punch pre-compacting, store compressed air with a pressure of 10MPa in the compressed
S4.大气冲紧实;在大气冲紧实之前,将气压为30MPa的高压空气贮存到气罐1内;在大气冲紧实时,关闭小气冲阀8后打开大气冲阀3,气罐1内高压空气进入砂箱5,完成大气冲紧实;高压空气进入砂箱顶部与型砂接触的升压速率为200MPa/s,气冲5s完成大气冲紧实。S4. Atmospheric flushing; before the atmospheric flushing, store the high-pressure air with a pressure of 30MPa in the
S5.取出模样,得到铸型。S5. Take out the pattern and obtain the casting mold.
采用实施例1所述铸型实现变壁厚的铝合金铸件的浇铸,在铸型型腔内采用喷涂方法,均匀喷涂绝热涂料,将熔融金属液倒入铸型,熔融金属在铸型中凝固成壳,待外面成壳以后,迅速在冷冻铸型壁厚部位喷射冷却剂,以溶解的方式使冷冻铸型壁厚部位快速溶解溃散落砂。Using the casting mold described in Example 1 to realize the casting of aluminum alloy castings with variable wall thickness, the spraying method is adopted in the mold cavity to evenly spray the heat-insulating coating, and the molten metal liquid is poured into the casting mold, and the molten metal solidifies in the casting mold Shelling, after the outer shell is formed, quickly spray coolant on the thick wall part of the frozen casting mold, and quickly dissolve the thick wall part of the frozen casting mold by dissolving the sand.
实施例2Example 2
一种冷冻铸造用液氮渗流气冲造型方法,包括如下步骤:A liquid nitrogen percolation air-impact molding method for frozen casting, comprising the following steps:
S1.填砂;在模底板9上砂箱5内安放模型,在砂箱5内铺型砂,型砂量取决于模具大小,填砂高度在40cm,简单震实以保证模板与砂箱深凹部位型砂的填充,震实时间约为30s,震实频率100Hz。通过刮板刮去辅助框4以上的多余型砂,保证每箱造型填入型砂的量偏差≤砂箱总填砂体积的3-5%。型砂采用二氧化硅砂,加入粘土增加粘合性,型砂中水分应保持在5wt%,粘土含量为6wt%。S1. Sand filling; place the model in the
S2.液氮冲入砂箱5;打开小气冲阀8,通过液氮冲入口2向砂箱中冲入液氮,采用保温装置保证冲入液氮温度≤-130℃;关闭小气冲阀8,静置2min,使液氮充分渗入型砂缝隙中。液氮与型砂的质量比为0.7,液氮流速控制在25mL/s。S2. Liquid nitrogen rushes into the
S3.小气冲预紧实;在小气冲预紧实之前,将气压为15MPa的压缩空气贮存到压缩空气贮存腔7内;打开小气冲阀8,压缩空气贮存腔7内的压缩空气进入砂箱5,完成小气冲预紧实;压缩空气进入砂箱顶部与型砂接触的升压速率为160MPa/s,气冲5s完成小气冲预紧实。S3. Small air punch pre-compacting; before the small air punch pre-compacting, store compressed air with a pressure of 15MPa in the compressed
S4.大气冲紧实;在大气冲紧实之前,将气压为30MPa的高压空气贮存到气罐1内;在大气冲紧实时,关闭小气冲阀8后打开大气冲阀3,气罐1内高压空气进入砂箱5,完成大气冲紧实;高压空气进入砂箱顶部与型砂接触的升压速率为200MPa/s,气冲8s完成大气冲紧实。S4. Atmospheric flushing; before the atmospheric flushing, store the high-pressure air with a pressure of 30MPa in the
S5.取出模样,得到铸型。S5. Take out the pattern and obtain the casting mold.
采用实施例2所述铸型实现球墨铸铁的浇铸,将铁水采用离心浇铸方式倒入铸型,球墨铸铁在铸型中凝固成壳。The casting mold described in Example 2 is used to cast the ductile iron, and the molten iron is poured into the mold by centrifugal casting, and the ductile iron is solidified into a shell in the mold.
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above description is only a preferred embodiment of the present invention, and does not limit the patent scope of the present invention. Under the inventive concept of the present invention, the equivalent structural transformation made by using the content of the description of the present invention, or directly/indirectly used in other related All technical fields are included in the patent protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310058848.9A CN115815535A (en) | 2023-01-13 | 2023-01-13 | Liquid nitrogen seepage air-blast molding method and device for freeze casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310058848.9A CN115815535A (en) | 2023-01-13 | 2023-01-13 | Liquid nitrogen seepage air-blast molding method and device for freeze casting |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115815535A true CN115815535A (en) | 2023-03-21 |
Family
ID=85520756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310058848.9A Pending CN115815535A (en) | 2023-01-13 | 2023-01-13 | Liquid nitrogen seepage air-blast molding method and device for freeze casting |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115815535A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117086264A (en) * | 2023-10-19 | 2023-11-21 | 中北大学 | Casting method combining frozen sand mold and gypsum mold |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1048995A (en) * | 1989-07-25 | 1991-02-06 | 沈阳工业学院 | Pure ice-film cold sand molding method and device |
JPH11138235A (en) * | 1994-05-24 | 1999-05-25 | Kimura Chuzosho:Kk | Manufacture of freezed mold and holding method thereof |
JP2004058116A (en) * | 2002-07-31 | 2004-02-26 | Mayekawa Mfg Co Ltd | Device for freezing mold |
JP2012071349A (en) * | 2010-09-03 | 2012-04-12 | Sankyo Gokin Chuzosho:Kk | Method of manufacturing frozen casting mold |
CN105665637A (en) * | 2016-03-11 | 2016-06-15 | 机械科学研究总院先进制造技术研究中心 | Containerless casting molding method of frozen sand mold |
CN109332578A (en) * | 2018-10-23 | 2019-02-15 | 北京机科国创轻量化科学研究院有限公司 | A kind of containerless casting manufacturing process freezing clay-bonded sand |
-
2023
- 2023-01-13 CN CN202310058848.9A patent/CN115815535A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1048995A (en) * | 1989-07-25 | 1991-02-06 | 沈阳工业学院 | Pure ice-film cold sand molding method and device |
JPH11138235A (en) * | 1994-05-24 | 1999-05-25 | Kimura Chuzosho:Kk | Manufacture of freezed mold and holding method thereof |
JP2004058116A (en) * | 2002-07-31 | 2004-02-26 | Mayekawa Mfg Co Ltd | Device for freezing mold |
JP2012071349A (en) * | 2010-09-03 | 2012-04-12 | Sankyo Gokin Chuzosho:Kk | Method of manufacturing frozen casting mold |
CN105665637A (en) * | 2016-03-11 | 2016-06-15 | 机械科学研究总院先进制造技术研究中心 | Containerless casting molding method of frozen sand mold |
CN109332578A (en) * | 2018-10-23 | 2019-02-15 | 北京机科国创轻量化科学研究院有限公司 | A kind of containerless casting manufacturing process freezing clay-bonded sand |
Non-Patent Citations (2)
Title |
---|
李魁盛 等: "铸件成型技术入门与精通", 31 January 2012, 机械工业出版社, pages: 40 - 42 * |
陈士梁: "铸造机械化", 31 May 1999, 机械工业出版社, pages: 24 - 31 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117086264A (en) * | 2023-10-19 | 2023-11-21 | 中北大学 | Casting method combining frozen sand mold and gypsum mold |
CN117086264B (en) * | 2023-10-19 | 2023-12-19 | 中北大学 | A casting method combining frozen sand mold and plaster mold |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101693282B (en) | Method for producing pressure-bearing aluminum alloy tank body of ultra-high voltage switch by V method casting | |
CN102941333B (en) | V method, low pressure produce the method for voltage-bearing aluminum alloy tank body of ultra-high voltage switch | |
CN102371339B (en) | Casting process method combining steel-shot chilling and vibratory pouring based on disappearing die | |
CN105834362B (en) | The lost-foam casting method of ultrasonic vibration resin self-setting sand | |
CN101898228A (en) | Method for casting sound casting by using lost foam coated with high-performance coating in vibration way | |
CN101391298B (en) | Aluminium alloy or magnesium alloy evaporative-pattern casting compression solidification device | |
CN103789605A (en) | Manufacturing method of spheroidal graphite cast iron casting of wind power yaw variable-pitch device | |
CN102744367A (en) | Lost foam-shell mold casting vibration and solidification method based on foam mold | |
CN104128561B (en) | A kind of heat resisting steel grate plate with holes lost-foam casting method | |
CN1593812A (en) | Method for manufacturing crankcase of automobile engine by negative pressure cavityless casting | |
WO2017152589A1 (en) | Method for producing mould and core through curing sodium silicate sand for casting by blowing | |
CN109434012A (en) | A kind of lost foam casting process of high-mechanical property casting | |
CN101554644B (en) | Lost foam casting process suitable for aluminum alloy materials | |
CN115815535A (en) | Liquid nitrogen seepage air-blast molding method and device for freeze casting | |
CN103658534A (en) | Negative-pressure precision casting process of cold-mold protective shell | |
CN1223420C (en) | Sand mould negative pressure gravity casting method | |
CN114713798B (en) | Vacuum mold-filling top-placing chilling pressurized solidification device and method for preparing large aluminum alloy casting | |
CN102416440B (en) | Casting method for liquid metal pouring of lost mold casting model in high-frequency micro-vibration field under negative pressure of dry sand | |
CN114643336B (en) | V-method casting process of ductile cast iron casting | |
CN103223465B (en) | A kind of casting method of zinc alloy lost foam | |
CN101347828A (en) | Lost foam casting method of mould sand substituted by steel shot | |
CN111390115B (en) | Wear-resistant part shell mold casting method | |
CN102430720A (en) | Method for producing flat gasket by precoated sand shell mold process | |
CN114769519B (en) | A method and equipment for preparing ductile iron material for lost foam casting | |
CN105689644A (en) | Lost foam water-cooling casting process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |